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Abstract

Brain injury and dysmaturation is common in fetuses and neonates with congenital

heart disease (CHD) and is hypothesized to result in persistent myelination deficits.

This study aimed to quantify and compare myelin content in vivo between youth born

with CHD and healthy controls. Youth aged 16 to 24 years born with CHD and

healthy age- and sex-matched controls underwent brain magnetic resonance imaging

including multicomponent driven equilibrium single pulse observation of T1 and T2

(mcDESPOT). Average myelin water fraction (MWF) values for 33 white matter

tracts, as well as a summary measure of average white matter MWF, the White Mat-

ter Myelination Index, were calculated and compared between groups. Tract-average

MWF was lower throughout the corpus callosum and in many bilateral association

tracts and left hemispheric projection tracts in youth with CHD (N = 44) as compared

to controls (N = 45). The White Matter Myelination Index was also lower in the CHD

group. As such, this study provides specific evidence of widespread myelination defi-

cits in youth with CHD, likely representing a long-lasting consequence of early-life

brain dysmaturation in this population. This deficient myelination may underlie the

frequent neurodevelopmental impairments experienced by CHD survivors and could

eventually serve as a biomarker of neuropsychological function.
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1 | INTRODUCTION

Despite undergoing open-heart surgery during infancy, survivors of

complex congenital heart disease (CHD) frequently experience persis-

tent neurodevelopmental impairments (Easson et al., 2019;

Latal, 2016) whose precise neural correlates remain unclear. The neu-

rodevelopment of fetuses and neonates with complex CHD is com-

monly complicated by delayed brain maturation and associated white

matter injury (Brossard-Racine et al., 2016; Licht et al., 2009; Miller

et al., 2004, 2007), believed to be a consequence of deficient delivery

of blood and oxygen to the brain by the malformed heart (Licht

et al., 2004; Sun et al., 2015). From the study of animal models, it is

understood that a key factor in the neuropathology of CHD is the

heightened vulnerability of the pre-myelinating late oligodendrocyte

progenitors (preOLs) that predominate in the immature brain to

hypoxia-ischemia (Back et al., 2001; Morton et al., 2017). The cascade

following hypoxia-ischemia involves acute preOL death, typically man-

ifesting as diffuse white matter injury, followed by sub-acute preOL

replenishment and chronic arrested preOL maturation (Back

et al., 2001; Morton et al., 2017). The interrupted maturation of these

progenitors into mature, myelinating oligodendrocytes could therefore

result in long-term disruptions to myelination across the lifespan of

CHD survivors. Given the important role of myelin in coordinating

efficient signal transmission within the brain (Fries, 2005), myelination

deficits could play a role in the neurodevelopmental impairments fre-

quently experienced by individuals with CHD.

Several diffusion tensor imaging studies have previously detected

microstructural white matter alterations, represented by lower frac-

tional anisotropy and higher radial diffusivity, in infants (Karmacharya

et al., 2018; Miller et al., 2007) and youth (Brewster et al., 2015;

Easson et al., 2020; Ehrler et al., 2020; Rivkin et al., 2013; Watson

et al., 2018) with CHD. While these findings could reflect low mye-

lination, diffusion tensor imaging metrics are influenced by several

other microscopic attributes of white matter, including axon density,

diameter, and orientation and membrane permeability (Jones

et al., 2013). Neurite orientation dispersion and density imaging, an

advanced multi-compartment diffusion modeling technique, has

recently been used to uncover reductions in the neurite density index

in infants (Karmacharya et al., 2018) and youth (Easson et al., 2020)

with CHD. These findings suggest a lower density of axonal packing,

which could be the result of disrupted myelination but could also

reflect axon loss. Taken together, while these previous diffusion mag-

netic resonance imaging (MRI) studies provide important evidence of

persistent alterations to white matter microstructure across the

lifespan of CHD survivors, the extent to which these findings specifi-

cally reflect disrupted myelination remains unclear.

For a long time, direct quantification of brain myelination was lim-

ited to histological analysis of post-mortem brain tissue (Kinney

et al., 2005). Recent advancements in quantitative MRI have allowed for

the development of techniques that provide specific estimates of myelin

content in vivo. This includes multicomponent relaxation techniques,

such as multicomponent driven equilibrium single pulse observation of

T1 and T2 (mcDESPOT) (Deoni et al., 2013), which allow for the calcula-

tion of the myelin water fraction (MWF). MWF is a reliable measure of

myelin content, strongly correlated with the gold standard histological

measurement of myelination (Laule et al., 2006). mcDESPOT has previ-

ously been used to describe trajectories of myelination during typical

development (Deoni et al., 2012), as well as myelin alterations in individ-

uals with autism spectrum disorder (Deoni et al., 2015) and mild trau-

matic brain injury (Spader et al., 2018). However, this promising

technique has yet to be applied to investigate the potential long-term

disruptions to myelin development in the CHD population. Therefore,

the primary objective of this study was to compare white matter mye-

lination, as measured by mcDESPOT-derived MWF values, between

adolescents and young adults born with CHD and healthy age- and sex-

matched controls. As a secondary objective, we explored associations

between myelination and several clinical and neuroanatomical factors.

2 | MATERIALS & METHODS

2.1 | Participants

Term-born adolescents and young adults aged 16 to 24 years who

underwent open-heart surgery involving cardiopulmonary bypass for

complex CHD before two years of age were recruited for this cross-

sectional study. We first recruited CHD participants from a previous

study examining determinants of leisure participation in adolescents

with CHD (Dahan-Oliel et al., 2014), and recruited additional partici-

pants directly from the pediatric and adult cardiology clinics of the

McGill University Health Centre. A group of age- and sex-matched

healthy controls were recruited from the community as previously

described (Easson et al., 2020). Control participants were considered

to be typically developing if they had no history of neurological or

developmental conditions and had never received special education

or rehabilitation services during childhood or adolescence.

Exclusion criteria for both groups included: preterm birth

(<37 weeks gestational age), prior history of brain tumor or malforma-

tion, documented traumatic brain injury, cerebral palsy, multi-organ

dysmorphic conditions, documented genetic or chromosomal abnor-

malities, contraindications for MRI, and inability to communicate in

English or French. Written informed consent was obtained from par-

ticipants aged 18 years and older and from the legal guardians of par-

ticipants aged younger than 18 years. Participants younger than

18 years also provided written informed assent. This study was

approved by the Pediatric Research Ethics Board of the McGill Uni-

versity Health Centre. Participant recruitment and data collection

occurred from March 2016 to December 2019.
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2.2 | MRI acquisition

Participants completed a single study visit at the McGill University

Health Centre involving a brain MRI on a 3T MRI System (Achieva X,

Philips Healthcare, Best, The Netherlands) using a 32-channel head

coil. The MRI protocol included T1-weighted, high angular resolution

diffusion imaging (HARDI), and mcDESPOT acquisitions.

The T1-weighted anatomical image was acquired with a turbo

field echo pulse sequence (TR = 8.1 ms, TE = 3.7 ms, TI = 1010 ms,

flip angle = 8�, voxel size = 1.00 � 1.00 � 1.00 mm3). All anatomical

images from both groups were inspected for overt brain abnormalities

by an experienced neuroradiologist (C.S.M.), who was blinded to the

medical histories of the participants.

The HARDI acquisition (TR = 9400 ms, TE = 78 ms, flip

angle = 90�, voxel size = 2.00 � 2.04 � 2.00 mm3) was comprised of

a non-diffusion-weighted sequence (b = 0 s/mm2) with reversed

phase encoding, as well as two single-shell HARDI sequences

(b = 700 s/mm2 and 30 directions; b = 2000 s/mm2 and 60 direc-

tions), which each also included a non-diffusion-weighted volume

(b = 0 s/mm2).

The mcDESPOT acquisition included a series of 10 spoiled gradi-

ent recalled echo (SPGR) sequences (TR = 6.7 ms, TE = 3.7 ms, voxel

size = 1.67 � 1.67 � 1.70 mm3) covering flip angles from 2� to 18�

and eight balanced steady-state free precession (bSSFP) sequences

(TR = 6.8 ms, TE = 3.4 ms, voxel size = 1.67 � 1.67 � 1.70 mm3)

covering flip angles from 12� to 70�. The bSSFP sequences were

acquired at two phase-cycling increments (0� and 180�) to enable the

correction of main magnetic field (B0) inhomogeneity effects

(Deoni, 2011). The mcDESPOT acquisition also included an inversion

recovery SPGR (IR-SPGR) sequence (TR = 6.5 ms, TE = 3.2 ms,

TI = 450 ms, flip angle = 5�, voxel size = 1.67 � 1.67 � 1.70 mm3) to

enable the correction of transmit magnetic field (B1) inhomogeneity

effects (Deoni, 2011).

2.3 | MRI processing

The T1-weighted and diffusion-weighted images were processed

using the TractoFlow pipeline (Di Tommaso et al., 2017; Kurtzer

et al., 2017; Theaud et al., 2020) and a modified version of

RecoBundles (Garyfallidis et al., 2018) in order to extract a total of

33 white matter tracts, including association tracts, projection tracts,

cerebellar tracts, and subdivisions of the corpus callosum, for each

participant. The TractoFlow pipeline output also includes a pre-

processed T1-weighted reference image, whole-brain mask, and tis-

sue masks (i.e., white matter, gray matter, and cerebrospinal fluid

masks) in diffusion space for each participant. These data processing

steps have previously been described in detail by our group (Easson

et al., 2020). In parallel, the data from the mcDESPOT acquisition

were processed to generate three-dimensional maps of MWF for

each participant as previously described (Deoni et al., 2013). After-

wards, each participant's MWF map was linearly registered to their

diffusion-space T1-weighted reference image to ensure that

subjects' MWF maps were properly aligned with their white matter

tracts.

We first calculated tract-specific estimates of MWF, which may

be more sensitive in detecting group differences and associations with

clinical and neuroanatomical risk factors. To accomplish this, the

extracted white matter tracts and MWF maps of the participants were

used to perform tractometry, involving the calculation of an average

MWF value for each white matter tract and white matter tract vol-

umes for each participant (Cousineau et al., 2017). In order to explore

the value of simple post-processing techniques that may be more eas-

ily transferable to the clinical setting, we also calculated a summary

measure of white matter myelination for each participant separately.

This summary measure will herein be referred to as the White Matter

Myelination Index. To accomplish this, each participant's diffusion-

space whole-brain mask and tissue masks were used to calculate a

“safe” white matter mask, as previously described (Dumont

et al., 2019). This mask conservatively delineates the whole-brain

white matter, eliminating voxels that may be contaminated by gray

matter or cerebrospinal fluid near tissue boundaries or ventricles. The

White Matter Myelination Index was then calculated as the mean

value of MWF within the "safe" white matter mask for each

participant.

All raw and pre-processed T1-weighted, diffusion-weighted,

SPGR, IR-SPGR, and bSSFP images, final MWF maps, and “safe” white

matter masks underwent visual inspection for image quality and arti-

facts. Participants whose images failed any of these quality control

steps were excluded from statistical analyses. Furthermore, each

extracted white matter tract was visually inspected to ensure anatom-

ical accuracy and robustness. Individual tracts that failed quality

inspection were excluded from subsequent statistical analyses.

2.4 | Clinical data collection

On the day of the study visit, the height and weight of each partici-

pant was measured to allow for calculation of their body mass index.

The Hollingshead Four-Factor Index (Hollingshead, 2011) was used to

quantify participants' socioeconomic status based on the education

and employment status of their parents. Following the study visit, the

medical records of all CHD participants were reviewed to collect clini-

cal data, including their specific CHD diagnosis and various perinatal

clinical factors including the number of open-heart surgeries and car-

diac catheterizations, age at first open-heart surgery, bypass and aor-

tic cross clamp duration at first open-heart surgery, and use and

duration of deep-hypothermic circulatory arrest at first open-heart

surgery.

2.5 | Neurodevelopmental data collection

CHD participants were screened for cognitive deficit based on an

intelligence quotient (IQ) threshold of <70, as previously described by

our group in detail (Fontes et al., 2019). For the participants recruited
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through the previous research study (Dahan-Oliel et al., 2014),

records of a previous IQ evaluation using the Leiter International Per-

formance Scale – Revised (Leiter – R) (Roid & Miller, 2011) were avail-

able. Newly recruited participants were assessed with the Weschler

Abbreviated Scale of Intelligence – 1st Edition (WASI)

(Wechsler, 1999). Both measures are valid and reliable concise evalua-

tions of IQ (Axelrod, 2002; Hooper & Bell, 2006; Ryan et al., 2003;

Saklofske et al., 2000). Participants were identified as having a cogni-

tive deficit on the basis of a Leiter – R brief IQ score <70 or a WASI

Full Scale-4 IQ score <70. Information about confirmed diagnosis of

attention deficit hyperactivity disorder (ADHD) was collected from

self-report questionnaires administered to CHD participants or one of

their parents during the study visit.

2.6 | Statistical analysis

Descriptive statistics were first used to compare the two groups in

terms of their individual characteristics, which included age, sex, body

mass index, and socioeconomic status. Distribution normality was

evaluated using Shapiro–Wilk tests. Between-group comparisons of

individual characteristics were performed using two-sample t-tests

and Mann–Whitney U-tests for continuous variables and χ2 tests and

Fisher exact tests for categorical variables.

Tract-average MWF values and White Matter Myelination Index

values were compared between the CHD and control groups using a

series of non-parametric permutation t-tests (Nichols &

Holmes, 2002). In order to examine the relationship between CHD

physiology and MWF measures, CHD participants were categorized

into diagnostic sub-groups to be compared to the control group with

a series of non-parametric permutation t-tests. A diagnostic sub-group

was defined for each physiology with ≥10 participants. The remaining

participants were categorized into pooled single-ventricle or two-

ventricle sub-groups. The relationship between MWF measures and

other clinical, neuroanatomical, and neurodevelopmental variables

were examined using non-parametric permutation correlation tests

(Di Ciccio & Romano, 2017) for continuous variables (e.g., bypass

duration, socioeconomic status) and non-parametric permutation t-

tests for dichotomous variables (e.g., presence of overt cerebral

abnormality, diagnosis of ADHD). Partial correlations controlling for

age were used to examine the relationship between tract-average

MWF and corresponding tract volume, to account for the ongoing

maturation of white matter in adolescence and adulthood (Lebel &

Beaulieu, 2011). All permutations tests sampled the null distribution

of the test statistic with 10,000 permutations. Correction for multiple

comparisons across white matter tracts was done using the false dis-

covery rate method, setting a threshold of statistical significance of

q < 0.05. Cohen's d statistic was used to describe effect size for group

comparisons.

3 | RESULTS

3.1 | Participant characteristics

A total of 53 adolescents and young adults with CHD and 53 age- and

sex-matched controls were enrolled in this study. One participant in

each group elected to terminate the MRI session prematurely after

experiencing personal discomfort in the MRI machine, while eight

CHD and seven control participants were subsequently excluded due

to poor quality of the raw or processed images. Therefore, complete

data of good quality from 44 CHD and 45 control participants were

included in the analyses. Excluded participants did not differ signifi-

cantly from included participants in terms of age, sex, body mass

index, socioeconomic status, or presence of cognitive deficit or ADHD

diagnosis. The individual characteristics of the final study sample are

outlined in Table 1.

The CHD group was comprised of seven participants with a

single-ventricle physiology (double inlet left ventricle: n = 2; hypo-

plastic left heart syndrome: n = 1; pulmonary atresia with intact ven-

tricular septum: n = 3; tricuspid atresia: n = 1), 15 participants with

dextro-transposition of the great arteries, 12 participants with tetral-

ogy of Fallot, and 10 participants with another type of two-ventricle

physiology (double outlet right ventricle: n = 2; Ebstein's anomaly:

n = 1; total anomalous pulmonary venous connection: n = 2; truncus

arteriosus type I: n = 1; ventricular septal defect: n = 4). Further clini-

cal characteristics of the CHD group are presented in Table 2.

Clinically significant cerebral abnormalities, likely from an

acquired origin, were observed in 11.4% (5/44) of youth with CHD

and 2.2% (1/45) of control youth. This difference was not statistically

significant (p = 0.110). The observed abnormalities were all mild in

severity. These abnormalities included: one CHD participant with cys-

tic dilation of the perivascular spaces; one CHD participant with nota-

ble sequelae of periventricular white matter injury; two CHD

TABLE 1 Participants' individual
characteristics

CHD (N = 44) Control (N = 45) p value

Age (years) 20.0 [16.3–24.1] 20.1 [16.8–24.2] .430

Sex .927

Female 25 (56.8%) 26 (57.8%)

Male 19 (43.2%) 19 (42.2%)

Body mass index 21.9 [17.3–40.0] 22.6 [18.6–33.8] .305

Socioeconomic status score 39.9 ± 12.4 50.5 ± 10.3 <.001

Note: Descriptive statistics are provided as mean ± SD for normally distributed continuous variables,

median [range] for non-normally distributed continuous variables, and n (%) for categorical variables.
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participants with susceptibility artifact, likely representing blood depo-

sition or calcification; and one CHD participant and one control partic-

ipant with periventricular heterotopia. The CHD participants

presenting with cerebral abnormalities on conventional MRI all had

two-ventricle cardiac physiologies, representing a heterogeneous col-

lection of specific diagnoses.

3.2 | Group comparisons of MWF

Between-group comparisons of tract-average MWF are outlined in

Table 3 and Figure 1. Compared to control participants, youth with

CHD had significantly lower MWF in many association tracts, includ-

ing the bilateral arcuate fasciculus, left cingulum, bilateral inferior

frontal occipital fasciculus, bilateral inferior longitudinal fasciculus, and

bilateral superior longitudinal fasciculus I, II, and III. Youth with CHD

also presented with lower MWF in the projection tracts in the left

hemisphere, namely the left corona radiata, left corticospinal tract,

and left optic radiation, with no significant differences in the right

hemisphere projection tracts. Finally, youth with CHD had signifi-

cantly lower MWF in all extracted subdivisions of the corpus cal-

losum. There were no significant differences between the two groups

with respect to MWF in the cerebellar tracts. Moreover, the White

Matter Myelination Index was significantly lower (Figure 2a; p < .001,

d = 1.03) in the CHD group (mean ± SD = 0.206 ± 0.009) as com-

pared to the control group (mean ± SD = 0.215 ± 0.009).

3.3 | Association of MWF with clinical factors

Comparisons of tract-average MWF between CHD diagnostic sub-

groups and the control group are outlined in Table 4. Compared to

controls, tract-average MWF was lower in youth with single-ventricle

physiologies in 27 white matter tracts, including many projection and

association tracts, often bilaterally, all sub-divisions of the corpus cal-

losum, and the middle cerebellar peduncle. Tract-average MWF was

lower in youth with dextro-transposition of the great arteries in four

left hemisphere association tracts and two corpus callosum sub-divi-

sions. There were no differences in tract-average MWF between

youth with tetralogy of Fallot and control participants that survived

correction for multiple comparisons. The remaining group of other

two-ventricle physiologies presented with lower MWF in 18 white

matter tracts, mostly localized to association tracts and central corpus

callosum sub-divisions, as well as the left optic radiation.

The White Matter Myelination Index was also significantly lower

in youth with single-ventricle physiologies (d = 1.93, p < .001), youth

with dextro-transposition of the great arteries (d = 0.865, p = .005),

and youth with other two-ventricle physiologies (d = 1.33, p < .001),

but not in youth with tetralogy of Fallot, compared to control partici-

pants (Figure 2b).

Neither tract-average MWF in any tract nor the White Matter

Myelination Index were significantly correlated with socioeconomic

status, body mass index, or any of the other clinical variables

examined.

3.4 | Association of MWF with neuroanatomical
factors

Neither tract-average MWF in any tract nor the White Matter Mye-

lination Index were significantly associated with the presence of overt

cerebral abnormalities in the CHD or control groups. In the control

group, tract-average MWF and tract volume were positively corre-

lated in the left (r = 0.527, q = 0.036) and right (r = 0.535, q = 0.036)

uncinate fasciculus. There were no significant correlations between

tract-average MWF and corresponding tract volume in the CHD

group.

3.5 | Association of MWF with
neurodevelopmental factors

Neither tract-average MWF in any tract nor the White Matter Mye-

lination Index were significantly associated with the presence of cog-

nitive deficit or ADHD diagnosis.

4 | DISCUSSION

In this first study to implement mcDESPOT to quantify myelination in

individuals with CHD, our results confirm the presence of widespread

deficits in the myelination of many white matter tracts, as measured

TABLE 2 Clinical characteristics of the CHD group

CHD (median [range] or

n (%))

CHD physiology

Single-ventricle physiology 7 (15.9%)

Dextro-transposition of the great

arteries

15 (34.1%)

Tetralogy of Fallot 12 (27.3%)

Other two-ventricle physiology 10 (22.7%)

Number of OHS 1 [1–4]

Number of cardiac catheterizations 1.5 [0–5]

Age at 1st OHS (days) 35 [0–702]

Bypass duration, 1st OHS (min) 129.5 [61–292]

Aortic cross clamp duration, 1st OHS

(min)

74 [23–162]

Use of DHCA, 1st OHS 18 (47.4%)

DHCA duration, 1st OHS (min) 11 [0–52]

Cognitive deficit (IQ < 70) 2 [4.5%]

ADHD diagnosis 5 [11.4%]

Note: Descriptive statistics are provided as mean ± SD for normally

distributed continuous variables, median [range] for non-normally

distributed continuous variables, and n (%) for categorical variables.

Missing variables are excluded from reported percentages (%).

Abbreviations: ADHD, attention deficit hyperactivity disorder; DHCA,

deep hypothermic circulatory arrest; IQ, intelligence quotient; OHS, open-

heart surgery.
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by MWF. As such, this work builds upon previous diffusion MRI stud-

ies of the CHD population, suggesting a specific role of deficient mye-

lination in the microstructural white matter alterations frequently

reported in this population. In particular, analysis of tract-average

MWF values revealed that MWF was lower in youth born with com-

plex CHD as compared to healthy peers throughout the corpus

callosum, in many association tracts, often bilaterally, and in the left

hemisphere projection tracts. The White Matter Myelination Index

was also significantly lower in the CHD group, suggesting that the

widespread myelination deficits in youth with CHD are prominent

enough to be detected by a simple global summary measure. Overall,

our findings suggest that the brain dysmaturation previously

TABLE 3 Comparison of tract-
average MWF between CHD and control
groups

CHD (mean ± SD) Control (mean ± SD) q value d value

Association tracts

AF (L) 0.213 ± 0.010 0.221 ± 0.008 <0.001 1.00

AF (R) 0.218 ± 0.007 0.222 ± 0.008 0.010 0.613

CG (L) 0.203 ± 0.012 0.212 ± 0.015 0.006 0.654

CG (R) 0.206 ± 0.011 0.211 ± 0.016 0.077 0.382

IFOF (L) 0.206 ± 0.010 0.217 ± 0.008 <0.001 1.18

IFOF (R) 0.204 ± 0.010 0.212 ± 0.010 0.003 0.778

ILF (L) 0.217 ± 0.009 0.225 ± 0.008 0.001 0.975

ILF (R) 0.214 ± 0.009 0.221 ± 0.010 0.001 0.724

SLF I (L) 0.207 ± 0.010 0.217 ± 0.010 <0.001 1.03

SLF I (R) 0.210 ± 0.009 0.216 ± 0.010 0.004 0.687

SLF II (L) 0.206 ± 0.009 0.216 ± 0.009 <0.001 1.07

SLF II (R) 0.212 ± 0.008 0.216 ± 0.009 0.034 0.494

SLF III (L) 0.212 ± 0.011 0.220 ± 0.010 <0.001 0.792

SLF III (R) 0.221 ± 0.007 0.225 ± 0.010 0.038 0.463

UF (L) 0.172 ± 0.015 0.179 ± 0.015 0.059 0.437

UF (R) 0.174 ± 0.014 0.180 ± 0.015 0.060 0.414

Corpus callosum

Rostrum 0.219 ± 0.010 0.224 ± 0.009 0.014 0.579

Genu (A) 0.230 ± 0.007 0.237 ± 0.007 <0.001 0.994

Genu (P) 0.221 ± 0.008 0.230 ± 0.007 <0.001 1.21

Rostral body 0.211 ± 0.009 0.220 ± 0.009 <0.001 0.939

Mid-body (A) 0.206 ± 0.009 0.214 ± 0.011 0.003 0.769

Mid-body (P) 0.200 ± 0.010 0.209 ± 0.011 <0.001 0.826

Isthmus 0.198 ± 0.013 0.206 ± 0.013 0.010 0.610

Splenium 0.206 ± 0.010 0.212 ± 0.013 0.020 0.533

Projection tracts

CR (L) 0.189 ± 0.011 0.196 ± 0.011 0.005 0.626

CR (R) 0.190 ± 0.010 0.195 ± 0.011 0.051 0.441

CST (L) 0.185 ± 0.012 0.191 ± 0.012 0.026 0.515

CST (R) 0.189 ± 0.011 0.194 ± 0.011 0.060 0.420

OR (L) 0.212 ± 0.009 0.219 ± 0.009 0.003 0.703

OR (R) 0.212 ± 0.009 0.216 ± 0.010 0.057 0.427

Cerebellar tracts

SCP (L) 0.156 ± 0.015 0.159 ± 0.017 0.445 0.163

SCP (R) 0.157 ± 0.017 0.161 ± 0.018 0.236 0.260

MCP 0.183 ± 0.019 0.190 ± 0.015 0.068 0.409

Note: Significant q values at a threshold of q < 0.05 are indicated in bold font.

Abbreviations: A, anterior; AF, arcuate fasciculus; CG, cingulum; CR, corona radiata; CST, corticospinal

tract; IFOF, inferior frontal occipital fasciculus; ILF, inferior longitudinal fasciculus; L, left; MCP, middle

cerebellar peduncle; OR, optic radiation; P, posterior; R, right; SCP, superior cerebellar peduncle; SLF,

superior longitudinal fasciculus; UF, uncinate fasciculus.
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described in fetuses and neonates with CHD persists throughout ado-

lescence and early adulthood.

4.1 | Enduring myelination deficits in CHD
survivors

Brain injury and delayed brain development, as characterized by

smaller volumetric growth and altered microstructural and metabolic

maturation (Licht et al., 2009; Limperopoulos et al., 2010; Miller

et al., 2007), are common in fetuses and neonates with CHD and are

believed be consequences of abnormalities in cerebral blood flow and

oxygenation (Licht et al., 2004; Sun et al., 2015). However, longitudi-

nal prospective imaging studies that extend beyond the perioperative

period are needed, particularly once cerebral hemodynamics have

been fully or partially restored after cardiac surgery, to inform on the

evolution of these brain abnormalities. Given the particular vulnerabil-

ity of the oligodendrocyte lineage to cerebral hypoxia-ischemia, the

maturation of white matter tracts, including their myelination, are of

particular interest.

Our results are in line with the hypothesized long-term impact of

early-life brain injury and dysmaturation on the subsequent myelin

F IGURE 1 Comparison of
tract-average MWF between
CHD and control groups. A,
anterior; AF, arcuate fasciculus;
CG, cingulum; CR, corona radiata;
CST, corticospinal tract; IFOF,
inferior frontal occipital
fasciculus; ILF, inferior
longitudinal fasciculus; L, left;

MCP, middle cerebellar peduncle;
OR, optic radiation; P,
posterior; R, right; SCP, superior
cerebellar peduncle; SLF, superior
longitudinal fasciculus; UF,
uncinate fasciculus. *q < 0.05,
**q < 0.01, ***q < 0.001
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development of CHD survivors. Given that perinatal white matter

injury is believed to play a role in the proposed mechanism of mye-

lination deficits in the CHD population (Morton et al., 2017), it may

seem surprising that only one CHD participant presented with

sequelae of periventricular white matter injury on conventional MRI,

despite our widespread observations of pronounced myelination defi-

cits. However, perinatal brain injuries in infants with CHD have previ-

ously been observed to resolve on conventional MRI over time

(Mahle et al., 2002), and therefore, may no longer be visible during

adolescence. We hypothesize that perinatal white matter injuries may

be predictive of later myelination deficits in the CHD population dur-

ing adolescence and young adulthood. Unfortunately, considering that

neonatal imaging was not collected in our CHD cohort, this hypothe-

sis remains speculative for the moment and needs to be confirmed in

future longitudinal studies connecting neonatal imaging with brain

maturation in childhood and adolescence.

Previous cross-sectional studies have employed diffusion tensor

imaging to detect altered white matter microstructure in youth with

CHD when compared to healthy peers (Brewster et al., 2015; Easson

et al., 2020; Ehrler et al., 2020; Rivkin et al., 2013; Watson

et al., 2018). In several of these prior studies, findings of lower frac-

tional anisotropy were more regionally restricted than the present

findings of lower MWF (Brewster et al., 2015; Easson et al., 2020;

Rivkin et al., 2013). Notably, in our previous diffusion MRI study in

this cohort of youth with CHD, we found only small, isolated clusters

of voxels of lower fractional anisotropy in the CHD group, with no dif-

ferences at the tract-average level (Easson et al., 2020), in stark con-

trast to our current widespread observations of lower tract-average

MWF in the cohort. This could be explained by the greater specificity

of MWF for myelin content, as various other cellular factors that influ-

ence water diffusion could counteract the impact of myelination

deficits on fractional anisotropy and other diffusion tensor imaging

metrics (Jones et al., 2013). This direct comparison suggests that spe-

cific MRI markers of myelination, such as MWF, are likely more sensi-

tive in detecting the true extent of white matter dysmaturation in

CHD survivors than traditional diffusion tensor imaging metrics. Fur-

thermore, MWF measures were not associated with the presence of

overt cerebral abnormalities or white matter tract volumes in the

CHD group, confirming that conventional and volumetric MRI

approaches are likely not sensitive to myelination deficits in this

population.

Our results support the eventual added value of incorporating

simple measures of myelination into the routine clinical care of the

CHD population and other clinical populations of relevance. Never-

theless, it should be noted that the mcDESPOT acquisition and com-

putational processing time required to estimate MWF currently

hinder the incorporation of mcDESPOT into routine clinical practice.

Regardless, mcDESPOT has improved time efficiency compared to

other multicomponent relaxation techniques, allowing for whole-brain

acquisitions in a clinically feasible time, making mcDESPOT an ideal

candidate for eventual clinical use (Deoni et al., 2013). Future studies

should aim to continue to build atlases of norm references of MWF

across the lifespan (Dvorak et al., 2021; Morris et al., 2020) that could

be used as a reference for clinicians to detect myelination deficits in

individuals from various clinical populations, including patients

with CHD.

4.2 | Myelination and cardiac defect severity

CHD refers to a heterogeneous group of cardiac defects, which can

be broadly categorized into single-ventricle and two-ventricle

F IGURE 2 Group and sub-group comparisons of the White Matter Myelination Index. (a) Comparison of the White Matter Myelination Index
between CHD and control groups. (b) Comparisons of the White Matter Myelination Index between CHD diagnostic sub-groups and control
group. d-TGA, dextro-transposition of the great arteries; ToF, tetralogy of Fallot. **p < .01, ***p < .001
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physiologies. Single-ventricle cardiac physiologies include cardiac

defects where one ventricle is severely under-developed or the ven-

tricular septal wall is absent, leaving a single functional ventricle, such

as in the case of hypoplastic left heart syndrome. Two-ventricle physi-

ologies encompass cardiac defects wherein both ventricles are pre-

served. This category includes dextro-transposition of the great

arteries, in which the origin points of the pulmonary artery and the

aorta are inverted, and tetralogy of Fallot, characterized by a combina-

tion of pulmonary stenosis, right ventricular hypertrophy, ventricular

septal defect, and an overriding aorta. Given the clinical diversity of

the CHD population, it can be expected that the severity and extent

of myelination deficits may differ according to the severity of the spe-

cific cardiac defect.

Myelin deficits were most widespread and pronounced in youth

with single-ventricle physiologies, with the highest range of effect

sizes and the greatest number of affected tracts, including tracts in all

four categories. We hypothesize that this pattern of more pronounced

myelin deficits in the single-ventricle sub-group reflects the greater

severity of single-ventricle cardiac defects. Compared to individuals

with two-ventricle physiologies, those with single-ventricle cardiac

physiologies typically present with greater hemodynamic instability

and more pronounced disruptions to pre-operative cerebral blood

flow (Cheng et al., 2020; Donofrio & Massaro, 2010; Nagaraj

et al., 2015). As myelination deficits in the CHD population are pro-

posed to occur secondary to cerebral hypoxia-ischemia, the greater

disruption to cerebral blood flow in individuals with single-ventricle

physiologies could theoretically also result in more pronounced mye-

lination deficits in this sub-group. However, we have limited insight

regarding the etiology of this finding considering the limited number

of clinical factors we could extract from participants' medical records.

Specifically, we were unable to extract factors directly related to peri-

natal cerebral blood flow and oxygenation for our cohort, as our par-

ticipants were born in the 1990s and early 2000s before the advent

of modern medical technologies that have facilitated the convenient

monitoring and digital recording of hemodynamic factors.

Myelination deficits relative to controls were not limited to the

single-ventricle sub-group and were also observed in participants with

two-ventricle cardiac physiologies. Significant differences compared

to controls were also observed in the dextro-transposition of the

great arteries sub-group and the pooled other two-ventricle physiol-

ogy sub-group, predominantly in association tracts and in the central

corpus callosum. Interestingly, we did not observe any differences in

our myelin measures between youth with tetralogy of Fallot and con-

trols. In contrast with our findings, previous work has reported that

brain development is indeed compromised in children and adolescents

with tetralogy of Fallot, as seen by structural brain abnormalities and

adverse neurodevelopmental and psychiatric outcomes (Bellinger

et al., 2015; Kordopati-Zilou et al., 2022; Yang et al., 2022). When

considering our sub-group analyses, it is important to note that the

relatively small sample size of the diagnostic sub-groups may have lim-

ited the statistical power to detect group differences, and therefore,

should be interpreted with caution. In particular, our null findings with

respect to the tetralogy of Fallot sub-group should not be interpretedT
A
B
L
E
4

(C
o
nt
in
ue

d)

Si
ng

le
-v
en

tr
ic
le

(N
=

7
)

d-
T
G
A
(N

=
1
5
)

T
et
ra
lo
gy

o
f
Fa

llo
t
(N

=
1
2
)

O
th
er

tw
o
-v
en

tr
ic
le

(N
=

1
0
)

M
ea

n
±
SD

q
va

lu
e

d
va

lu
e

M
ea

n
±
SD

q
va

lu
e

d
va

lu
e

M
ea

n
±
SD

q
va

lu
e

d
va

lu
e

M
ea

n
±
SD

q
va

lu
e

d
va

lu
e

Is
th
m
us

0
.1
8
3
±
0
.0
1
5

0
.0
0
1

1
.7
2

0
.2
0
2
±
0
.0
0
8

0
.3
6
3

0
.3
3
8

0
.2
0
5
±
0
.0
0
6

0
.8
3
1

0
.1
3
5

0
.1
9
5
±
0
.0
1
5

0
.0
6
2

0
.8
0
2

Sp
le
ni
um

0
.1
9
7
±
0
.0
1
3

0
.0
1
8

1
.1
5

0
.2
0
7
±
0
.0
0
6

0
.2
7
1

0
.4
4
1

0
.2
1
1
±
0
.0
0
9

0
.8
3
1

0
.1
0
5

0
.2
0
4
±
0
.0
1
2

0
.1
3
0

0
.6
1
1

C
er
eb

el
la
r
tr
ac
ts

SC
P
(L
)

0
.1
5
1
±
0
.0
1
1

0
.2
3
2

0
.4
9
4

0
.1
5
7
±
0
.0
1
6

0
.7
0
2

0
.1
1
5

0
.1
5
7
±
0
.0
1
4

0
.8
3
1

0
.0
9
9

0
.1
5
8
±
0
.0
1
7

0
.8
9
6

0
.0
3
5

SC
P
(R
)

0
.1
5
4
±
0
.0
1
5

0
.3
3
1

0
.3
8
9

0
.1
5
8
±
0
.0
2
0

0
.5
9
2

0
.1
7
3

0
.1
5
5
±
0
.0
1
6

0
.6
8
7

0
.3
7
2

0
.1
5
9
±
0
.0
1
7

0
.7
0
8

0
.1
3
0

M
C
P

0
.1
7
6
±
0
.0
1
2

0
.0
4
6

0
.9
5
8

0
.1
8
4
±
0
.0
2
3

0
.3
5
2

0
.3
7
6

0
.1
8
7
±
0
.0
1
2

0
.7
6
1

0
.1
9
0

0
.1
8
2
±
0
.0
2
5

0
.2
1
7

0
.4
7
8

N
ot
e:
P
re
se
nt
ed

q
an

d
d
va
lu
es

w
er
e
co

m
pu

te
d
in

co
m
pa

ri
so
n
to

th
e
co

nt
ro
lg

ro
up

(N
=

4
5
;d

es
cr
ip
ti
ve

st
at
is
ti
cs

pr
es
en

te
d
in

T
ab

le
3
).
Si
gn

if
ic
an

t
q
va
lu
es

at
a
th
re
sh
o
ld

o
f
q
<
0
.0
5
ar
e
in
d
ic
at
ed

in
b
o
ld

fo
n
t.

A
bb

re
vi
at
io
ns
:A

,a
nt
er
io
r;
A
F
,a
rc
ua

te
fa
sc
ic
ul
us
;C

G
,c
in
gu

lu
m
;C

R
,c
o
ro
na

ra
di
at
a;

C
ST

,c
o
rt
ic
o
sp
in
al
tr
ac
t;
d-
T
G
A
,d

ex
tr
o
-t
ra
ns
po

si
ti
o
n
o
f
th
e
gr
ea

t
ar
te
ri
es
;I
F
O
F
,i
n
fe
ri
o
r
fr
o
n
ta
lo

cc
ip
it
al
fa
sc
ic
u
lu
s;
IL
F
,

in
fe
ri
o
r
lo
ng

it
ud

in
al
fa
sc
ic
ul
us
;L

,l
ef
t;
M
C
P
,m

id
dl
e
ce
re
be

lla
r
pe

d
un

cl
e;

O
R
,o

pt
ic
ra
di
at
io
n;

P
,p

o
st
er
io
r;
R
,r
ig
ht
;S

C
P
,s
up

er
io
r
ce
re
be

lla
r
pe

du
nc

le
;S

LF
,s
u
p
er
io
r
lo
n
gi
tu
d
in
al
fa
sc
ic
u
lu
s;
U
F
,u

n
ci
n
at
e
fa
sc
ic
u
lu
s.

3554 EASSON ET AL.



as conclusive evidence of preserved myelination in youth with this

cardiac defect. As such, future studies with tailored study design and

strong statistical power to examine specific CHD diagnoses will pro-

vide greater insight into the differential risk of specific cardiac physiol-

ogies for myelination deficits and their functional impacts.

4.3 | Clinical implications of myelination deficits

Appropriate myelination of white matter tracts is critical in ensuring

efficient signal transmission within brain networks (Fries, 2005),

supporting a variety of cognitive, behavioral, and sensorimotor func-

tions (Schmahmann et al., 2008). Consistent with this, early-life mye-

lination, as measured by mcDESPOT-derived MWF, has been linked

to the development of the cognitive abilities of healthy infants and

children (Deoni et al., 2016; O'Muircheartaigh et al., 2014). Specific to

the CHD population, previous diffusion tensor imaging studies have

reported lower fractional anisotropy in youth with CHD to be associ-

ated with poorer outcomes in various cognitive domains, including

memory, attention, and executive functioning (Brewster et al., 2015;

Ehrler et al., 2020; Rollins et al., 2014; Watson et al., 2018). Thus, we

can anticipate that the observed myelination disruptions, measured by

MWF, may underlie the suboptimal cognitive, behavioral, and motor

functioning frequently experienced by CHD survivors (Bolduc

et al., 2020; Easson et al., 2019; Latal, 2016). In this line of thought,

the more pronounced myelin deficits observed in youth with single-

ventricle physiologies in the present study may be linked to the

poorer neurodevelopmental outcomes documented in this vulnerable

sub-group as compared to individuals with two-ventricle physiologies

(Easson et al., 2019; Forbess et al., 2002).

In particular, we observed lower MWF in many association tracts

and throughout the corpus callosum, which are believed to play a role

in numerous higher-order cognitive functions such as language, learn-

ing and memory, attention and perception, visual–spatial processing,

and emotional processing (Schmahmann et al., 2008). In addition,

myelination deficits in the projection tracts could result in sensorimo-

tor deficits. For example, the corticospinal tract, which connects corti-

cal motor regions to lower motor neurons, could specifically be

related to the gross and fine motor difficulties experienced by many

CHD survivors (Bolduc et al., 2020).

Interestingly, previous diffusion tensor imaging studies have dem-

onstrated that task training can potentially influence white matter

microstructure, possibly including increased myelination, in healthy

children, adolescents, and young adults (Bengtsson et al., 2005; Scholz

et al., 2009). This suggests that MWF may be an interesting biomarker

of intervention effectiveness in future trials, including trials of working

memory training in youth with CHD (Calderon et al., 2020).

In the present study, we did not find evidence of significant rela-

tionships between our myelin measures and cognitive deficit or

ADHD diagnosis. However, the small number of CHD participants in

these sub-groups, and the potential presence of participants with

undiagnosed ADHD in our sample, may have limited our ability to

detect significant associations. Furthermore, these dichotomous neu-

rodevelopmental classifications may be less sensitive in detecting

structure–function relationships as compared to standardized evalua-

tions that provide continuous outcome scores, particularly with

respect to examining the borderline or sub-clinical neu-

rodevelopmental difficulties that may occur in this population (Easson

et al., 2019). Future studies exploring specific structure-function rela-

tionships between myelination deficits and neuropsychological out-

comes in individuals with CHD, employing comprehensive batteries of

standardized cognitive, behavioral, and motor evaluations, will clarify

the functional implications of our findings.

4.4 | Limitations

The findings of this study should be interpreted in the context of sev-

eral limitations. Firstly, while MWF is strongly correlated with histo-

logical measurements of myelin content (Laule et al., 2006), it remains

a proxy measure of myelination, as only histological studies can

directly confirm myelin content. In addition, the mcDESPOT model is

only able to produce a single MWF estimate per voxel, which poses a

limitation given that up to 90% of voxels may contain multiple fiber

populations in crossing configurations (Jeurissen et al., 2013). Conse-

quently, deficient myelination in a given white matter tract may

reduce average MWF estimates in unaffected tracts with which it

intersects, therefore impacting our identification of regional mye-

lination deficits in specific white matter tracts using tract-average

MWF values. Additionally, we did not perform a fully battery of stan-

dardized cognitive, behavioral, or motor evaluations in our study,

which limited our ability to determine the functional correlates of our

findings. Furthermore, our CHD group was heterogenous, comprised

of individuals with a variety of different single- and two-ventricle car-

diac physiologies, preventing us from robustly examining specific

CHD diagnoses with sufficient statistical power. Regardless, our het-

erogenous sample of complex CHD is representative of the clinical

diversity of CHD, and therefore, our findings are generalizable to the

true CHD population as a whole.

5 | CONCLUSION

In conclusion, this study provides specific evidence of widespread

myelination deficits in youth born with CHD, confirming that brain

dysmaturation in this population persists through early adulthood.

Myelination deficits, as measured by MWF, were predominant in

association tracts, projection tracts, and the corpus callosum, and

were widespread and pronounced enough to be captured by a simple

global summary measure, the White Matter Myelination Index. MWF

has the potential to be a biomarker of myelination deficits and effec-

tiveness of novel intervention strategies specific to the CHD popula-

tion. Future structure–function investigations examining relationships

between myelin deficits and the frequently reported cognitive,
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behavioral, and motor difficulties experienced by CHD survivors are

needed to confirm the functional significance of the reported myelin

alterations.
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