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Abstract

Individual heterogeneity in life history shapes eco-evolutionary processes, and unobserved hetero-
geneity can affect demographic outputs characterising life history and population dynamical prop-
erties. Demographic frameworks like matrix models or integral projection models represent
powerful approaches to disentangle mechanisms linking individual life histories and population-
level processes. Recent developments have provided important steps towards their application to
study eco-evolutionary dynamics, but so far individual heterogeneity has largely been ignored.
Here, we present a general demographic framework that incorporates individual heterogeneity in
a flexible way, by separating static and dynamic traits (discrete or continuous). First, we apply the
framework to derive the consequences of ignoring heterogeneity for a range of widely used demo-
graphic outputs. A general conclusion is that besides the long-term growth rate lambda, all
parameters can be affected. Second, we discuss how the framework can help advance current
demographic models of eco-evolutionary dynamics, by incorporating individual heterogeneity. For
both applications numerical examples are provided, including an empirical example for pike. For
instance, we demonstrate that predicted demographic responses to climate warming can be
reversed by increased heritability. We discuss how applications of this demographic framework
incorporating individual heterogeneity can help answer key biological questions that require a
detailed understanding of eco-evolutionary dynamics.

Keywords

Demographic heterogeneity, eco-evolutionary response, evolutionary demography, individual dif-
ferences, structured population.

Ecology Letters (2015) 18: 417–432

INTRODUCTION

Intraspecific variation in properties affecting fitness is ubiqui-
tous in natural populations, including morphological traits,
behavioural traits and impacts of environmental factors like
spatial location (Kendall & Fox 2002; Vindenes et al. 2008;
Bolnick et al. 2011). Such variation is an essential part of evo-
lutionary theory, whereas in population ecology it is often
ignored as the focus is typically on population-level (average)
processes. Recently, however, the role of individual variation
in shaping such ecological processes has received increasing
interest (Wilson & Nussey 2010; Bolnick et al. 2011; de Val-
pine et al. 2014), and studies on eco-evolutionary dynamics
have emphasised the link between ecological and evolutionary
processes on a contemporary time scale (Schoener, 2011;
Smallegange & Coulson 2013). An increased understanding of
the underlying mechanisms of eco-evolutionary dynamics is
essential to answer many of the currently important questions
in biology, such as how fast species will adapt to environmen-
tal impacts (Pelletier et al. 2007; Smallegange & Coulson
2013).
Demographic population models like matrix models (Leslie,

1945; Lefkovitch, 1965; Caswell, 2001) and integral projection
models (IPM; Easterling et al. 2000; Ellner & Rees 2006) con-
nect individual-level processes like survival and reproduction,

and population-level parameters describing the dynamics and
average life history (Caswell & John 1992). However, the
majority of applications of these models assume that individ-
uals follow the same life-history trajectory, ignoring underly-
ing individual differences. Classical theory for age structured
populations provide useful descriptions of the average life his-
tory of a species, and have been successfully applied to
explain interspecific differences (Fisher, 1930; Charlesworth,
1994; Roff, 1996). Nonetheless, the average life history does
not necessarily provide a good description of individual life
histories.
A well-known example that a population-level average may

not represent individual properties is the so-called ‘frailty
effect’, referring to an apparent effect of reduced mortality
over age that is actually caused by individual heterogeneity in
survival (Vaupel et al. 1979). Thus, at the individual level,
mortality may not be changing with age but the average mor-
tality is. This effect of individual heterogeneity has important
implications for our understanding of senescence (Vaupel &
Yashin 1985; Loison et al. 1999; Caswell, 2014). Similar
mechanisms can shape any parameter of interest calculated
for the average life history. For instance, in a study of mono-
carpic plants Rees et al. (2000) showed that the optimum
flowering size as predicted from the average life history is not
a good predictor of the optimum size in individual plants.
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Another important consequence of heterogeneity is that
demographic outputs characterising population dynamics and
life history (e.g. population growth rates, net reproductive
rate, generation time and extinction risk) can be biased if the
heterogeneity is not recognised and accounted for. Studies
exploring such effects of unobserved heterogeneity have so far
mainly focused on the effects on demographic stochasticity
(arising from inherent randomness in demographic processes
of individuals) and corresponding extinction risk (Conner &
White 1999; Jager, 2001; Kendall & Fox 2002; Vindenes et al.
2008). We are not aware of studies considering consequences
for any of the other demographic outputs mentioned above.
Individual heterogeneity can arise from additive genetic

inheritance in fitness-related traits. Such traits can be quanti-
tative genetic traits such as height or body mass, or discrete
traits determined by few alleles (Coulson et al. 2011). Because
they apply to continuous traits, IPMs have recently been pro-
posed as a useful tool to model eco-evolutionary dynamics
(Coulson et al. 2010; Smallegange & Coulson 2013). As they
belong to the same general model class as matrix models they
have the same analytical advantages (Ellner & Rees 2006).
However, so far a majority of applications have been based
on one trait (usually some measure of body size), assuming all
individuals have the same life history. Individual heterogeneity
is sometimes accounted for in the estimation of parameters
through random effects in the intercepts and/or slopes (Ellner
& Rees 2007; Coulson, 2012), but the final IPM is usually
constructed for the mean life history, omitting these effects.
Moreover, individual-level properties such as genotypes can
affect the life history in complex ways that are difficult to cap-

ture through random effects. In a model based on just one
trait, it can also be challenging to define heritability, in partic-
ular if the focal trait is one that develops over the lifetime
(such as size). The so-called age–stage-structured models
(Coulson et al. 2010) resolve some of these issues, but require
one heritability measure for each age, and individual traits are
not explicitly included.
Here, we propose a conceptual demographic framework

including individual heterogeneity in life histories, that can
apply to both continuous (quantitative genetic) and discrete
traits. We define the model in a general way that allows for
several mechanisms of inheritance to be considered, both
genetic and non-genetic (Danchin, 2013). This framework rep-
resents a complementary approach to age–stage-structured
models that include individual-specific traits and that only
requires one heritability estimate, rather than one for each
age. We apply the framework to evaluate consequences of
ignoring heterogeneity for a range of population dynamical
and life-history parameters, extending and synthesising our
knowledge of such effects. Second, we discuss how the frame-
work can help advance demographic approaches to model
eco-evolutionary dynamics and population responses to envi-
ronmental impacts.

CONCEPTUAL MODEL FRAMEWORK

The framework is based on IPMs for continuous traits and
matrix models for discrete traits (and can include combina-
tions of the two). For simplicity of notation we will present
the model and results within the IPM framework, but all

Box 1 General description of integral projection models

Integral projection models (IPMs) were introduced for size-structured populations (Easterling et al. 2000), and are the continu-
ous-state analogue to matrix models. Both matrix models and IPMs belong to the same general model class of discrete time
steps, and an IPM can be thought of as a high dimension matrix model. In the simplest case of an IPM, the population is struc-
tured according to one trait (e.g. size) x, with a sample space Xx (e.g. the range from 0 to infinity in the case of size). In con-
trast to most matrix models, vital rates of IPMs are estimated from data using regression techniques. There is an implicit
assumption that the structuring trait carries information that can be used to predict the vital rates. Two recent papers describe
general methods for construction and analysis of IPMs from data, including numerical methods for calculation and model diag-
nosis (Merow et al. 2014; Rees et al. 2014).
The individual level processes of survival, reproduction and transition between trait values are characterised by four main

vital rate functions: (1) survival probability s(x), (2) a distribution gðx0; xÞ describing transition in trait value from x to x0, con-
ditional on survival, (3) fecundity b(x) and (4) a distribution fðx0; xÞ for offspring trait x0 given parental trait x. Together, these
functions define the projection kernel,

Kðx0; xÞ ¼ Sðx0; xÞ þ Bðx0; xÞ ¼ sðxÞgðx0; xÞ þ bðxÞfðx0; xÞ:
The projection kernel describes the contribution from individuals in state x to state x0 the next time step, in terms of survival/
trait transitions and reproduction/offspring trait allocations. Letting n(x) describe the population density of individuals across
the trait x, the total population size is N ¼ R

Xx
nðxÞdx. The population size the next time step is given by

Ntþ1 ¼ R
Xy

R
Xx

Kðx0; xÞnðxÞdx0dx. By analysis of Kðx0; xÞ we find the parameters describing asymptotic properties, i.e. the long-
term growth rate k (average fitness), the stable structure u(x) and reproductive values v(x) (Easterling et al. 2000). The functions
u(x) and v(x) also define the sensitivity surface of k to the projection kernel (Ellner & Rees 2006).
IPMs have been applied on a number of organisms from different taxa, with various extensions such as age structure, spatial

structure, environmental drivers, density dependence, species interactions and demographic and environmental stochasticity (see
summary and references in Rees et al. 2014).
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results are easily converted to the case of discrete traits,
replacing integrals by sums. A schematic overview of the
framework and the demographic outputs considered is given
in Fig. 1, and a more detailed model description is given in
Appendix S1. Calculations were done using the software R (R
Development Core Team, 2013), and R code for all examples
is provided as supplementary material.

Static and dynamic traits

Demographic models are often based on one or a few traits,
typically age in matrix models, or body size in IPMs. To
include individual heterogeneity in life histories, we propose a
framework including two types of traits, classified as static
and dynamic (Hill et al. 1999). Static traits remain the same
over the lifetime of an individual, or represent events that
occur only once and have a lasting impact on the individual
life history. Such traits can therefore capture individual effects
beyond the population level average. Examples of static traits
could be body size at birth, genotype or spatial location of a

sessile organism. Dynamic traits are changing over the life-
time, randomly or non-randomly. Age and body size are par-
ticularly important cases of dynamic traits, as either one or
both are often found to be a major determinant of vital rates
(Caswell, 2001). Other examples that may be important for
some organisms include spatial location (mobile organisms),
body condition, or social status. A non-comprehensive list of
empirical studies including various types of static and
dynamic traits is provided in Table 1. Among these, we see
that the static trait is often some property of the environment,
while the dynamic trait is often age, life-history stage or some
measure of organism size.
Static traits will often result from conditions of early devel-

opment, a particularly important time in the life cycle of most
organisms (Lindstr€om, 1999; Beckerman et al. 2002; Cam
et al. 2003; Monaghan, 2008). For instance, in early ontoge-
netic stages, nutritional conditions can have lasting effects on
development and growth (Metcalfe & Monaghan 2001).
Maternal effects and cohort effects are general concepts cha-
racterising such early effects, and both are commonly found
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Figure 1 A schematic overview of the main model components and the demographic outputs considered in the analyses. Together with environmental

variable(s) h, the dynamic trait x and static trait y define individual vital rate functions. Here, these are illustrated for a constant environment (only means

are shown for the offspring trait distribution and the distribution of dynamic transitions). The offspring inheritance is a joint distribution for x0 and y0, in
this illustration they are independent. Once vital rates are defined, demographic outputs are obtained by analysis of the projection kernel, for instance the

stable structure and reproductive value in a given environment, as shown here. The final four outputs require an extension of the model to include

demographic and/or environmental stochasticity (Appendix S1).
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in natural populations (Beckerman et al. 2002). Maternal
effects represent parental influences beyond additive genetic
effects (Mousseau & Fox 1998), while cohort effects refer to
lasting effects of environmental factors (Beckerman et al.
2002). Moreover, in many organisms, the early stages of the
life history often correspond to the time when individuals are
most likely to migrate or disperse to new environments. Ses-
sile organisms generally follow such a life history, but even in
some mobile animals adults may show more limited dispersal
than juveniles, for instance after they establish a territory.
In a population model based on Markov processes, Tulja-

purkar et al. (2009) distinguished between dynamic and fixed
heterogeneity in life-history trajectories. In that model dynamic
heterogeneity referred to stochastic transitions between stages,
while fixed heterogeneity referred to unobserved or measured
differences generating random variation in life histories. These
concepts are similar to our distinction between dynamic and
static traits, but not quite the same since fixed vs. dynamic
heterogeneity focus on classifying variability in stochastic pro-
cesses. Here, we use the terms static and dynamic to classify
the traits that structure the population.

Vital rates and projection kernel

The vital rates are one way to summarise the life history of
an organism (Caswell, 2001). In IPMs, these are functions
describing how survival, reproduction and trait development
depend on the static and dynamic traits and the environment.
For the sake of simplicity, we will consider cases with only
one static and one dynamic trait, but note that in general the
framework can include more than one trait of each type. Let
x and y denote the dynamic and static trait, respectively, and
let the environment be described by a variable h representing

one or more environmental variables like temperature, rainfall
or resource availability, taking a new value each time step.
For simpler notation, we will omit h where suitable. Interac-
tions between x, y and h over time will shape the life history
(i.e. vital rates) of each individual, including mechanisms of
inheritance (Fig. 1). Each individual will have a constant
value of y set at birth, but will experience different values of x
and h over the lifetime. Together, the effects of the static and
dynamic traits on the vital rates can be combined in a number
of ways, including interactions between them, so that a range
of different life histories can be modelled using only two
traits.
The population density distribution describing the expected

number of individuals across the two traits is given by the
function n(x,y). Changes in this joint distribution over time is
described by the projection kernel, which is a function of all
the underlying vital rate functions (Easterling et al. 2000). For
an IPM of static and dynamic traits, it is given by

K¼ SþB

¼ sðx;y;hÞgðx0;x;y;hÞdðy0 � yÞ þ bðx;y;hÞfðx0;y0;x;y;hÞ; ð1Þ
where the survival kernel S describes survival and transitions
of the dynamic trait, while the reproduction kernel B describes
production of offspring including the offspring distribution of
both traits. Two important aspects separate this model from a
model defined for only one trait: (1) the Dirac delta function
dðy0 � yÞ enters the survival kernel to keep the static trait y
constant for an individual during its lifetime (in the case of a
discrete trait matrix model this would be replaced by a Kro-
necker delta), and (2) in the reproduction kernel, the joint dis-
tribution fðx0; y0; x; y; hÞ allows the static and the dynamic trait
to be correlated at birth (or whenever offspring are counted),
which is likely often the case. For example, if the static trait is

Table 1 Examples of empirical studies including static and dynamic traits (not a comprehensive overview), including the type of traits considered and the

vital rates found to be affected by the static trait in the study species (not including theoretical model explorations). In most studies, the dynamic trait was

found to affect all vital rates.

Species Dynamic trait Static trait Vital rates affected by static trait References

Pike (Esox lucius) Body length Length at age 1 Growth This study, Vindenes et al. (2014)

Red-billed chough

(Pyrrhocorax pyrrhocorax)

Age Natal habitat Survival Reid et al. (2004, 2006)

Eurasian oystercatcher

(Haematopus ostralegus)

Life-history

stage

Natal habitat Survival, fecundity van de Pol et al. (2006, 2010)

Great tit (Parus major) Age Personality (behaviour in

new environment)

Survival, fecundity Dingemanse et al. (2004)

Grey wolf (Canis lupus) Body weight Genotype (coat colour) Survival, fecundity Coulson et al. (2011)

Columbian ground squirrel

(Urocitellus columbianus)

Body weight Sex Fecundity (mating function) Schindler et al. (2013)

Red deer (Cervus elaphus) Age class Environmental and density

conditions in birth year

Male survival, fecundity Rose et al. (1998)

Roe deer (Capreolus capreolus) Body weight,

age class

Birth date Growth, survival Plard et al. (2015)

Brook trout (Salvelinus fontinalis) Age Habitat (food) Survival, growth, fecundity Hutchings (1992)

Coho salmon (Oncorhynchus kisutch)

Chinook salmon (O. tshawytscha)

Age Natal habitat (freshwater) Male fecundity, growth

(maturation decision)

Vøllestad et al. (2011)

Bulb mite (Rhizoglyphus robini) Body length Food type (habitat) Survival, growth, fecundity Smallegange et al. (2014)

Lady orchid (Orchis purpurea) Total leaf area Habitat (light conditions) Survival, fecundity Jacquemyn et al. (2010)

Tree cholla cactus (Opuntia imbricata) Plant volume Elevation (herbivory level) Fecundity, growth Miller et al. (2009)

White hellebore (Veratrum album) Stem diameter Habitat type Survival, growth, fecundity Hesse et al. (2008)
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within-season timing of birth and the dynamic trait is body
size, then early born individuals will have more time to grow
so that if offspring are counted as 1-year-olds the two traits
will be correlated at this point.
The joint distribution fðx0; y0; x; y; hÞ allows for many mech-

anisms of inheritance to be considered (Danchin, 2013),
including (1) no inheritance, i.e. no effect of parental traits,
(2) cohort effects through the environment h, (3) additive
genetic inheritance of the static trait y and (4) maternal effects
(including epigenetic inheritance) through the dynamic trait x
and interactions with y and/or h. The specific form of the off-
spring trait distribution fðx0; y0; x; y; hÞ will in each case depend
on the relevant mechanisms for inheritance, that may lead to
a frequency-dependent model. The model definition here is
general, and for each specific application, the potential mecha-
nisms of inheritance should be considered. For instance, the
general definition does not preclude mechanisms causing run-
away selection (Darwinian demons). This could occur, for
instance with directional selection on a trait where offspring
values do not regress towards a mean.

Demographic outputs calculated from the model

Several demographic outputs can be calculated based on the
projection kernel or projection matrix (methods are essentially
the same for matrix models and IPMs; Easterling et al. 2000;
Caswell, 2001; Ellner & Rees 2006). In particular, the domi-
nant eigenvalue corresponds to the long-term population
growth rate k, while the right and left eigenvectors correspond
to the joint stable trait structure u = u(x,y) (scaled so thatR R

u(x,y)dxdy = 1) and reproductive values v = v(x,y) (scaled
so that

R R
u(x,y)v(x,y)dxdy = 1), respectively (Caswell, 2001;

Ellner & Rees 2006). The marginal distributions of x and y
are found by integrating u(x,y) with respect to the other trait.
The stable structure and reproductive values also define the
sensitivity (and elasticity) of k to the projection kernel (Ellner
& Rees 2006).
Other widely applied demographic outputs are the net

reproductive rate and generation time. The net reproductive
rate R0 describes the expected number of offspring over the
lifetime. It is a measure of the level of reproductive output as
well as the generation-to-generation population growth rate,
while the generation time measures the timing of reproduction
and life-history speed (Steiner et al. 2014). For structured
models with overlapping generations, different measures of
generation time are available (Caswell, 2001). Here, we will
consider two of them, the time it takes for the population to
grow by a factor R0, G1 ¼ lnR0= ln k (Caswell, 2001), and the
mean age of mothers in a population at the stable distribu-
tion, G2 ¼ k=ðvTBuÞ (Bienvenu et al. 2013).
So far, we have considered properties of a deterministic

model in a constant environment. The model can also be
extended to stochastic dynamics arising from demographic and
environmental stochasticity (Vindenes et al. 2012). Demo-
graphic stochasticity arises from inherent randomness in the
processes of survival, reproduction and transitions of traits,
while environmental stochasticity arises from fluctuations in
the environment affecting the underlying vital rates (May,
1973). The demographic and environmental variance are

parameters that measure the amount of each type of stochastic-
ity in the population growth (Engen et al. 2009; Vindenes et al.
2012). In general, estimating the long-term properties of sto-
chastic dynamics in structured populations is complicated by
transient fluctuations in the trait distribution leading to tempo-
ral autocorrelation in the population size. Engen et al. (2007)
demonstrated for an age-structured model that the dynamics
could be described by considering the total reproductive value,
calculated using the reproductive values of the mean environ-
ment that work as a filter for the transient fluctuations. This
method was later generalised to stage-structured cases, both
for IPMs and matrix models (Vindenes et al. 2012).

APPLICATIONS

Consequences of ignoring heterogeneity

For most natural populations, we will never know all sources
of heterogeneity, or be able to include them all in a model.
Even if this were possible, obtaining the required data can be
costly and time consuming, and the extra effort may not nec-
essarily lead to a large difference in the results of interest.
Thus, it is important to evaluate the potential consequences of
ignoring heterogeneity, not the least whether certain parame-
ters are more robust than others. In this section, we describe
a general method for how this can be done, both for the case
where the heterogeneity is completely ignored and the case
where it is only partly ignored (that is, ignoring the static trait
y and/or the dynamic trait x). In Appendix S2, we derive
results for a range of demographic outputs, and a summary is
provided in Table 2.
The term ‘heterogeneity’ has been used differently in the

biological literature, which is important to keep in mind. In
many cases, for instance studies on statistical estimation of
vital rates (e.g. Burnham & Rexstad 1993), heterogeneity is
implicitly assumed to mean hidden and unobserved individual
differences. This is also the interpretation in studies of effects
of heterogeneity on patterns of ageing (Vaupel et al. 1979).
When the goal is to evaluate consequences of ignoring such
hidden heterogeneity, the problem is one of modelling error,
as the underlying population is the same. Other studies con-
sider effects of changing heterogeneity in the underlying popu-
lation, for instance on the distribution of lifetime reproductive
success (Tuljapurkar et al. 2009; Caswell, 2011) and on the
long-term population growth rate (Kendall et al. 2011). This
problem is one of comparing different underlying populations
rather than models.
Both of these general questions are interesting, but it is

important to be aware of their differences, in particular when
results of different studies are compared. For instance, Ken-
dall et al. (2011) found that heterogeneity affects the expected
growth rate k, comparing a population where vital rates
change over age with a uniform population starting with the
same vital rates at birth that remain constant over age. Since
these populations are different, this study did not evaluate
consequences of ignoring heterogeneity, but rather effects of
specific changes in the underlying population. Based on this
result Kendall et al. (2011) suggested that failure to recognise
this effect on k had affected results of other studies, including
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a study of Vindenes et al. (2008) on demographic stochastici-
ty. However, the focus of Vindenes et al. (2008) was to evalu-
ate consequences of ignoring heterogeneity (comparing
models, not populations) so there was by definition no effect
on k in their model (a known demographic result that we
demonstrate analytically for this model in Appendix S2). In
the following, we will consider effects of ignoring heterogene-
ity, but in general the presented framework can also be used
to explore consequences of changes in the underlying popula-
tion.

General approach

To evaluate the potential consequences of ignoring heteroge-
neity, we compare demographic outputs calculated from a
model including heterogeneity (in this case, defined by a
model with a static and a dynamic trait) to the correspond-
ing parameters from models that partly or completely
ignores the heterogeneity, i.e. ignoring either the static trait
or both the static and dynamic trait. To derive the vital
rates of these comparison models, we use the stable trait dis-
tribution (see details in Appendix S2). The model where
both traits are ignored corresponds to an unstructured
model of a uniform population, in which only the estimates
of survival and fecundity are required to describe the
dynamics. The case where only the static trait is ignored is
slightly more complex, because transition functions of the
dynamic trait must be derived as well. Table 2 summarises
the resulting expressions for the vital rates for the underlying
heterogeneous model and the two comparison models, as
well as the resulting expressions for all the demographic out-
puts considered. A main conclusion from this analysis is that
except for k, all parameters are generally affected by ignor-
ing heterogeneity.
The amount and direction of the bias in the models ignor-

ing heterogeneity depend on the particular case being consid-
ered, that is the general life history, which vital rates are
impacted by heterogeneity, and the amount of heterogeneity.
While it is difficult to make predictions on the direction and
amount of bias for the general case, the methods and results
presented here provide a useful tool for evaluating conse-
quences of heterogeneity in specific situations (to which the
supplemented R code should be easily adapted). Two exam-
ples are provided below, one theoretical and one empirical,
where some of these issues are discussed in more detail.

Example 1 Red and green size-structured population:
To illustrate the results for a simple case where the ‘true’ pop-
ulation structure is known, we developed a theoretical exam-
ple of a size-structured population with red and green
individuals (Fig. 2, supplementary R code). Here, each vital
rate depends on size as well as colour, and each colour repre-
sents a different life-history strategy. For the purpose of illus-
tration, we assume that this population is studied by three
biologists, where the first recognises both size and colour and
includes them in the model. The second biologist is colour-
blind (incidentally, this is the case for one of the authors of
this study) and only includes the size differences. The third is
in a hurry and does not account for either size or colour,T
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modelling all individuals as equal. How different would their
conclusions on the various demographic outputs be, assuming
there are no other sources of error than the model choice?
Figure 2 compares the demographic outputs obtained

from each case. With the exception of k, all parameters are
biased in the models ignoring colour and/or size, and the
model ignoring both traits is generally doing the worst job,
as expected. The demographic variance stands out from the
general pattern, as the model ignoring only colour
underestimates it while the unstructured model overestimates
it.

Example 2 Consequences of early growth differences in pike:
As an empirical example, we consider the demography and
dynamics of a population of pike (Esox lucius) from Winder-
mere, UK, for which unique long-term individual-based data
are available (Le Cren, 2001). A length- and temperature-
dependent IPM was recently developed for this population
(Vindenes et al. 2014). In Appendix S3, we extend this model
to also include individual effects through length at age 1 (y,
static trait), reflecting early growth differences. Note that in
this example, the static and dynamic traits are the same (and
therefore perfectly correlated) in offspring. The exact underly-
ing mechanisms of early growth differences are not known,

but likely arise from a combination of genetic and environ-
mental effects. From other studies, we know that temperature
and food availability during the first year are key determi-
nants of somatic growth (Casselman, 1996).
Figure 3 shows the vital rates as functions of the static

and dynamic trait. Size ranks among individuals are largely
maintained over the lifetime, so that initially large pike tend
to grow persistently faster over their lifetime and reach a
larger final size than those starting out small. These growth
differences lead to lifelong fitness consequences through the
indirect effects of y on survival and fecundity, as larger
individuals tend to have higher values of these rates (Fig.
3). In addition, we included a direct effect of y on survival,
measured by the constant a (Appendix S3). Negative values
of a correspond to a survival trade-off associated with rapid
early growth, while positive values correspond to a case
where rapid growth is also associated with higher survival
(‘quality’ differences). The data were not sufficient to quan-
tify this effect, but indicated it would be negative (Appen-
dix S3). We therefore evaluated the results for a range of
values of a.
The results show that the consequences of ignoring hetero-

geneity in y (Fig. 3) are smallest when y only affects growth
(a = 0). The growth model ignoring heterogeneity was in this
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Figure 2 An example of a size-structured population of red and green individuals. Depending on whether colour and size is recognised, the vital rates will

look different to the observer, as illustrated for survival and fecundity in panels (a–c) (for transition rates, see the provided R code). As a result, with the

exception of k estimates of demographic outputs will be biased in models b and c. Consequences of underlying heterogeneity on estimates of extinction risk

(through demographic and environmental variance) are provided in the supplementary R code.
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case able to capture the average growth quite accurately, and
the main error arising from ignoring heterogeneity is that the
systematic individual variation is treated as random variation,
with limited consequences for most demographic outputs. In
addition, since y is approximately lognormally distributed, the
amount of heterogeneity is not extremely large in this model.
However, when y is also affecting survival, either through a
positive or a negative effect, the consequences of ignoring het-
erogeneity become more severe for all the demographic out-
puts (Fig. 3).
This example demonstrates the potential importance of life-

history trade-offs also for the consequences of ignoring

heterogeneity. Although life-history theory suggests that
trade-offs between vital rates should be common (Roff,
1996), identifying them in empirical systems can be difficult
(van Noordwijk & de Jong 1986). A potential explanation
could be that individual differences in resource acquisition
affect the expression of the trade-offs so that they are stron-
ger for individuals with low resources (Reznick et al. 2000).
Here, the initially small pike increases their growth rate much
at first, almost catching up with the larger ones, but then the
growth rate declines and they tend to stop growing at a
smaller final size (Fig. 3). This pattern could potentially
result from a stronger trade-off between growth and
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fecundity in these small individuals (being expressed when
they start reproducing).

Eco-evolutionary dynamics

In this section, we discuss another potential application of
the conceptual model framework, to study eco-evolutionary
dynamics. It is now widely recognised that evolutionary
changes can happen also over shorter time scales that are rel-
evant to ecological processes (Schoener, 2011). Ecological
and evolutionary processes interact to determine the dynam-
ics of a population, through simultaneous changes in the
underlying genetic and demographic structure (Pelletier et al.
2009; Smallegange & Coulson 2013). Thus, both processes
should be considered when aiming to understand and predict
population responses to external impacts, such as harvesting
or climate change. The topic of eco-evolutionary dynamics is
wide, and a number of different approaches are available,
some of which also consider structured populations (Hairston
et al. 2005; Pelletier et al. 2009; Ellner et al. 2011; Schoener,
2011). Here, we focus on demographic approaches (IPMs
and matrix models) and how the model framework intro-
duced here can provide a useful step towards more realistic
descriptions of eco-evolutionary dynamics in these models.
The term eco-evolutionary dynamics has also been used

differently in the literature. Smallegange & Coulson (2013)
define it as simultaneous changes in parameters of interest
to ecologists, such as population size, and in parameters of
interest to evolutionary biologists, such as strength of selec-
tion. Others have used more restrictive definitions requiring
a change in the genetic composition in response to selection
as well as in population dynamical properties (Pelletier et al.
2009; Schoener, 2011). Studying simultaneous responses in
multiple life-history parameters, as advocated by Smalleg-
ange & Coulson (2013), provides a more detailed picture
than the responses of k (average fitness) alone. But demo-
graphic models such as matrix models have been applied to
study such simultaneous changes for a long time without
using the term eco-evolutionary dynamics (Caswell, 2001).
Changes can occur in parameters that are important to evo-
lution (e.g. age-specific selection differentials), without neces-
sarily leading to an evolutionary change in the underlying
genetic composition (which also requires available genetic
variation for selection to act upon). To emphasise this point,
we therefore prefer the more narrow definition assuming
changes in the genetic composition, even though it can be
challenging to detect such changes empirically. Note that
this definition does not preclude models or analyses based
on the phenotypic level.
Since IPMs incorporate continuous traits as well as poten-

tial heritability (i.e. part of the variation in a static trait that
is genetically transmitted to offspring; Danchin, 2013) through
the offspring trait distribution, they provide a good starting
point for modelling eco-evolutionary dynamics (Smallegange
& Coulson 2013). However, so far many applications have
been based on one trait, usually a measure of body size (but
see e.g. Plard et al. 2015). Taking body size as an example, we
highlight three limitations to such a model in describing evo-
lutionary dynamics. First, if heritability is modelled through a

positive correlation between parent and offspring size, then
genetic effects are confounded with ontogeny since individuals
tend to grow over life. Then, older parents will also tend to
have larger offspring than younger parents, regardless of their
own size as offspring. Second, initial differences in offspring
size will tend to become weaker over age in such a model,
since latent individual differences in growth will be included
as random variation instead. Thus, if somatic growth has a
genetic component causing some individuals to grow consis-
tently faster than others, this would not be sufficiently cap-
tured by a model based on size alone. Third, any potential
non-linear effects of genotype (static trait) on growth rate as
well as on other vital rates, are ignored, as are potential corre-
lations between vital rates (such as trade-offs) induced by the
genotype. These issues apply to all models that include only a
dynamic trait and aim to consider eco-evolutionary dynamics,
but can largely be mitigated by including a static trait repre-
senting individual effects.
In an interesting recent study of hunted bighorn sheep

(Ovis canadensis) Traill et al. (2014) used a size-structured
two-sex IPM to evaluate the causes of changes in the body
size distribution, including heritability of body size. The
results of this model suggested that effects of heritability
were small compared to other causes, i.e. that evolution was
less important than demography. Our model framework
could be applied to this system, for instance using offspring
size as a static trait (as for pike in the above model). This
would provide a robustness check of these results by separat-
ing genetic effects from ontogenetic development, and by
allowing for lasting individual effects of offspring size
through the life history.
Both dynamic and static traits will in most applications to

natural populations be phenotypic traits, as the underlying
genetics are typically not observed. Continuous traits can
often be treated as quantitative genetic traits (assumed to be
determined by many genes of small effect), decomposing vari-
ation into an additive genetic and an environmental compo-
nent (Coulson et al. 2010). Heritability should ideally be
estimated from genetic data, but could also be estimated from
the slope of the parent–offspring regression of observed phe-
notypes (Coulson et al. 2010). Discrete traits are sometimes
determined by just a few alleles on one locus, and in a few
cases the underlying mechanisms of genetic inheritance can be
explicitly modelled. The wolf model employed by Coulson
et al. (2011) provides a nice example, where coat colour (black
or grey) is determined by two alleles on a locus. In Appendix
S4, we provide another example based on the model of red
and green individuals in example 1. In these cases, the dynam-
ics of the model become frequency dependent, and will also
depend on assumptions regarding the mating system.
Another demographic approach to modelling eco-evolutionary

dynamics is that of age–stage-structured models (Coulson &
Tuljapurkar 2008). This is a flexible framework where individual
variation in life histories can be included through various
combinations of ages and stages. The model with static and
dynamic traits can in principle be converted to an age–
stage-structured model, as individuals always have an age,
regardless of whether it is measured (Caswell, 2001). It is con-
ceptually different by focusing on separating dynamic and static
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traits (note that the dynamic trait can be age, but is not limited
to this), and the static trait is always constant over the lifetime
of an individual. In age–stage-structured models, age is always
included, and the stage may also change over the lifetime (e.g.
size). The frameworks also differ in how heritability is included.
Because the static trait is constant over the lifetime, only one
heritability estimate is required for this framework (i.e. one for
each static trait) as genetic effects can be modelled in this trait.
An age–stage-structured model generally requires one heritabil-
ity estimate for each age. The two frameworks, age–stage-struc-
tured models and the framework discussed here, thus represent
different and complementary ways of thinking about eco-evolu-
tionary dynamics in structured populations. We believe that the
new perspective provided by separating static and dynamic traits
will be a useful addition to the expanding toolkit of demo-
graphic models, in particular for applications to eco-evolution-
ary dynamics.

Example 3 Effects of temperature on demographic outputs in
pike:
As an example of how conclusions can be affected by changing
heritability of the static trait, we again consider the pike model

introduced in the previous section (example 2). Here, the static
trait y is length at age 1 and the dynamic trait x is length. In
addition, the model includes temperature effects on each vital
rate (Appendix S3; Vindenes et al. 2014). We now ask how the
various demographic outputs depend on temperature, and
compare the results for two scenarios: one with zero heritabil-
ity of y (as in example 2), and one with a heritability of 0.6
(slope of relationship between parent and offspring values of
y; Fig. 4). Note that this heritability is not estimated from
data, as we do not have the pedigree, and is here assumed to
represent additive genetic effects. The model is female-only,
thus we implicitly assume that males and females have the
same life history in this example. In the model with a 0.6 heri-
tability, the intercept of the mean offspring length was
adjusted and variance in offspring length was reduced, so that
the offspring length distribution would be the same for the two
scenarios in the mean environment (temperature T ¼ 10:5�C).
In this example, we assume a negative effect of y on survival
(a = �0.05) in addition to the estimated effects on somatic
growth as shown in Fig. 3.
To evaluate the relative individual advantage of a large or

small y, we considered the reproductive value, measuring the
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Figure 4 An example of eco-evolutionary dynamics in the pike model including length at age 1 as a static trait y, in addition to length x and temperature T

(details in Appendix S3). A model with zero heritability of y (model 1) is compared to a model with a heritability of 0.6 (model 2), as shown in the upper

left panels. The resulting reproductive value functions for the two models are shown for the mean temperature. The lower left panel shows effects of

temperature on various demographic outputs in the two models, while the lower right panel shows the marginal stable trait distributions of y and x for

two temperatures, in the two models.
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(expected) contribution of an individual with a certain trait
combination to future population growth, relative to other
individuals (Fig. 4). Note that this is not a measure of fitness
in the sense that it predicts the increase of individuals of a
certain y value (having a genetic component) relative to oth-
ers, as for a given environment (temperature) all trait combi-
nations will eventually grow with the same rate k (Caswell,
2001). However, it does tell us which individuals and trait
combinations are the main drivers of the population dynamics
within each environment and heritability scenario. In the
model including heritability, individuals of large y (and x)
have the highest reproductive value, while the pattern is oppo-
site when the heritability of y is zero (shown in Fig. 4 for the
average temperature; these patterns are not qualitatively
affected by temperature changes).
The results (Fig. 4) also revealed a large effect of heritabil-

ity on the temperature effect on all demographic outputs,
even reversing the effect in many cases. The underlying mech-
anisms are complex because temperature has different effects
on each vital rate across body length. In short, with no heri-
tability of y any effect of this trait on fitness occurs through
survival and growth. Since the reproductive value is smaller
for individuals of large y in this case, the positive effects of
increased somatic growth do not outweigh the negative effects
on later survival. In the model including heritability, however,
y can also affect fitness through reproduction. Here, y will
have a positive effect through offspring length since larger
offspring tend to have a higher survival than smaller ones.
Together, the positive effects of y on reproduction (through
offspring size) and growth are in this case outweighing the
negative effects on survival. This example highlights the
potentially large role of heritability in eco-evolutionary
dynamics.
Finally, we considered the changes in the stable trait distri-

bution of x and y between two temperatures (cold and warm),
for the two heritability scenarios (Fig. 4). In both cases, the
distributions are changing with temperature, demonstrating
that even in a model without heritability the trait distribution
will shift. However, the effects are larger for the model includ-
ing heritability, as in this case the net effect of temperature
works in the same direction as the response to selection on
body size (because large y individuals are at an advantage in
the model including inheritance, the stable distribution is
shifted towards higher mean y). In other cases, however, it is
possible at least over shorter time periods that environmental
plastic changes acts in opposite direction to the effects of
selection, resulting in an apparently unchanging phenotypic
trait distribution even if the genotypic composition is altered
(Hairston et al. 2005).

DISCUSSION

Individual heterogeneity in life histories plays an important
role in both ecological and evolutionary processes, but can be
challenging to incorporate in models (Metcalf & Pavard 2007;
Smallegange & Coulson 2013). We have introduced a concep-
tual framework of IPMs/matrix models separating static and
dynamic traits, providing a flexible model for effects of heter-

ogeneity. We now discuss some challenges and future oppor-
tunities for applications of such a framework.
The framework represents a complementary approach to

age–stage-structured models, where individual effects are
more explicitly included through the static trait. Instead of
measuring a heritability at each age, only one measure is
required. In the parameterisation of IPMs, individual hetero-
geneity is often accounted for in the statistical estimation of
vital rates, by including individual random effects in mixed
models (Ellner & Rees 2007; Coulson, 2012). Using the
framework presented here, the random intercept (or slopes)
from such regressions could be used to define a static trait
representing individual ‘quality’, an approach that could be
particularly useful when the cause of individual heterogeneity
is unknown (note that this approach can also be used to
expand age/stage structured models to include individual het-
erogeneity). However, potential non-linear effects of the indi-
vidual trait on the vital rates as well as interactions with the
dynamic trait and environmental variables are then more dif-
ficult to include.
By separating static and dynamic traits effects of ontogeny

can be separated from genetic effects in IPMs. It is likely that
effects of heritability then become stronger than in IPMs
based on just one (dynamic) trait. For instance, in our pike
example, we found strong potential effects of heritability on
the estimated population responses to temperature (example
3, Fig. 4). The study of Traill et al. (2014) based on a model
with one dynamic trait did not find a strong effect, but applies
to a species with a very different life history than pike. Future
applications of the framework presented here could explore in
more detail under which circumstances evolution is expected
to explain more of the observed phenotypic changes, and for
which species. It can also be used to compare the results of
models that include a static and dynamic trait with models
that include only the dynamic trait.
Application of the framework with empirical data is chal-

lenging as with all demographic models, as the data require-
ments are high. Ideally there should be individual-based
information on all vital rates and traits considered (age, mor-
phological measures, location, etc). In addition, heritability
measures require at least a pedigree, and ideally genetic infor-
mation. Finally, environmental data on key variables are
needed to model and project consequences of environmental
change. Depending on the study system and area, environ-
mental data are often readily available, as are climatic models
providing scenarios for future changes (Collins et al. 2013).
Despite these challenges, the valuable insights provided by
demographic models into underlying mechanisms make the
effort worthwhile (Clutton-Brock & Sheldon 2010). We pro-
vided one example here based on a pike population, but even
these unique long-term data were not sufficient to estimate all
parts of the model. In place of empirical estimates, we made
biologically realistic assumptions and tested the effects of
varying these (survival effects through a and presence or
absence of heritability of size at age 1).
Since obtaining such detailed data on individual traits can

be highly expensive and difficult, it is important to know the
potential consequences of ignoring heterogeneity for parame-
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ters of interest. We have demonstrated that besides the popu-
lation growth rate k, a range of parameters (net reproductive
rate, two measures of generation time, demographic variance,
environmental variance) can be biased when underlying heter-
ogeneity is ignored, and provided a general method for evalu-
ating these consequences in specific cases. Our theoretical
example shows that these biases are generally more severe
when all of the structure is ignored, as expected, than if only
part of the heterogeneity is ignored. The empirical example
for pike demonstrated that the bias can increase with the
number of vital rates affected by the static trait, and with the
strength of the effect.
Whether or not a biased parameter is a problem, and how

much bias can be tolerated, will depend on the specific study
goals and on how much other results and conclusions rely on
the estimate. Generation time, for instance is an important
measure used by, e.g., the IUCN Red List (IUCN, 2014) as
one element in categorising the conservation status of a spe-
cies, including as a scaling factor for other measures. Thus, in
the worst case, the assigned conservation status of a species
could be wrong if the generation time estimate is biased by
ignoring heterogeneity. For cases where conclusions are sensi-
tive to demographic outputs like generation time, extra effort
to reveal hidden heterogeneity may therefore be warranted.
The direction of the bias in each parameter depends on the
underlying heterogeneity as well on as how much of it is
ignored. The methods presented here provide a general tool
for evaluating consequences of ignoring heterogeneity, also
for other parameters than those considered here. The key to
this approach is to define an unconditional model with respect
to the trait that is ignored.
We have also highlighted different uses of the terms heter-

ogeneity and eco-evolutionary dynamics in the literature, and
pointed out the importance of using the same definitions
when results of different studies are compared. The concep-
tual framework introduced here can be used both to evaluate
consequences of ignoring heterogeneity, as we have done in
this study, and to study consequences of changes in the
underlying population, for instance with respect to heteroge-
neity. In the latter case, it can be challenging to identify the
relevant comparison population (i.e. the uniform population
to which the heterogeneous population is compared). If the
comparison population is defined by having the same aver-
age vital rates as in the heterogeneous population, our
results regarding consequences of ignoring heterogeneity can
also be interpreted as effects of changing heterogeneity.
However, this may not always be the relevant comparison.
An interesting question regarding changing heterogeneity is
whether heterogeneity itself represents an adaptive property
of a life history and under which conditions this can evolve
(Kendall et al. 2011). In this case, the relevant homogeneous
comparison population would be that from which heteroge-
neity evolved. But is this a population where individuals had
vital rates equal to the vital rates at birth in the heteroge-
neous population, or where the vital rates were equal to the
average vital rates of the heterogeneous population, or some-
thing else? Separating adaptive from non-adaptive heteroge-
neity will also be a major challenge in such studies. Many
different life histories can result in the same optimum fitness

(Roff, 1996), that may also display different levels of hetero-
geneity.
Although it may seem obvious, we must also keep in mind

that individual members of a population tend to have much
in common, as after all they belong to the same species.
Demographic models ignoring heterogeneity often do a good
job of describing the population dynamics, at least for the
deterministic case in a constant environment (Caswell, 2001).
The extent to which individual life histories will differ from
the population average may also be restricted by phyloge-
netic constraints. An elephant, for instance, cannot suddenly
display a ‘mouse’ life history where many offspring are pro-
duced in one event. In most species, all individuals undergo
substantial changes over their lifetime due to ontogenetic
development and growth, and they often gain more experi-
ence as well. However, we do not yet have a detailed empiri-
cal understanding of how individual heterogeneity varies
across the tree of life (Metcalf & Pavard 2007), although
some differences are apparent. In species of indeterminate
growth, in particular, individual heterogeneity due to differ-
ent growth rates can be substantial (Zuidema et al. 2009; de
Valpine et al. 2014). Recently, Jones et al. (2014) published
patterns of age-specific mortality and fecundity for a range
of species across different taxa, revealing large differences
that we are only beginning to understand. Underlying hetero-
geneity can shape such patterns (Vaupel et al. 1979; Caswell,
2014), but may be more or less important for different spe-
cies. An interesting but challenging task would be to investi-
gate patterns of individual heterogeneity in life history across
species, as well as between different populations within spe-
cies.
Several other applications of the framework are possible. In

particular, it could be a powerful tool for investigating eco-
evolutionary responses to climatic changes, as illustrated with
our pike example. The framework allows key environmental
drivers to affect all of the vital rates in different ways, and to
interact with the dynamic and static traits. Moreover, conse-
quences of changing environmental variability can be consid-
ered as well as changes in the mean. This is particularly
relevant in cases where the environmental driver has differing
and non-linear effects on the vital rates and population
growth rate, which is likely common (Garc�ıa-Carreras & Reu-
man 2013). Another potential application of the framework is
to study the spread of invasive species, for instance to evalu-
ate whether they are able to cross barriers and how fast this
may happen. Finally, an interesting topic for future research
would be to evaluate impacts of mating system in structured
two-sex models (Schindler et al. 2013) under varying levels of
individual heterogeneity.

CONCLUSIONS

Individual heterogeneity in life histories shape ecological and
evolutionary processes, but is often ignored in models applied
to study eco-evolutionary dynamics. We propose that separat-
ing static and dynamic traits provides a conceptual general
framework for individual heterogeneity. The framework is
complementary to age–stage-structured models, but specifi-
cally includes individual-level properties and requires only one
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estimate for heritability of each static trait. Demographic
models are powerful tools to study the underlying mechanisms
of eco-evolutionary dynamics and other processes. The per-
spective introduced here can provide a useful extension to
these approaches, and we hope that future applications may
answer some of the many interesting questions that require a
detailed knowledge of the mechanisms shaping eco-evolution-
ary processes.
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