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Abstract: Background: Despite investigation, 95% of thyroid nodules are ultimately benign. Ra-
diomics is a field that uses radiological features to inform individualized patient care. We aimed to
evaluate the diagnostic utility of radiomics in classifying undetermined thyroid nodules into benign
and malignant using ultrasonography (US). Methods: A diagnostic test accuracy systematic review
and meta-analysis was performed in accordance with PRISMA guidelines. Sensitivity, specificity,
and area under curve (AUC) delineating benign and malignant lesions were recorded. Results:
Seventy-five studies including 26,373 patients and 46,175 thyroid nodules met inclusion criteria.
Males accounted for 24.6% of patients, while 75.4% of patients were female. Radiomics provided a
pooled sensitivity of 0.87 (95% CI: 0.86–0.87) and a pooled specificity of 0.84 (95% CI: 0.84–0.85) for
characterizing benign and malignant lesions. Using convolutional neural network (CNN) methods,
pooled sensitivity was 0.85 (95% CI: 0.84–0.86) and pooled specificity was 0.82 (95% CI: 0.82–0.83);
significantly lower than studies using non-CNN: sensitivity 0.90 (95% CI: 0.89–0.90) and specificity
0.88 (95% CI: 0.87–0.89) (p < 0.05). The diagnostic ability of radiologists and radiomics were compara-
ble for both sensitivity (OR 0.98) and specificity (OR 0.95). Conclusions: Radiomic analysis using US
provides a reproducible, reliable evaluation of undetermined thyroid nodules when compared to
current best practice.

Keywords: thyroid nodules; radiomics; radiogenomics; ultrasound; personalized medicine

1. Introduction

Thyroid nodules occur commonly within the general population, with studies suggest-
ing a prevalence of 20–67%, with an increased propensity in females and the elderly [1,2].
Increased access to healthcare and availability of modern imaging techniques such as
ultrasonography (US) have led to the markedly increased detection of thyroid nodules [3].
The American Thyroid Association (ATA), British Thyroid Association (BTA), and Euro-
pean Society for Medical Oncology (ESMO) guidelines recommend US as the primary
imaging modality for the assessment of thyroid nodules [4–6]. Several classification sys-
tems (e.g., ATA, BTA, and Thyroid Imaging Reporting and Data System (TIRADS)) are
utilized by radiologists to stratify the risk of malignancy for each thyroid nodule based
on US features [4,5,7]. These systems classify lesions on a scale ranging from benign to
malignant based on sonographic parameters such as size, echogenicity, degree of margin
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irregularity, nodule height to width ratio, extra nodular extension, and calcification [4,5,7].
Suspicious nodules then proceed to fine-needle aspiration cytology (FNAC), where they
are reassessed and graded as non-diagnostic, benign, atypical, suspicious for malignancy,
or definitively malignant, using cytological reporting systems such as the Bethesda or Thy
classification systems [8,9]. At present, patients with undetermined nodules following
FNAC undergo surgery in order to obtain a definitive histological diagnosis, with 95% of
nodules subsequently being stratified as “benign” [10], leading to the conceptualization that
the present paradigm is guilty of overexposing patients to unnecessary over-investigation
and overtreatment. Thus, it is vital for translational research efforts to focus on means of ac-
curately screening and sub stratifying detected thyroid nodules into benign and malignant
categories [11].

Precision medicine builds on the mantra that every patient, cancer, and disease process
possesses its own characteristics with individualized diagnoses, prognoses, and manage-
ment strategies. The clinical application of artificial intelligence (AI) has advanced the
field of precision medicine through the exploration of hypotheses in large data sets [12].
Radiomics (or radiogenomics) is a rapidly evolving field that uses AI to extract vast quanti-
ties of data from medical imaging [13]. It represents a quantitative approach to medical
imaging through mathematical extraction of the spatial distribution of signal intensities
and pixel interrelationships, quantifying textural information by using AI analysis meth-
ods. Various radiomic methods exist at present, including radiomic AI, machine learning
(ML), convolutional neural networks (CNN), and other deep-learning techniques. The
radiomic process involves numerous steps incorporating image acquisition, image segmen-
tation, quantitative feature extraction, computational analysis, and finally, computational
modeling [14]. Through this use of vast amounts of data, radiomics provides a quick, repro-
ducible, and objective analysis that can inform individualized diagnostics, sub stratification,
prognostication, and future management of disease [13,14].

Due to the ever-increasing number of thyroid nodules detected, there is significant
interest within the literature to develop novel strategies to inform diagnostics within the
clinical workup of thyroid nodules [15]. Current data suggests radiomic imaging analysis
may be capable of accurately stratifying thyroid lesions into benign and malignant based
on data captured using sonographic imaging. Accordingly, the aim of the present study
was to determine whether radiomic imaging analysis can provide an accurate evaluation
of thyroid nodules undergoing diagnostic US evaluation.

2. Materials and Methods

A systematic review was performed in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [16] and in accordance
with the Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy [17].
Local institutional ethical approval was not required.

2.1. Population, Intervention, Comparison, Outcomes (PICO)

Population: Patients who have undergone preoperative US and definitive thyroid
nodule diagnosis as benign or malignant.

Intervention: Radiomic analyses applied to preoperative US used to inform whether
thyroid nodules are benign or malignant.

Comparison: The discriminative ability of radiomics compared to confirmation of
benign and malignant nodules. Nodules were determined as benign by either cytological
or histological means, while malignancy was confirmed by histological analysis only.

Outcomes: Primary outcomes included the evaluation of the clinical utility of preopera-
tive US imaging to stratify thyroid nodules as either benign or malignant. Generated pooled
sensitivity, specificity, and receiver operating characteristic (ROC) curve analyses will be
representative of our primary outcomes. Secondary outcomes include comparing the ability
of different radiomic methods to differentiate such nodules and to compare radiologists
and radiomics in correctly discriminating benign versus malignant thyroid nodules.
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2.2. Search Strategy

An electronic search of the PubMed Medline, EMBASE, and Scopus databases was
performed on 16 January 2021 for relevant studies. This search was performed for the
following headings: (Thyroid Cancer) and (Radiomics) linked using the boolean operator
“AND”. Included studies were limited to those published in the English language and
were not restricted based on the year of publication. All duplicate studies were manually
removed before titles were screened, and studies deemed appropriate had their abstracts
reviewed. Studies remaining had their full texts reviewed for eligibility.

2.3. Inclusion and Exclusion Criteria

Studies meeting the following inclusion criteria were included: (1) Studies with thyroid
nodules confirmed as benign or malignant following US imaging; (2) imaging of tumors had
to have been performed pre-diagnosis; (3) either stated study numbers of true positive, true
negative, false positive, false negative, sensitivity, specificity, or accuracy data in relation
radiomic tests or the ability to calculate these figures based on study data. In some cases,
sensitivity and specificity were calculated from ROC curve analyses. Studies comparing the
diagnostic ability of radiologists with radiomics were also included. Studies meeting any
of the following exclusion criteria were excluded from this study: (1) studies not providing
radiomic validation or “test” data, (2) studies outlining the diagnostic ability of radiomics
differentiating benign and malignant lesions in other cancers (e.g., breast carcinoma, skin
cancers, etc.), (3) studies with no full English text, (4) review articles, (5) studies including
less than five patients in their series or case reports, and (6) editorial articles.

2.4. Data Extraction and Quality Assessment

This literature search was performed by two independent reviewers (E.F.C. and S.O.)
using the aforementioned search strategy. Where discrepancies in opinion occurred between
the reviewers, a third reviewer was asked to arbitrate (M.G.D.). As described, duplicate
studies were removed. Both reviewers reviewed all retrieved manuscripts to ensure all
inclusion criteria were met before extracting the following data: (1) first author name,
(2) year of publication, (3) study design, (4) country, (5) level of evidence, (6) study title,
(7) number of patients, (8) number of benign and malignant nodules confirmed though
cytologic or histopathologic analysis, (9) sensitivity, specificity, and area under curve (AUC)
scores from the ROC curve analyses obtained from radiomic “test” data and (10) sensitivity,
specificity, and AUC scores from the ROC analyses from radiologists within studies where
available. Sensitivity and specificity were directly extracted from tables and study text.
When not provided as discrete data in tables or the text, specific estimates of sensitivity
and specificity were calculated from ROC curves with the most accurate and appropriate
sensitivity prioritized. Where studies tested the diagnostic ability of multiple radiomic
methods (i.e., CNN, ML, etc.), only data for the best performing radiomic method within
that study was extracted. Similarly, where studies detailed data on multiple radiologists’
ability to discriminate benign versus malignant nodules, data from the best performing
radiologist from that particular study was included. Appraisal of the quality of each
study was performed using the radiomics quality score (RQS), as outlined previously by
Lambin et al. [18].

2.5. Statistical Analysis

Statistical analysis was performed according to the Cochrane guidelines. Pooled
sensitivity and specificity and summary ROC analysis were calculated for included studies
to demonstrate to convey the diagnostic test performance of radiomics in differentiating
malignant thyroid nodules from benign thyroid nodules. We then performed a comparison
between studies using CNNs (incorporating both CNNs and other deep learning methods)
versus those using either ML or Radiomic AI analyses (together termed non-CNNs). For
comparing radiologist and radiomic diagnostic test accuracy, sensitivity and specificity
data were expressed as dichotomous data and reported as odds ratios (ORs) with 95%
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confidence intervals (CIs) following estimation using the Mantel–Haenszel method using
random effects. The symmetry of funnel plots was used to assess publication bias. Statistical
heterogeneity was determined using I2 statistics. Statistical significance was determined to
be p < 0.05. Statistical analysis was performed using Review Manager (RevMan), Version 5.4
(Nordic Cochrane Centre, Copenhagen, Denmark).

3. Results
3.1. Literature Search

The initial search of PUBMED, SCOPUS, and EMBASE resulted in a total of 537 studies
identified. Following the removal of duplicates, 488 studies remained. These studies were
then screened by title and abstract for relevance, after which 119 studies remained—all
had their full text analyzed for eligibility. Finally, 75 studies remained for inclusion in the
analysis as depicted by Figure 1 [19–93].
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Figure 1. PRISMA flow diagram detailing the systematic search process. Figure 1. PRISMA flow diagram detailing the systematic search process.

3.2. Study Characteristics

Overall, 75 studies arising from 15 different countries met inclusion and exclusion
criteria (19–93), 8 studies were prospective in nature (25, 31, 38, 55, 57, 81, 83, 84) while the
remaining 67 studies were retrospective. Of the included studies, 46 used convolutional
neural networking (CNN) to analyse thyroid nodule US images (19, 25, 26, 29, 30, 33, 36–38,
40–45, 47, 48, 50–55, 57, 59, 63–65, 67–71, 73, 74, 77, 79, 81–84, 89–93), 29 studies used non
CNN methods (20–24, 27, 28, 31, 32, 34, 35, 39, 46, 49, 56, 58, 60–62, 66, 72, 75, 76, 78, 80,
85–88) (Table 1).
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Table 1. Study characteristics and demographics.

Author Year Study Type (LOE) Radiomics Country US Device Brand N Patients Male Female Mean Age

Zhou 2020 RC (III) CNN China Esaote/Phillips 105 25 80 47.9
Nguyen 2019 RC (III) CNN Korea NS 61 NS NS NS

Wei 2020 RC (III) CNN China NS 2489 614 1875 45.3
Park 2019 PC (II) CNN Korea Samsung 265 52 213 47.1

Thomas 2020 RC (III) CNN USA 4 brands 103 NS NS NS
Wei (2) 2020 RC (III) Non-CNN China 5 brands NS NS NS 47

Liu 2019 RC (III) CNN China Vinno 131 54 77 46.7
Stib 2020 RC (III) CNN USA Siemens/GE/Phillips 571 234 337 52.9
Ye 2020 RC (III) CNN China 5 brands 166 46 100 44.6
Ma 2020 RC (III) CNN China NS 211 34 177 NS
Koh 2020 RC (III) CNN Korea 11 brands 200 49 151 49.6

Kwon 2020 RC (III) CNN Korea Phillips/Hitachi 762 NS NS NS
Kim 2019 RC (III) Non-CNN Korea Samsung 106 29 77 48
Zhao 2020 RC (III) Non-CNN China Phillips/Hitachi 174 44 130 45
Qin 2019 RC (III) CNN China NS 233 NS NS NS
Zhu 2021 RC (III) CNN China 4 brands 102 0 102 54.8

Liu (2) 2019 RC (III) CNN China GE 376 NS NS NS
Xia 2019 PC (II) CNN China Samsung 171 32 139 47.2

Zhao 2021 RC (III) Non-CNN China SuperSonic 102 25 77 50.6
Lee 2019 RC (III) CNN Korea Phillips/Hitachi 519 93 426 47.5

Ataide 2020 RC (III) Non-CNN Germany NS 99 NS NS NS
Chen 2020 RC (III) Non-CNN China GE/Hitachi 1480 302 1178 45.6

Zhu (2) 2021 RC (III) CNN China Phillips/GE/Toshiba 261 64 197 52
Shi 2020 RC (III) CNN China Esaote/Hitachi/Toshiba NS NS NS NS

Barczyński 2020 PC (II) CNN Poland Samsung 50 9 41 47.5
Zhang 2020 RC (III) Non-CNN Korea Siemens 303 59 244 46.4
Wei (3) 2020 RC (III) Non-CNN China Samsung 181 35 146 46

Colakoglu 2019 RC (III) Non-CNN Turkey GE 198 48 150 44.5
Park 2021 RC (III) Non-CNN Korea Phillips 325 61 264 50.1

Nguyen 2020 RC (III) CNN Korea NS 61 NS NS NS
Sun 2020 RC (III) CNN China GE 338 134 416 43.8

Peng 2021 PC (II) CNN China 13 brands 2775 726 2049 42.2
Liu 2021 RC (III) CNN China Siemens 163 48 115 44.3
Han 2021 RC (III) CNN Korea Samsung 372 NS NS NS
Shin 2020 RC (III) CNN Korea Samsung 340 79 261 47.2

Wang 2019 RC (III) CNN China GE/Phillips 276 53 223 46.3
Zhu 2019 RC (III) CNN China 4 brands 467 97 370 45.3

Zhang (2) 2019 RC (III) Non-CNN China Hitachi 2032 695 1337 42.3
Ko 2019 RC (III) CNN Korea Phillips/Hitachi 150 23 127 49.7

Song 2019 RC (III) CNN Korea Toshiba 100 NS NS NS
Li 2019 RC (III) CNN China Phillips/Toshiba/GE 154 34 120 51

Wildman-Tobriner 2019 RC (III) Non-CNN UK Siemens/GE/Phillips 94 21 73 52.6
Yu 2017 PC (II) CNN China Phillips/Siemens 50 9 41 48.4

Buda 2019 RC (III) CNN USA Siemens/GE/Phillips 91 NS NS 52.3
Raghavendra 2018 RC (III) Non-CNN India 4 brands 344 NS NS 44.1

Li 2018 RC (III) CNN China NS 300 53 247 NS
Ma 2017 RC (III) CNN china 7 brands 4782 NS NS 52

Raghavendra 2017 RC (III) Non-CNN India GE 242 63 179 44.1
Zhu 2013 RC (III) CNN China Siemens 618 161 528 47.7
Choi 2017 PC (II) Non-CNN Korea Samsung 89 18 71 43.5
Gao 2017 RC (III) CNN China Phillips/GE 342 70 272 44.8
Choi 2015 RC (III) CNN Korea Phillips 85 24 61 52
Chi 2017 RC (III) CNN Canada Toshiba 61 NS NS NS

Jeong 2019 PC (II) CNN Korea Samsung 76 NS NS NS
Acharya 2012 RC (III) Non-CNN Singapore NS 20 10 10 NS

Liang 2018 RC (III) Non-CNN China Phillips 95 20 75 43.2
Prochazka (2) 2019 RC (III) Non-CNN Czechia Phillips/GE 60 11 49 55.7

Song 2015 RC (III) Non-CNN China GE 147 32 115 NS
Ardakani 2015 RC (III) Non-CNN Iran Medison 60 NS NS NS

Guan 2019 RC (III) CNN China NS 399 NS NS NS
Xia 2017 RC (III) Non-CNN China Siemens 187 36 151 50.8
Yoo 2018 PC (II) CNN Korea Samsung 50 10 40 43.2

Tsantis 2009 RC (III) Non-CNN Greece Phillips 85 NS NS NS
Liu 2008 RC (III) Non-CNN USA NS 37 NS NS NS

Acharya 2013 RC (III) Non-CNN Italy Esaote 20 10 10 52.8
Acharya (2) 2012 RC (III) Non-CNN Italy Esaote 20 10 10 52.8

Acharya 2011 RC (III) Non-CNN Italy Esaote 20 10 10 52.8
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Table 1. Cont.

Author Year Study Type (LOE) Radiomics Country US Device Brand N Patients Male Female Mean Age

Kweon Seo 2017 RC (III) CNN Korea NS 230 51 179 48.7
Ardakani (2) 2015 RC (III) CNN Iran Medison 60 NS NS NS

Wu 2016 RC (III) CNN China Phillips 970 214 756 46.7
Cao 2019 RC (III) Non-CNN China NS 120 NS NS NS

Wang (2) 2020 RC (III) CNN China NS 1040 NS NS NS
Sun (2) 2020 RC (III) CNN China NS 245 NS NS NS

Reverter 2019 RC (III) Non-CNN Spain GE 300 45 255 55.5
Gitto 2019 RC (III) Non-CNN Italy Samsung 62 12 50 60

NS: not specified, LOE: level of evidence, RC: retrospective cohort, PC: prospective cohort, CNN: convolutional
neural network, non-CNN: analysis performed using a method other than a convolutional neural network,
GE: General Electric.

3.3. Clinicopathological Characteristics

Overall, there were 28,373 patients with 46,175 thyroid nodules included from the
75 studies. Males accounted for 24.6% of patients, while 75.4% of patients were female.
There were 51 studies reporting mean patient age; within these studies, mean patient age
was 48.3 years (range: 42.2–69.0 years) (Table 1).

Overall, 22,814 (49.4%) nodules were benign while 23,361 (50.6%) of nodules were
malignant. Within included studies, 35 reported mean nodule size; mean nodule size
in these studies was 19.7 mm (range 8.3–31.7 mm). We found 34 studies provided a
breakdown of malignant nodules by subtype. Papillary thyroid carcinoma (PTC) was the
most prevalent subtype of malignant thyroid nodule within these studies, representing
94.7% of malignant thyroid nodules (Table 2).

Table 2. Study characteristics and demographics.

Author Year N Nodules Mean Nodule
Size (mm)

N Benign
Nodules

N Malignant
Nodules

Papillary
Ca

Follicular
Ca

Medullary
Ca

Other Thyroid
Ca

Zhou 2020 105 NS 75 30 NS NS NS NS
Nguyen 2019 61 NS 11 50 NS NS NS NS

Wei 2020 2489 NS 1021 1468 1442 11 15 0
Park 2019 286 16.2 130 156 149 6 1 0

Thomas 2020 103 NS 70 33 24 3 2 4
Wei (2) 2020 7560 NS 3063 4587 NS NS NS NS

Liu 2019 131 16.1 59 72 72 0 0 0
Stib 2020 651 NS 500 151 NS NS NS NS
Ye 2020 209 NS 109 100 NS NS NS NS
Ma 2020 846 NS 360 486 NS NS NS NS
Koh 2020 200 22.4 102 98 97 0 0 1

Kwon 2020 762 NS 325 437 437 0 0 0
Kim 2019 218 12 132 86 86 0 0 0
Zhao 2020 177 21.8 96 81 81 0 0 0
Qin 2019 248 NS 115 133 NS NS NS NS
Zhu 2021 NS NS 57 45 NS NS NS NS

Liu (2) 2019 450 NS 128 322 NS NS NS NS
Xia 2019 180 10.3 85 95 91 4 0 0

Zhao 2021 106 17.3 73 33 NS NS NS NS
Lee 2019 589 12.9 193 396 395 1 0 0

Ataide 2020 99 NS 17 82 NS NS NS NS
Chen 2020 1558 NS 347 1211 NS NS NS NS

Zhu (2) 2021 1032 NS 502 530 NS NS NS NS
Shi 2020 1937 NS 1032 905 NS NS NS NS

Barczyński 2020 NS 30.5 40 10 10 0 0 0
Zhang 2020 365 18.3 179 186 168 11 7 0
Wei (3) 2020 204 15 112 92 90 1 0 1

Colakoglu 2019 235 NS 133 102 102 0 0 0
Park 2021 325 21 257 68 NS NS NS NS

Nguyen 2020 NS NS 11 50 NS NS NS NS
Sun 2020 550 14 128 422 NS NS NS NS
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Table 2. Cont.

Author Year N Nodules Mean Nodule
Size (mm)

N Benign
Nodules

N Malignant
Nodules

Papillary
Ca

Follicular
Ca

Medullary
Ca

Other Thyroid
Ca

Peng 2021 2775 NS 2472 303 299 4 0 0
Liu 2021 175 11.9 67 108 103 5 0 0
Han 2021 454 17.8 287 167 161 4 2 0
Shin 2020 348 31 252 96 0 96 0 0

Wang 2019 NS 18.5 95 181 NS NS NS NS
Zhu 2019 467 8.3 128 339 NS NS NS NS

Zhang (2) 2019 2064 NS 1314 750 NS NS NS NS
Ko 2019 150 12.9 50 100 NS NS NS NS

Song 2019 100 NS 50 50 NS NS NS NS
Li 2019 154 NS 70 84 NS NS NS NS

Wildman-Tobriner 2019 100 27.1 85 15 NS NS NS NS
Yu 2017 50 NS 33 17 16 0 1 0

Buda 2019 99 27 84 15 NS NS NS NS
Raghavendra 2018 344 NS 288 56 NS NS NS NS

Li 2018 NS NS 50 250 250 0 0 0
Ma 2017 8148 25 4126 4022 NS NS NS NS

Raghavendra 2017 242 NS 211 31 NS NS NS NS
Zhu 2013 689 13.3 265 465 NS NS NS NS
Choi 2017 102 12 59 43 43 0 0 0
Gao 2017 342 12.1 103 239 NS NS NS NS
Choi 2015 99 NS 21 78 77 1 0 9
Chi 2017 NS NS 11 50 NS NS NS NS

Jeong 2019 100 17 56 44 43 1 0 0
Acharya 2012 20 NS 10 10 7 1 0 2

Liang 2018 95 16 43 52 51 1 0 0
Prochazka (2) 2019 60 NS 40 20 NS NS NS NS

Song 2015 155 NS 76 79 NS NS NS NS
Ardakani 2015 60 NS 26 34 NS NS NS NS

Guan 2019 399 NS 190 209 209 0 0 0
Xia 2017 203 24.8 114 89 NS NS NS NS
Yoo 2018 117 15 67 50 50 0 0 0

Tsantis 2009 85 NS 54 31 NS NS NS NS
Liu 2008 41 NS 21 20 18 0 0 2

Acharya 2013 20 31.7 10 10 7 1 0 2
Acharya (2) 2012 20 31.7 10 10 7 1 0 2

Acharya 2011 20 31.7 10 10 7 1 0 2
Kweon Seo 2017 230 29.4 191 39 0 39 0 0

Ardakani (2) 2015 60 NS 26 34 NS NS NS NS
Wu 2016 970 NS 463 507 487 12 4 4
Cao 2019 120 NS 73 47 NS NS NS NS

Wang (2) 2020 3120 NS 1393 1841 NS NS NS NS
Sun (2) 2020 245 NS 145 100 NS NS NS NS

Reverter 2019 300 29.8 165 135 112 15 3 5
Gitto 2019 62 18 48 14 NS NS NS NS

NS: not specified, Ca: cancer.

3.4. Diagnostic Ability of Radiomics

The mean AUC calculated from independent ROC curve analyses within included
studies was 0.88 (range: 0.61–1.00). Individual study sensitivity and specificity for deter-
mining malignant versus benign thyroid nodules is demonstrated in Figure 2A. Pooled
sensitivity for radiomics in distinguishing thyroid nodules was 0.87 (95% CI: 0.86–0.87).
Pooled specificity for radiomics in distinguishing thyroid nodules was 0.84 (95% CI: 0.84–0.85).
A combined ROC curve for radiomics of thyroid nodules by ultrasound sonography is
demonstrated in Figure 2B.
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Figure 2. (A) Overall sensitivity and specificity of radiomics. (B) Receiver operating characteristic
(ROC) curve of malignant versus benign thyroid nodules based on radiomic analyses.

3.5. Comparison of CNN versus Non-CNN Radiomics

For studies using CNN pooled sensitivity was 0.85 (95% CI: 0.84–0.86) and pooled
specificity was 0.82 (95% CI: 0.82–0.83). Pooled sensitivity 0.90 (95% CI: 0.89–0.90) and
specificity 0.88 (95% CI: 0.87–0.89) was significantly higher in studies using non-CNN
radiomics (p < 0.05) (Figure 3A,B). ROC curve comparison between CNN and non-CNN
methods is outlined in Figure 3C.
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3.6. Comparison of Radiomic Analysis of Thyroid Nodule US versus Radiologists Analysis of
Thyroid Nodule US

Within the studies included in the meta-analysis, 35 studies provided a comparison
between radiologists and radiomics in differentiating malignant versus benign thyroid
nodules using thyroid US. Radiomics demonstrated similar sensitivity for detection of
malignancy within a given thyroid nodule (OR 0.98, 95% CI 0.76–1.26) when compared
with radiologists (Figure 4A). Radiomics also demonstrated similar specificity (OR 0.93,
95% CI 0.72–1.20) when compared with radiologists for this purpose (Figure 4B).
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4. Discussion

To the best of our knowledge, the current systematic review and meta-analysis is the
first to evaluate the diagnostic test accuracy of radiomic imaging analysis in differentiating
malignant from benign thyroid nodules using US. Due to the increasing prevalence of
thyroid nodules now detected within the general population and the rising incidence of
thyroid malignancy (which has tripled since 1975), accurate risk stratification is paramount
to the enhancement of clinical outcomes [3]. The most important finding in this analysis
of over 28,000 patients possessing over 46,000 thyroid nodules is the data supporting the
utility of radiomic analysis in correctly stratifying undetermined thyroid nodules correctly
into benign and malignant lesions (sensitivity: 0.87, specificity: 0.84). This is promising as
we look to enhance diagnostics in this field of oncology, all the while promoting minimally
invasive techniques in order to reduce morbidity and mortality for prospective patients.
These results come at the timely promotion of precision oncology as a rapidly evolving
field, which manipulates individual patient, cancer, or disease process characteristics in
order to develop a personalized diagnosis, prognosis, and treatment strategies [12]. Data
from this analysis support radiomic imaging analysis using US as a means of quantification
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of malignancy in thyroid nodules, without exposing patients to the risks associated with
invasive FNAC sampling or surgical specimen assessment. For some patients, the use of
radiomics could possibly circumvent the need for FNAC and surgical resection, providing
a potentially more cost and time-efficient assessment of thyroid nodules than what is
currently practiced [20,94].

Results of this analysis indicate that radiomics is a novel avenue worth exploring
in the differentiation of benign and malignant thyroid lesions. CNN provided a pooled
sensitivity of 85% and specificity of 82% compared to a pooled sensitivity of 90% and pooled
specificity of 88% in non-CNN. CNN is designed as an automated means to adaptively learn
spatial hierarchies of features through backpropagation by using multiple building blocks:
convolution layers, pooling layers, and fully connected layers of data processing [95]. CNN
has powerful pattern recognition capabilities due to the fact that they can approximate any
continuous function, given an appropriate network structure [96]. In neural networking,
high variance gives networks the ability to learn complex patterns, although it also runs
the risk of overfitting since models will learn peculiarities, or noise, from a data set [96].
The noise phenomenon incorporates features into the model which are not generalizable
outside of the training set [95]. This makes the model appear to perform well in training
but fail to perform in a true clinical environment. Such overfitting in the setting of CNN
has been noted in studies evaluating papillary thyroid nodules on US [44]. The margin
between benign thyroidal tissue and malignant tissue may be unclear or blurry on US
imaging, with significant overlap between cancerous and normal or benign regions. Thus,
it is then challenging for the CNN model to perform accurate textural feature extraction
of the malignant tissue, possibly contributing to poor model performance [44]. Ideally,
a CNN should have a large training set to mitigate the risk of overfitting, but this is not
always feasible due to cost, time, and other factors limiting available data [95]. Non-
CNN incorporates a number of methods such as support vector machines (SVM), random
forest (RF), k-nearest neighbor (k-nn), and Bayesian classifiers [97]. Each method has
its own strengths and weakness. For example, SVM classifiers are based on decision
planes that define decision boundaries. SVM is often used for the principle of structural
risk minimization, which allows robust analysis of test data without the need for a large
training set through margin maximization [98]. Another popular ML method is RF, which
consists of a large network of individual decision trees that allows for ensemble learning,
providing the benefit of human-readable data and the ability to adjust the classifiers’
decision trees where appropriate [97]. Ultimately, the randomness of this model makes it
robust, generalizable, and less prone to overfitting, although large numbers of decision trees
make this approach more time-consuming. Within our analysis, small-data and overfitting
within individual studies may have contributed to the overall worse performance of CNN
versus non-CNN. Based on the results of this meta-analysis non-CNN radiomics should be
the preferred methods for evaluating the risk of malignancy in an undetermined thyroid
nodule using US.

For detecting malignancy within a given thyroid nodule radiomic methods had similar
sensitivity (0.98, 95% CI 0.76–1.26) and specificity (0.93, 95% CI 0.72–1.20) when compared
with radiologists. However, acknowledgment for the strengths maintained by radiologists
compared to radiomics: At present, radiomic models are dependent on high-quality image
acquisition and segmentation by radiologists. Without good imaging data to analyze, the
radiomic model is unable to correctly stratify nodules [99]. Radiologists also maintain
the innate ability to incorporate the global context of patients and the ability to maintain
subjective associations based on experience, which current radiomic models are unable to
perform. Radiomics can face issues with model fitting, poor input data, and subsequent
suboptimal performance [100]. However, human assessment of medical imaging and, in
particular, US suffers from significant inter-observer variability [101,102]. Radiomics, on the
other hand, provides the benefit of an objective, quick, and reproducible analysis with the
ability to analyze features of the nodule that are both visible to the radiologist and textural
features occult to human perception [13,14]. Studies have attempted to blend the strengths
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of both radiologists and radiomic models to form computer-assisted diagnosis (CAD) tools.
While CAD was not evaluated within the confines of the current meta-analysis, CAD has
shown to be of benefit in the evaluation of thyroid nodules within the literature [39].

The present analysis is subject to a number of limitations. Primarily, radiomics involves
a broad spectrum of analysis methods, ranging from the radiomic AI methods to deep-
learning techniques; we have included all of these under the umbrella term “radiomics”
despite variance in their reproducibility of data [103]. Secondly, the authors wish to
highlight the inter-user variability of US due to this imaging acquisition being operator
dependent. Radiomic analyses are dependent on high-quality images of thyroid nodules
being obtained and nodules being correctly selected by ultra-sonographers. Thirdly, when
extracting data, we selected the highest performing radiomic method within any given
study. This may have led to over-estimation of overall sensitivity and specificity for
radiomic evaluation of thyroid nodules on US as a whole. To combat this potential bias
when comparing radiomics to radiologists, we selected data for the highest performing
radiologist. Finally, prospective validation evaluating the utility of AI in the field of
radiological diagnostics typically necessitates buying from large, international corporations
in order to finance developing the evidence base in this field.

5. Conclusions

In conclusion, this meta-analysis of current evidence demonstrates an almost 90%
reliability of radiomic imaging analyses to US in detecting malignancy within undetermined
thyroid nodules. At present, radiomic analyses demonstrate equal diagnostic sensitivity
and specificity of identifying malignant lesions when compared to radiologists. Within the
field of radiomics, at present, non-CNN methods may be considered the preferred radiomic
means of classifying thyroid nodules. Based on this meta-analysis, AI offers promising
results as an avenue to be explored as we look to enhance the diagnostic accuracy and
risk stratification of thyroid nodules in the era of personalized medical and oncological
patient care. We advocate for rigorous experimentation in this field, given the potential for
this technology to bolster diagnostic workflows, enhance clinical outcomes, and minimize
patient morbidity; all while mitigating associated healthcare costs.
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