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Abstract

Background Cachexia augments cancer-related mortality and has devastating effects on quality of life. Pre-clinical studies
indicate that systemic inflammation-induced loss of muscle oxidative phenotype (OXPHEN) stimulates cancer-induced muscle
wasting. The aim of the current proof of concept study is to validate the presence of muscle OXPHEN loss in newly diagnosed
patients with lung cancer, especially in those with cachexia.

Methods Quadriceps muscle biopsies of comprehensively phenotyped pre-cachectic (n = 10) and cachectic (n = 16) patients
with non-small cell lung cancer prior to treatment were compared with healthy age-matched controls (n = 22). OXPHEN was
determined by assessing muscle fibre type distribution (immunohistochemistry), enzyme activity (spectrophotometry), and
protein expression levels of mitochondrial complexes (western blot) as well as transcript levels of (regulatory) oxidative genes
(quantitative real-time PCR). Additionally, muscle fibre cross-sectional area (immunohistochemistry) and systemic inflamma-
tion (multiplex analysis) were assessed.

Results Muscle fibre cross-sectional area was smaller, and plasma levels of interleukin 6 were significantly higher in cachectic
patients compared with non-cachectic patients and healthy controls. No differences in muscle fibre type distribution or oxida-
tive and glycolytic enzyme activities were observed between the groups. Mitochondrial protein expression and gene expres-
sion levels of their regulators were also not different.

Conclusion Muscle OXPHEN is preserved in newly diagnosed non-small cell lung cancer and therefore not a primary trigger
of cachexia in these patients.
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Introduction

Cachexia is a devastating syndrome that affects a substantial
proportion of patients with non-small cell lung cancer
(NSCLC)1 and that leads to substantial weight loss primarily
from loss of skeletal muscle and body fat. It has been well
established that weight loss and muscle weakness adversely
affect tumour therapy responsiveness, quality of life, and sur-
vival.2,3 For tailored implementation of currently available
and future intervention strategies to combat cachexia
throughout the cancer trajectory, a cachexia staging system
was introduced, distinguishing pre-cachexia from cachexia. It

is yet unclear if these stages are indeed successive in individ-
ual patients or merely reflect different disease manifestations
among patients, but the classification of newly diagnosed pa-
tients in pre-cachexia and cachexia is clearly relevant in terms
of clinical implications.2 Skeletal muscle weakness may not
only be due to wasting of muscle mass but also due to loss
of muscle oxidative phenotype (OXPHEN) that is characterized
by a decreased proportion of oxidative slow-twitch type I fi-
bres as well as loss of mitochondrial function and capacity.
Furthermore, mitochondrial pathways recently have emerged
as central players in muscle mass maintenance.4–6 For exam-
ple, in patients with Chronic Obstructive Pulmonary Disease
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(COPD) loss of muscle OXPHEN and mitochondrial dysfunction
was more pronounced in cachectic patients as compared with
non-cachectic COPD patients.7–9 No data are available yet in
NSCLC except for indirect evidence demonstrating an impaired
cycle exercise capacity in newly diagnosed patients even in those
with pre-cachexia.10 This could be contributed to a loss of
OXPHEN as this is a well-established determinant of exercise ca-
pacity.11,12 In numerous experimental models of cancer cachexia,
mitochondrial impairments have clearly been related to muscle
atrophy and activation of muscle proteolytic pathways.13–20

Moreover, mice suffering from cancer cachexia also demon-
strated a smaller proportion of oxidative type I muscle fibres
and a larger proportion of glycolytic type II fibres in soleus mus-
cle.21,22 Because type II fibres are more susceptible to catabolic
stimuli,21,23 this fibre type shift may further enhance or maybe
even initiate muscle wasting in cancer cachexia. Therefore, our
first hypothesis was that NSCLC is characterized by a loss of skel-
etal muscle OXPHEN, especially in cachectic patients.

Increased systemic pro-inflammatory signalling has been
causally related to the loss of OXPHEN observed in skeletal
muscle in an experimental model of intestinal cancer ca-
chexia.15,24 Further experimental in vitro research indeed con-
firms that the pro-inflammatory mediators interleukin 6 (IL-6)
and tumour necrosis factor alpha (TNF-α) can induce alter-
ations in oxidative metabolism by decreasing muscular activa-
tion of the master regulator of oxidative metabolism,
peroxisome proliferator-activated receptor gamma co-activator
1-alpha (PGC-1α).8 Elevated levels of these pro-inflammatory
cytokines are well established in patients with NSCLC ca-
chexia2,10 and considered responsible for the activation of mus-
cular proteolytic pathways,25–27 which further strengthen the
notion that energy metabolism and protein turnover are
intertwined in cancer cachexia.28 Hence, our second hypothesis
was that the anticipated gradual loss of muscle OXPHEN is asso-
ciated with increasing systemic inflammation in NSCLC.

The aim of this study is therefore to determine if muscle
OXPHEN loss indeed occurs in patients with NSCLC and is as-
sociated with cachexia and systemic inflammation.

Materials and methods

Study population

Twenty-six patients with newly diagnosed stage III or IV NSCLC
and 22 age-matched healthy control subjects were enrolled in
this cross-sectional study. Patients were recruited at the De-
partment of Respiratory Medicine, Maastricht University
Medical Centre +, between July 2007 and July 2010. NSCLC
was confirmed by pathology and was classified according to
the 6th tumour–node–metastasis (TNM) classification for lung
cancer.29 Only patients with TNM stages III and IV were in-
cluded to minimize confounding on the studied markers by

malignant disease characteristics. Patients suffering from
COPD GOLD III–IV, cardiac failure NYHA IV, severe endocrine,
hepatic or renal disorders, other malignancies in the last
3 years, and chronic inflammatory diseases, or acute infection
were excluded because of potential interference with muscle
energy metabolism in these conditions. For this reason, also
patients who underwent recent surgery (<3months) or re-
ceived treatment with corticosteroids or hormonal therapy
were excluded. The weight loss prior to study entry was
assessed by asking the patient for their usual weight 6months
prior to the diagnosis of lung cancer. Patients were subse-
quently assigned to the pre-cachexia or cachexia subgroup ac-
cording to the international cachexia consensus.2

Healthy controls were recruited via local newspaper adver-
tisements and were matched to the NSCLC patients with re-
spect to age and sex. Written informed consent was
obtained from all subjects, and the ethical review board of
the Maastricht University Medical Centre + approved the
study (reference number 08-2-059). Because public trial
registration was not implemented in clinical practice (WHO
guideline indicates January 2009) at the start of enrollment (July
2007), the study was not registered in a public trial registry.

Assessment of the parameters described in the succeeding
paragraphs was performed in the morning after 8 h fasting.

Body composition

Dual energy X-ray absorptiometry (DEXA; DPX-L, Lunar Radia-
tion Corp., Madison, WI, USA) was used to determine whole
body fat-free mass as well as the composition of arms and
legs together (appendicular) and legs only. Body mass index
and fat-free mass indices were calculated by dividing the re-
spective weights through the squared body height. DEXA
measurements were performed in the fasted state.
Sarcopenia was defined as an appendicular lean mass index
≤2 SD below the mean of a young reference group, being
7.26 kg/m2 for men and 5.45 kg/m2 for women.30

Spirometry

Forced expiratory volume in one second and forced vital ca-
pacity (FVC) were assessed by spirometry to assess airflow
obstruction as a potential result of the smoking history of pa-
tients. As metabolic derangements in skeletal muscle occur in
COPD and could therefore influence outcome parameters,
the relations between lung function and muscular metabolic
characteristics were assessed.

Physical activity and quadriceps muscle function

The Medical Studies Study Short Form-20 (SF-20) question-
naire was used to assess physical activity, and the European
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Organisation for Research and Treatment of Cancer Quality of
Life Questionnaire-C30 (QLQ-C30) questionnaire was used to
assess the quality of life, which includes physical perfor-
mance. Isometric and isokinetic strength of quadriceps and
hamstrings muscles was measured by Biodex dynamometer
(Biodex system version 3.3, Biodex Medical Systems, Inc.
Shirley, NY, USA). During this test, subjects were seated on
the dynamometer chair with belts attached at the level of the
thigh and ankle for stability. Isometric muscle strength was
assessed by three maximal voluntary contractions (MVCs) at
an angle of 60°. Isokinetic muscle strength was assessed at
angular velocities of 60°/s (set of five MVCs) and 180°/s (set
of 10 MVCs). Muscle strength was defined as the highest
muscular force output (peak torque) in Newton metres (Nm).

Plasma inflammatory markers

Plasma inflammatory mediators were assessed using a Human
Multiplex Antibody assay (Luminex® System, Life Technolo-
gies Ltd, Paisley, UK) to determine plasma TNF-α, soluble
TNF-receptor 1 and interleukin 6 (IL-6) (lower detection limit
5–28 pg/mL). All samples were analyzed at Invitrogen Luminex
Testing Services (Paisley, UK).

Muscle biopsies collection and processing

Muscle biopsies of vastus lateralis muscle (part of quadriceps
muscle) were obtained by needle biopsies using a technique de-
scribed by Bergström.31 For (immuno)histochemical analysis, a
part of each muscle biopsy was embedded in Tissue-Tek®
OCT™ (Sakura Finetek Europe B.V. Alphen aan den Rijn, The
Netherlands) and frozen in melting isopentane (which was
pre-cooled in liquid nitrogen). Serial cross-sections (5μm) were
cut on a cryostat microtome at �20°C and mounted on
SuperFrost microscope slides (Menzel-Gläser, Gerhard Menzel
GmbH Braunschweig, Germany), which were kept at �80°C
until analysis. The remaining muscle tissue was snap-frozen
and crushed to powder in liquid nitrogen and stored at �80°C
until further biochemical analyses, including western blotting,
enzyme activity measurements, and gene expression levels.

Muscle fibre type distribution and size

Immunohistochemical staining of laminin was used to deter-
mine muscle fibre cross-sectional area. Subsequently, a com-
bination of immunohistochemical staining and myosin
adenosine 5′-triphosphatase (mATPase) staining was used
(as described before32) to identify fibres expressing different
myosin heavy chain (MyHC) subtypes, that is, oxidative type I,
hybrid I/II, and glycolytic II fibres. Slides were incubated with
primary: anti-laminin (dilution 1:50; #L-9393, Sigma, St. Louis,
MO, USA); anti-type I MyHC (dilution 1:40; #A4840,

Developmental Studies Hybridoma Bank (DSHB), Iowa City,
IA, USA); and anti-type II MyHC (dilution 1:40; #N2261, Santa
Cruz, CA, USA), and secondary antibodies: Alexa Fluor 350
(dilution 1:100; #A-11069); Alexa Fluor 488 (dilution 1:1000;
#A-21121) and Alexa Fluor 555 (dilution 1:1000; #A-21426,
Invitrogen, Madison, Wisconsin, USA). Images for analysis
were obtained with fluorescent microscopy. Computer image
analysis was performed using Lucia Software version 4.81
(Laboratory Imaging, s.r.o. Prague Czech Republic). For
mATPase staining, sections were processed using acidic pre-
incubation (NaAc 7.8 g/L, KCl 7.56 g/L) at pH 4.40, followed
by acidic incubation (glycine 3.75 g/L, CaCl2•2H2O 4.26 g/L,
NaCl 38 g/L, ATP 1.7 g/L) at pH 9.4. Sections were dehydrated
in ethanol [50–70–96–100%-ultraclear (Fisher Scientific
Emergo)]. Images for analysis were obtained by light micros-
copy. Per biopsy, 200 fibres were analyzed on average (mini-
mum of 100 fibres). Damaged and detached fibres were
excluded from analysis.

Muscle protein expression analysis

Approximately 50mg of powdered muscle tissue was dissolved
in lysis buffer (400μl) consisting of Tris pH7.4 (50mM), NaCl
(150mM), glycerol (10%), NP-40 (0.5%), EDTA (1mM), Na3VO4

(1mM), NaF (5mM), β-glycerophosphate (10mM), Na-pyro-
PO4 (1mM), DTT (1mM), leupeptin (10μg/ml), aprotenin
(1%), and PMSF (1mM) and homogenized using a Polytron PT
(Polytron PT 1600 E, Kinematica AG). Following an incubation
step of 30min, muscle samples were sonicated and centrifuged
at 4°C (16 000 rcf) for 30min. Protein concentration was
assessed using BCA Protein Assay Kit (Pierce, Thermo Fisher).
Next, sample buffer (dilution 1:4; 4× Stacking buffer: 0.250M
Tris–HCl, 8% SDS, 40% glycerol, 0.4M DTT, 0.02% bromphenol
blue) was added, and samples were incubated for 5min at
95°C. Electrophoresis was performed on an Electrophoresis Cell
system (Bio-Rad), where equal amounts of protein were loaded
per lane of a 26 Wells Criterion XT 4–12% Bis-Tris precast gel
(Bio-Rad). Two standard samples were included in every blot
in order to correct for blot-to-blot variation. The gels were
transferred to nitrocellulose membranes (Whatman, GE
Healthcare), followed by incubation for 60 min in 2% BSA or
5% milk in TBS Tween 20 (v/v 0.05%) before incubation with
primary antibodies. Primary antibodies for Oxphos ATP syn-
thase and I–IV complexes were used (1:1000; #MS604, Mito
Sciences) and glyceraldehyde 3-phosphate dehydrogenase
(1:1000; #2118, Cell Signalling) was used as loading control.
The membranes were incubated with primary antibodies over-
night at 4°C. Then, a successive incubation step with secondary
antibodies (dilution 1:5000) of anti-mouse IgG peroxidase
(#A85PI-1000.S1, Bio-Connect) and anti-rabbit IgG peroxidase
(#A85PI-2000.S1, Bio-Connect) was performed. Detection of
protein signals was performed using SuperSignal West Pico
Chemiluminescent substrate (Thermo Scientific). Densitometry
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was used to quantify signals using Quantitiy One (version 4.6.2,
Bio-Rad).

Muscle enzyme activity analysis

Crushed muscle tissue was dissolved in 5% (w/v) SET buffer
[containing sucrose (250mM), EDTA (2.5mM), and Tris
(10mM)] and subsequently homogenized using a Polytron
PT (Polytron PT 1600 E, Kinematica AG). Enzyme activities of
citrate synthase (CS), β-hydroxyacyl-CoA dehydrogenase
(HAD), and phosphofructokinase (PFK) were analyzed spectro-
photometrically (Multiskan Spectrum; Thermo Labsystems,
Breda, the Netherlands), based on the conversion rate of their
respective substrates as described previously.32

Muscle gene expression analysis

To extract RNA, ToTALLY RNA™ Kit (Ambion Ltd.) was used ac-
cording to the guidelines of the manufacturer. In short, pow-
dered tissue (10–30mg) was homogenized by a Polytron PT
1600 E (Kinematica AG), and total RNA was extracted. Then,
contaminating genomic DNA was removed using RNeasy Mini
Kit with RNase-free DNase (Qiagen). Concentration of total
RNA in the respective samples was assessed using spectropho-
tometry (NanoDrop ND-1000, Isogen Lifescience). Total RNA
(400ng) was reverse transcribed to cDNA with anchored oligo
(dT) primers following manufacturer’s guidelines (Transcriptor
First Strand cDNA Synthesis kit, Roche Diagnostics). Primers
(Sigma Genosys) were designed for the following: PGC-1α, mi-
tochondrial transcription factor A, CS, HAD, hexokinase II,
PFK, mitochondrial-encoded cytochrome c oxidase III, cyto-
chrome c oxidase subunit IV isoform 1, MyHC I, MyHC IIA,
andMyHC IIx (for primer sequences, see the online supplemen-
tal document, Table 1). Primers were used in quantitative real-
time PCR analysis (reaction contained 1× SensiMix SYBR &
Fluorescein Kit (Bioline) with 300nM primers), and Hard-Shell
96-well Semi-skirted PCR plates (Bio-Rad) were used on a MyiQ
thermocycler (Bio-Rad). The assay programme consisted of an
initial 15min incubation step at 95°C, followed by 40 cycles of
95°C for 15 s and 60°C for 45 s of thermal cycling. To correct
for variance within each reaction, gene expression was
corrected for a sample specific geNorm factor calculated from
CYCLOPHILIN, BETA-ACTIN (β-ACTIN) and Large Ribosomal
Protein (RPLPO) reference gene expression. Standard curves
from pooled cDNA and melt curves were analyzed to verify
efficiency and specificity of amplification.

Statistics

For the sample size calculation, please see the online
supplemental document. Data were analyzed using

Statistical Package for the Social Sciences (SPSS version 15
for Windows, SPSS Inc.). Except for baseline body weight
loss, which represents weight loss within individual patients
in the 6months prior to diagnosis, all data represent com-
parisons between healthy controls, pre-cachectic, and
cachectic patient groups. Continuous variables were
compared using one-way ANOVA with least significant dif-
ference (LSD) post hoc analysis. Pearson chi-squared test
was used for comparison of categorical variables. Correla-
tions were evaluated using Pearson correlations. Data in
tables are represented as mean ± standard deviation. Error
bars in figures represent the standard error of mean. Signif-
icance was set at P< 0.05.

Results

Subject characteristics

The basic characteristics of healthy controls, NSCLC pa-
tients, and pre-cachectic and cachectic NSCLC patients are
shown in Table 1. All except one patient had a history of
cigarette smoking, and as a result, lung function was worse
in patients with lung cancer. Pre-cachectic and cachectic pa-
tients with NSCLC showed no significant differences in tu-
mour stage or histological subtype. Pre-cachectic patients
showed mild within patient body weight loss (1.7%) in
6months prior to diagnosis, whereas patients with cachexia
showed significant weight loss in this period (12%). Body
mass index was comparable between all groups. Appendic-
ular and leg fat-free mass indices were lower in NSCLC as
compared with healthy subjects, predominantly in the ca-
chectic patients [including whole body fat-free mass index
(FFMI)]. Muscle strength was also lower in NSCLC patients,
again being more pronounced in the cachectic patients. Re-
ported physical functioning indices from the questionnaires
were also significantly lower in NSCLC, especially in the ca-
chectic patients (~70% and ~62% of that of controls, re-
spectively; data not shown).

Increased interleukin 6 and soluble tumour necrosis
factor receptor 1 levels in patients with cancer
cachexia

Expression of the pro-inflammatory cytokine considered the
most potent in inducing loss of OXPHEN in experimental
cancer cachexia. IL-6 was elevated in NSCLC, predominantly
in the cachectic patients, compared with healthy controls
(Table 1). TNF-α, another putative mediator of OXPHEN
regulation, was not differentially expressed between
groups. However, circulating levels of its receptor, soluble
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TNF receptor 1, were significantly elevated in the plasma of
NSCLC patients when compared with healthy controls
(Table 1).

Preserved muscle OXPHEN in patients with lung
cancer pre-cachexia and cachexia

As can be observed in Figure 1, patients with lung cancer
showed no differences from healthy controls concerning the
proportion of type I, hybrid I/II or II muscle fibres, although
trends towards a somewhat lower type I and higher type II fibre
proportion (P = 0.06) could be appreciated. Also, no indications
for a fibre type shift during early development of cancer
cachexia were found. That is, no differences were observed
between the cachectic and the pre-cachectic group or pre-
cachectic patients (Figure 1A). Similarly, ratios of oxidative
(HAD and CS) to glycolytic (PFK) enzyme activity and protein ex-
pression levels of ATP synthase and I–IV Oxphos protein com-
plexes were comparable in all groups (Figure 1B and C). To
exclude gender effects, these analyses were also performed
in men only, which indeed did not affect the outcome. More-
over, partial correlations, controlling for gender, between

muscle OXPHEN parameters and the indices of muscle mass re-
vealed no positive associations within the cancer patients.

Preserved muscular gene expression of mediators
regulating and representing oxidative metabolism
in lung cancer cachexia

Muscle gene expression levels are shown in Table 2. PGC-1α
and mitochondrial transcription factor A, key regulators of
oxidative metabolism, were not differentially expressed in
lung cancer patients, nor in the pre-cachexia or cachexia sub-
groups. Likewise, gene expression levels of their downstream
oxidative markers HAD and CS were comparable, as well as of
the glycolytic markers PFK and hexokinase II (Table 2). mRNA
transcripts of mitochondrial-encoded cytochrome c oxidase
III and cytochrome c oxidase subunit IV isoform 1 were how-
ever significantly lower in cancer patients than in healthy
controls, but there was no difference between pre-cachexia
and cachexia.

Corresponding to the absence of histological alterations in
the proportion of type I fibres, no differences in gene expres-
sion levels of oxidative MyHC I were observed between the

Table 1 Subject characteristics

Healthy controls NSCLC NSCLC pre-cachexia NSCLC cachexia

N (m/f) 22 (13/9) 26 (17/9) 10 (8/2) 16 (9/7)
Age (years) 61.4± 7.0 60.8±9.0 62.4±10.4 59.8±8.2
Disease stagea: IIIB (%)/IV (%) — 38/62 60/40 25/75
Histology: adenocarcinoma (%)/squamous cell (%) — 61/39 70/30 56/44
Smoking: (current %/former %/never %) 5/54/22 38/58/4* 20/80/0* 50/44/6*
FEV1f (% predicted) 114.7±19.3 66.7±18.6* 77.0±18.4* 61.9±17.2*
FVCg (% predicted) 125.4±13.8 83.2±22.1* 100.0± 9.9* 75.5±22.0*,†

Tiffeneau index 0.74±0.08 0.64±0.13* 0.60±0.12* 0.65±0.13*
Mean weight loss in 6months prior to diagnosis (%)b 0±0 8.0±6.7* 1.7± 1.4 12.0±5.5*,†

Body mass index (BMI) (kg/m2) 24.1± 3.3 24.0±4.5 25.7±3.4 23.0±4.8
Fat-free mass index (FFMI) (kg/m2) 18.4± 2.2 17.2±2.5 18.5±1.6 16.5±2.7*
Appendicular fat-free mass index (kg/m2) 8.1± 1.1 7.0±1.1* 7.7± 0.8 6.6±1.0*,†

Leg fat-free mass index (kg/m2) 6.1± 0.8 5.2±0.8* 5.7± 0.6 4.9±0.7*,†

Sarcopenia (N) 0 12* 2 10*,†

IL-6 (pg/ml)c 56.7± 33.2 120.4±107.7* 70.1±50.8 151.8±122.6*,†

TNF-α (pg/ml)d 105.7±43.8 117.0±93.1 131.6±129.9 106.6±58.1
Soluble TNF receptor 1 (pg/ml)e 2404±728 3712±1449* 3482±1747* 3855±1270*
Peak torque flexion 180°/s (Nm) 64.3±25.5 34.7±15.4* 37.6±14.2* 32.9±16.3*
Peak torque extension 180°/s (Nm) 75.8±27.6 40.8±17.9* 51.2±17.5* 34.2±15.0*
Peak torque flexion 60° (Nm) 77.4±19.8 60.2±22.4* 71.0±25.3 53.4±18.1*,†

Peak torque extension 60° (Nm) 137.1±35.5 109.8±39.8* 133.0±40.2 95.3±32.8*,†

NSCLC, non-small cell lung cancer.
aStage of non-small cell lung cancer according to the 6th tumour–node–metastasis classification system.
bMean percentage of within patient weight loss in the 6 months prior to diagnosis.
cInterleukin-6.
dTumour necrosis factor alpha.
eSoluble tumour necrosis factor alpha receptor 1.
fQuality of Life Questionnaire C30.
gMedical Studies Study Short Form-20 (physical performance questionnaire).
hForced expiratory volume in one second.
iForced vital capacity.
*Statistically significant difference compared with healthy controls (P< 0.05).
†Statistically significant difference compared to pre-cachexia (P< 0.05).
Data represent mean± SD.
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groups (Table 2). Patients with pre-cachexia showed a rela-
tive increase in glycolytic MyHC IIx transcript levels when
compared with cachectic patients and healthy controls sub-
jects (Table 2), albeit variation was rather large.

Muscle fibre atrophy is independent of fibre type
distribution in lung cancer cachexia

Comparedwith the healthy subjects, muscle fibre cross-sectional
area was smaller in NSCLC regardless of the fibre type (P< 0.05),
indicative of muscle fibre atrophy (Figure 2). In accordance, se-
lective fibre type II muscle atrophy predominated in the cachec-
tic cancer patients. No significant differences were observed in
the sizes of hybrid type I/II fibres in any of the study groups.

There were no significant associations between FFMI as
marker of muscle mass and the following metabolic markers:

fibre type distribution, oxidative–glycolytic enzyme activity
ratios or transcript levels of (regulatory) oxidative markers
in any of the patient groups (data not shown). Conversely,
FFMI was significantly and negatively associated with the ex-
pression of several of the Oxphos proteins in pre-cachectic

patients (complex II and complex III, P< 0.05) and cachectic
patients (ATP synthase and complex III, P< 0.05), whereas
weight loss was positively associated with the expression of
Oxphos proteins in cachectic patients (ATP synthase, complex
II, and complex III, P< 0.05) (Figure 3).

Discussion

In contrast to the findings in experimental cancer cachexia,
this clinical study demonstrates that skeletal muscle OXPHEN

Figure 1 Normal OXPHEN in patients with lung cancer pre-cachexia and cachexia. Quadriceps muscle biopsies were processed for analysis of mus-
cle fibre subtypes, enzyme activity, and protein expression. (A) Distribution of oxidative type I and glycolytic type II muscle fibre types in quadriceps
muscle. Assessment of fibres expressing different myosin heavy chain isoforms was performed using immunohistochemistry and myosin adenosine
5′-triphosphatase staining. (B) Muscle oxidative and glycolytic enzyme activity. Activity of oxidative (β-hydroxyacyl-CoA dehydrogenase and citrate
synthase) and glycolytic (phosphofructokinase) enzymes was assessed. Ratios of oxidative to glycolytic were calculated for the different enzymes.
(C) Protein expression of Oxphos proteins. Expression of ATP synthase and I–IV Oxphos protein complexes was assessed using western blot analysis.
Glyceraldehyde 3-phosphate dehydrogenase was used as a loading control. Co, healthy controls; Pre, pre-cachectic patients, Cach, cachectic pa-
tients. * Significant difference between indicated groups, P< 0.05.
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is preserved in newly diagnosed patients with lung cancer,
ncluding the subgroup of patients with cachexia, despite
significantly elevated levels of circulating pro-inflammatory
mediators (i.e. IL-6) as putative triggers. This is illustrated
by the absence of alterations in fibre type distribution, mRNA
transcript levels of regulators of oxidative signalling, protein
expression of mitochondrial complexes, and oxidative
enzyme activity.

To the best of our knowledge, this is the first study that ad-
dresses the question whether loss of muscle OXPHEN is

involved in patients with cancer cachexia. Although we did
see a lower gene expression of cytochrome c oxidase in the
cancer patients, this was not associated with cachexia be-
cause there were no differences between the patient sub-
groups. More importantly, there were no differences at the
protein level. This is the first study in its kind, and although
the current design may not be ideal for subgroup analyses,
our findings suggest that these clinical findings do not con-
firm the observations in most experimental models of cancer
cachexia. This is in line with a previous clinical study in
patients with gastrointestinal cancer; no alterations in micro-
circulation, capillary density, or muscular energy metabolites
were found33, and although these measures do not reflect
muscle OXPHEN per se, these data are in line with the current
findings. Also in contrast to these experimental models, a
hepatoma cancer cachexia model recently showed elevated
transcript levels of the OXPHEN regulator PGC-1α and its
downstream mediators.34 These findings are consistent with
the positive and negative correlations between Oxphos com-
plexes and respectively weight and FFMI in the current
population of NSCLC patients. Together, this implicates that
the loss of OXPHEN observed in the majority of experimental
cancer cachexia models is not merely a result of the presence
of malignant disease but is likely dependent on (a combina-
tion of) yet to be determined additional host metabolic

Figure 2 Muscle fibre atrophy is independent of fibre type in lung can-
cer cachexia. Cross-sectional of individual muscle fibres was assessed
using immunohistochemical staining of laminin. Assessment of fibres
expressing different myosin heavy chain isoforms was performed using
immunohistochemistry and myosin adenosine 5′-triphosphatase
staining.

Table 2 Gene expression profiles

Healthy controls Pre-cachexia Cachexia

PGC-1α (AU) 0.20±0.19 0.13±0.05 0.13±0.06
TFAM (AU) 0.16±0.04 0.14±0.04 0.16±0.04
CS (AU) 0.21±0.10 0.15±0.06 0.17±0.05
HAD (AU) 0.19±0.04 0.19±0.04 0.21±0.04
HKII (AU) 0.18±0.12 0.12±0.13 0.21±0.27
PFK (AU) 0.19±0.10 0.17±0.09 0.18±0.05
COX III (AU) 0.25±0.08 0.19±0.06* 0.15±0.05*
COX IV (AU) 0.22±0.07 0.18±0.06* 0.17±0.05*
MyHC I (AU) 0.20±0.09 0.18±0.09 0.17±0.09
MyHC IIA (AU) 0.22±0.10 0.24±0.11 0.16±0.05
MyHC IIx (AU) 0.15±0.07 0.32±0.25* 0.17±0.11†

AU, arbitrary units; PGC-1α, peroxisome proliferator-activated recep-
tor gamma co-activator 1-alpha; TFAM, mitochondrial transcription
factor A; CS, citrate synthase; HAD, β-hydroxyacyl-CoA dehydroge-
nase; HKII, hexokinase II; PFK, phosphofructokinase; COX III, mito-
chondrial-encoded cytochrome c oxidase III; COX IV, cytochrome c
oxidase subunit IV isoform 1; MyHC, myosin heavy chain.
*Statistically significant difference compared with healthy controls
(P< 0.05).

†Statistically significant difference compared with pre-cachexia
(P< 0.05).
Data represent mean± standard deviation.

Figure 3 Correlation between weight loss and protein expression of
Oxphos complex II in healthy controls, pre-cachectic, and cachectic
patients. A significant correlation between weight loss and Oxphos
complex II protein expression was found in cachectic patients
(R = 0.826, P< 0.05) but not in healthy control subjects or pre-cachec-
tic patients.
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alterations that could be related to a more aggressive and
active nature of tumour development. However, it must be
noted that none of the aforementioned experimental models
were real lung cancer models (i.e. a tumour in the lungs), and
loss of OXPHEN associated with cachexia in such a real model
of lung cancer could help interpret the current clinical
findings.

The unaffected OXPHEN in the current patient population
with lung cancer cachexia are dissimilar to the observations
in COPD, a chronic lung disease in which cachexia and loss of
skeletal muscle OXPHEN are frequently observed.6,35,36 An
important difference between cachexia in lung cancer and
COPD is the time frame in which cachexia progresses. In
COPD, cachexia generally develops gradually over a long
time period, that is, months or years. The loss of OXPHEN
might indeed play a role as accelerator of muscle wasting
in this gradually developing type of cachexia.6 However,
in lung cancer, cachexia develops relatively rapidly, that is,
in weeks to months, because of the aggressive nature of
the disease, and the current findings in newly diagnosed
patients indicate that loss of OXPHEN does not precede
or accompany this rapid developing cachexia, which sug-
gests that the molecular mechanisms of muscle wasting
are different in both conditions. An additional indication
that different wasting mechanisms indeed occur in these
respective diseases is the generalized muscle fibre atrophy
of type I as well as type II fibres in the current population
with lung cancer cachexia, whereas patients with COPD
typically exhibit selective type II fibre atrophy.35 A potential
reason for the differences in muscle OXPHEN in lung cancer
cachexia and COPD could be that specific triggers, such as
hypoxia or slow adaptation to sedentary lifestyle, which
might not be as predominant in malignant disease,10 and
contribute significantly to intrinsic metabolic alterations in
skeletal muscle of COPD patients.35 Independent of the
cause of the differences, the currently observed phenotype
seems specific for lung cancer and not influenced by the
presence of impaired lung function, as the proportion and
diameter of glycolytic muscle fibres did not correlate with
the lung function parameters in any of the current patient
groups (data not shown).

Although muscle OXPHEN is not altered in lung cancer
patients, the question remains whether stimulation of ox-
idative metabolism through interventions like exercise
training or pharmaceutical stimulation could still have
beneficial effects on muscle mass preservation and func-
tional performance during cancer cachexia via the poten-
tial increase in contractile efficiency, reduced muscle
proteolysis and increased muscle performance. Moreover,
patients in the current study were included at diagnosis,
prior to anti-tumour treatment; it cannot be excluded that
muscle OXPHEN could be affected by therapy-induced
inflammation.37,38 Studies performed in humans and
rodents show that endurance exercise increases mRNA

and protein expression of the master OXPHEN regulator
PGC-1α39,40 and muscle-specific overexpression of PGC-1α
resulted in improved muscle performance in
mice.41,42However, pharmacological stimulation or genetic
overexpression of PGC-1α could not rescue muscle mass
consistently in all experimental models of cachexia,43,44

and extreme caution should be taken into account when
testing strategies like systemic stimulation of PGC-1α
expression or activity, as overexpression of PGC-1α has
been associated with increased tumour growth in a
model of cancer cachexia.44 Therefore, exercise
programmes and/or (the less demanding) neuromuscular
electrical stimulation might be a safer alternative at this
point.45,46

In summary, findings demonstrate that despite evi-
dent pro-inflammatory signalling, muscle OXPHEN is pre-
served in (pre-)cachexia associated with NSCLC, which
implies that OXPHEN loss is not a primary trigger of
cancer cachexia-related muscle wasting prior to tumour
treatment.
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