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Abstract

Background: Genome and transcriptome sequencing applications that rely on variation in sequence depth can be
negatively affected if there are systematic biases in coverage. We have investigated patterns of local variation in
sequencing coverage by utilising ultra-deep sequencing (>100,000X) of mtDNA obtained during sequencing of two
vertebrate genomes, wolverine (Gulo gulo) and collared flycatcher (Ficedula albicollis). With such extreme depth,
stochastic variation in coverage should be negligible, which allows us to provide a very detailed, fine-scale picture
of sequence dependent coverage variation and sequencing error rates.

Results: Sequencing coverage showed up to six-fold variation across the complete mtDNA and this variation was
highly repeatable in sequencing of multiple individuals of the same species. Moreover, coverage in orthologous
regions was correlated between the two species and was negatively correlated with GC content. We also found a
negative correlation between the site-specific sequencing error rate and coverage, with certain sequence motifs
“CCNGCC” being particularly prone to high rates of error and low coverage.

Conclusions: Our results demonstrate that inherent sequence characteristics govern variation in coverage and
suggest that some of this variation, like GC content, should be controlled for in, for example, RNA-Seq and
detection of copy number variation.
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Background
Many applications of high throughput sequencing, such as
expression profiling [1], splicing inference [2], copy num-
ber variation (CNV) identification [3] and repeat element
annotation [4] rely on observed variation in the depth of
sequencing coverage within the genome or transcriptome.
In addition, variance in coverage is of importance to de-
novo assembly pipelines and read mapping strategies,
since local regions of unusually high coverage may be
interpreted as duplications or masked as repeat elements
[5,6]. As a consequence, applications such as these may
be impaired by random fluctuation and systematic bias
in sequencing coverage across the genome. However,
the details and extent of these effects are currently not
well understood.
It is known that the PCR step involved in sequencing-

by-synthesis methods introduces coverage bias related
to GC content [7-9], possibly due to the formation of

secondary structures of single stranded DNA [10]. Such
GC dependent bias is seen on a wide variety of scales
ranging from individual nucleotides to complete sequen-
cing reads and even large (up to 100 kb) genomic regions
[11]. Systematic bias could also be introduced during
the DNA fragmentation step or caused by DNA isola-
tion efficacy [12], local DNA structure, variation in se-
quence quality and map-ability of sequence reads [13].
Some efforts have been made to control for these biases
during downstream computational analyses in various
NGS (next generation sequencing) applications [13-16],
and laboratory protocols have also been developed to
reduce this problem [17].
In addition to variation in coverage, there may be se-

quence dependent variation in nucleotide specific error
rates. Such systematic patterns of sequencing errors can
also have consequences for downstream applications as
errors may be taken for low frequency SNPs, even when
sequencing coverage is high [18]. GC rich regions and
sites close to the ends of sequence reads typically show
elevated errors rates [19] and it has also been shown that
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certain sequence patterns, especially inverted repeats
and “GGC” motifs are associated with an elevated rate
of Illumina sequencing errors [10]. Such sequence spe-
cific miscalls probably arise due to specific inhibition of
polymerase binding [19]. Homopolymer runs cause prob-
lems for technologies utilising a terminator free chemistry
(such as Roche 454 and Ion Torrent), and specific error
profiles exist for other sequencing technologies as well
[20]. The effects of such technology specific error patterns
on sequencing coverage and read assembly algorithms
remains poorly described. As sequencing reads with
high error rates are more likely to be removed during
trimming stages, regions with high error rates may also
get decreased sequencing coverage [21].
Mitochondrial DNA (mtDNA) is abundant in most

cell types and whole genome, exome or transcriptome
data from high throughput sequencing can therefore be
efficiently mined for complete mitochondrial sequences,
as shown in a number of recent studies [22-29]. Due to
the haploid nature of the mitochondrial genome, such
data is also comparatively easy to assemble and analyse.
Here we take advantage of ultra-deep sequencing of
mtDNA from two vertebrate species to evaluate fine
scale variation in coverage and patterns of sequencing
errors. We utilise data from several independently se-
quenced individuals in order to describe systematic
coverage bias across the mtDNA sequence. Due to the
extreme depth of our sequencing data (>100,000X), it is
possible to provide very precise estimates of coverage
bias and sequencing error rates. Furthermore, a com-
parison in sequence coverage between two distantly re-
lated species (one bird and one mammal) allows us to
evaluate to what extent sequencing bias is conserved
across evolutionary distant lineages.

Results and discussion
Sequencing the wolverine mitochondrial DNA
About 20 million genome sequence reads from a single
individual mapped against the wolverine mtDNA se-
quence (Table 1). The entire 16,537 bp consensus mtDNA
sequence was covered by an average sequencing depth
of 111,757X (Additional file 1: Figure S1). Thus, 2% of
all quality trimmed genome sequence reads mapped to
mtDNA, even though the mitochondrial genome only

represents ~0.0005% of the total genome. Mitochondria
may be expected to be especially common in tissues
with high oxygen demands [30,31], and the use of
muscle tissue for genome sequencing could thus poten-
tially explain the high coverage of mtDNA sequences in
our data.
Our consensus mtDNA sequence from the wolverine

differed from the previously published wolverine mtDNA
sequence [32] by 23 SNPs and 12 indels. Given the high
sequencing coverage underlying the consensus sequence,
we are fairly confident that it is error free. Moreover, no
mitochondrial sequence variation in non-repetitive regions
was detected in sequencing of 10 additional samples from
different parts of the same Scandinavian population (see
below). Since the previously sequenced individual was
allegedly also sampled from the Scandinavian popula-
tion [32], the observed discrepancies are most likely ex-
plained by sequencing errors in the NCBI entry. Complete
mtDNA homogeneity has previously been found when
analysing a small region of the mitochondrial genome in
Scandinavian wolverines [33].
A k-mer count (k = 25) of mtDNA reads showed a peak

at a multiplicity at 52,000 (the mean k-mer coverage of
the sequencing data), representing a mean depth of se-
quencing coverage of 68,000X (see Materials and Methods
for details of this calculation). Based on the shape of the
bimodal distribution (Additional file 1: Figure S2), k-mers
with multiplicity less than 8,000 were inferred to be the
result of sequencing errors. Out of a total of 861 million
k-mers in the data, 24 million were thus considered to
be the result of sequencing errors. This gives an average
per-base error rate of 0.11% across the whole mtDNA
data.

Variation in coverage across the mtDNA sequence
The per-site depth of sequencing coverage across the
wolverine mtDNA ranged between 48,660X and 171,260X
(Figure 1). Given the extreme depth of covarage, sto-
chastic variation in measurement should be negligible
and the more than three-fold difference in coverage
among sites observed should therefore be related to in-
herent characteristics of the sequence. We calculated
sequencing coverage based on the number of individual
sequencing reads covering each nucleotide. Alternatively,

Table 1 Information about sequencing coverage and read mapping for the sampled individuals

Total amount of trimmed sequencing data:
no reads (no base pairs)

Number of reads mapping
to mtDNA

Average mtDNA sequencing
coverage

Wolverine:

Main individual 975 million reads (93.0 Gbp) 19,545,210 111,757X

Additional ten individuals (mean) 152 million reads (16.4 Gbp) 619,489 4,168X

Flycatcher:

Main individual 952 million reads (93.8 Gbp) 23,803,990 119,847X
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coverage can also be calculated based on the whole
DNA fragments (thus also including the non-sequenced
parts between two paired reads) [11]. We found that the
pattern of coverage variation was strikingly similar for
read and fragment coverage in our data (Additional file 1:
Figure S3), the only qualitative difference being a slightly
higher overall coverage for the fragment counts compared
to the read counts.
There was a clear relationship between local (50 bp win-

dows) GC content and sequencing coverage (linear regres-
sion, F = 58.07, R2 = 0.16, df = 313, p < < 0.001; quadratic
regression, F = 34.47, R2 = 0.18, df = 312, p < < 0.001;
Figure 2). As in previous studies [11,17], we found some
evidence that this relationship is non-linear, indicated
by the quadratic regression having a slightly better fit to
the data than the linear regression (ΔAIC = −7.3, Figure 2).
However, the peak of the quadratic regression lies very
close to the lower extreme of our data range (at GC =
27.0%), meaning that the relationship between GC con-
tent and coverage is essentially negative for most of the
sequence. This finding is strikingly different compared
with nuclear genome sequences obtained using Illumina
technology, where the peak of sequencing coverage typ-
ically occur at a GC content close to 50% e.g. [34,35]. In
our data, inter-genic regions had lower sequencing cover-
age than genes, and rRNA genes had lower coverage than
protein-coding genes and tRNA genes (Additional file 1:
Figure S4, Additional file 1: Table S1). This is in line
with previous studies showing increased coverage on
exons [13].
Individual G and C nucleotides had lower average se-

quencing coverage (mean = 111,750) compared to A and
T nucleotides (mean = 114,853; t = 10.51, df = 13,765, p < <
0.001, Additional file 1: Figure S4), also when controlling
for GC content of the surrounding region (Additional

file 1: Table S1). Under-representation of GC-rich regions
has been suggested to be a result of bias in the initial PCR
steps during library preparation [20,36] and of miscalls
originating from the sequencer [10]. These local fluctu-
ations in sequencing coverage may affect applications
where coverage is used as a proxy for biological phe-
nomena. For instance regions of high coverage (due to
low GC content) could be more likely to be interpreted
as genomic duplications in CNV analyses [37]. Moreover
estimates of expression levels of GC-poor genes may be
inflated in RNA-Seq experiments [38]. As GC-rich regions
are common around promoters and transcription start

Figure 1 mtDNA Sequencing coverage. Sequencing coverage of the wolverine mtDNA for the individual sequenced at high depth (in black)
and 10 additionally sequenced individuals (in grey, scaled to the same mean coverage as the main individual). Sliding window estimate of GC
content in red (window size: 250 bp, step length: 37 bp).
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Figure 2 GC dependent sequencing coverage. The relationship
between GC content and sequencing coverage in wolverine (from
the deep sequenced individual, estimates based on non-overlapping
50 bp windows). Linear (dashed) and quadratic (solid) regression
lines are included.
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sites, under-representation of sequencing there may ham-
per biological interpretation and annotation of low cover-
age genome data [20].

Reproducibility of sequencing coverage
Strong repeatability in the pattern of heterogeneity in
coverage across a sequence would evidence that the vari-
ation is mainly due to inherent characteristics of particular
sites or regions of that sequence, rather than representing
stochastic variation in library preparation and/or amplifi-
cation. One means to further test this is to investigate
among-individual consistency in sequencing coverage. We
therefore sequenced 10 additional wolverines to a mean
trimmed read depth of 5.5X coverage for nuclear DNA
and 4,200X coverage for mtDNA. The per-site variation
in coverage of mtDNA was again considerable, ranging
between three-fold and six-fold for the 10 individuals.
Variation was highly correlated between the individual
sequenced at high coverage and the additional 10 individ-
uals (Spearman’s r ranging from 0.53 to 0.68, df = 15,786,
p < < 0.001, Figure 1). The correlation was stronger when
comparing among the 10 additional individuals (rS ranging
from 0.70 to 0.91; paired t-test, t = −14.67, df = 9, p <
0.001). Several peaks and dips of coverage were con-
cordant among the independently sequenced individuals
(for example at around positions 2,000, 7,000 and 9,000;
Additional file 1: Figure S5), even on a very fine scale.
Other regions (around positions 4,600, 11,400 and 15,500)
showed more variation among individuals (Additional
file 1: Figure S6). It is thus evident that although there is
some random fluctuations in coverage, a large propor-
tion of the variation is due to systematic and sequence
dependent biases.

Conservation of sequencing coverage bias across two
distant vertebrate taxa
In order to further investigate the repeatability in variation
in coverage we benefitted from the strong conservation in
the genomic organisation of animal mtDNA. Using avian
genome sequencing data from a single collared flycatcher

with a nuclear genome coverage of 85X, we analysed vari-
ation in coverage of mtDNA in a similar way as above.
There was an even higher variation in sequencing depth,
with per-site coverage ranging between 29,010X and
200,900X. As for wolverine, a clear relationship between
GC content and coverage was found for flycatcher (quad-
ratic regression, F = 18.52, R2 = 0.097, df = 326, p < 0.001).
We then used regions of the mitochondrial genome that
were highly conserved (73% sequence similarity) between
wolverine and flycatcher (three regions of continuous
sequence with a total of 2,594 bp, containing both
rRNA genes and the protein coding gene NAD1) and
found a positive correlation between coverage in wolverine
and flycatcher at the nucleotide level (rS = 0.28, df = 2,592,
p < < 0.001, Figure 3, Additional file 1: Figure S7). The
pattern of sequencing coverage bias was thus strikingly
conserved even across two distantly related vertebrate
lineages.

Site-specific variation in sequencing errors
For all positions (and in all sequenced individuals) in the
wolverine mtDNA sequence we found that a small pro-
portion of the reads had an aberrant nucleotide compared
to the reference sequence. A large majority of sites have a
non-reference nucleotide in ≈ 0.1% of the reads with a
similar distribution across all eleven sequenced individ-
uals. We interpret these alternative nucleotides as sequen-
cing errors (rather than true mutations) based on their
relatively low frequency and the fact that they were
dispersed across all sequenced individuals and across
the whole mtDNA sequence. An observed transition/
transversion ratio close to one (Additional file 1: Table S2),
distinctly different from what is normally observed in di-
versity or divergence data, further supports this interpret-
ation. The estimated mean error rate (0.11%, see below) is
very close to our expectation based on the k-mer count
analysis (see above) and it is also in line with the specifi-
cations for HiSeq sequencing (www.illumina.com), repre-
senting a Qphred score of 30; and to that found in other
studies after quality filtering [21]. Six nucleotides had a

Figure 3 Conservation of sequencing coverage patterns across taxa. Comparison of sequencing coverage of wolverine and flycatcher in
three homologous regions of the mtDNA.
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very high number of one specific non-reference allele
(1.3-67.9%) in a single individual only (Additional file 1:
Table S3, Additional file 1: Figure S8), with all other in-
dividuals having a low (less than 0.1%) number of non-
reference nucleotides at this site. We interpret this as
evidence for heteroplasmy, i.e. mutations in the pool of
mtDNA molecules transmitted between generations [39].
The mean site-specific error rate (measured as the count

of a non-reference nucleotide divided by total sequencing
depth at that position) of the wolverine individual se-
quenced at high depth was 0.11%, with a range between
0.028% and 2.45%. Sequencing errors thus occurred at all
positions of the mitochondrial genome. G and C nucleo-
tides had a slightly higher mean error rate compared with
A and T nucleotides (t = −10.14, df = 15,550, p < < 0.001,
Additional file 1: Table S2). Sequence specific errors (SSE)
were previously found to be common in Illumina HiSeq
reads with the highest rates seen at the motif “GGC” [10]
and, in particular, “GGCNG” [36,40]. Our data support
these findings. All three sites with error rates above 1% in-
cluded the sequence motif “CCNGCC” (a one-base pair
extension of the reverse complement of the above) directly
downstream of the high error position (Additional file 1:
Figure S9). SSE are likely to bias estimates of sequence
diversity as they will lead to falsely inferred SNPs in spe-
cific error prone sites. An efficient way of overcoming
this problem would be to consider on which strand
SNPs are detected (only calling SNPs if the variation is
seen on both strands), as only reads from one direction
should be affected by the increased error rate [19]. It is
however, important to note that this strategy requires
sufficient sequencing coverage of both strands at the
variable nucleotide position.
There was a negative correlation between sequen-

cing coverage and site specific sequencing error rate
(rS = −0.083, df = 15,786, p < < 0.001). When investigating
areas directly downstream of “GGCNG” (and the reverse
complement of that motif ), coverage clearly decreased
with proximity (within 100 bp) to the error prone motif
(rS = 0.21, df = 6,570, p < < 0.001). Inspecting the details of
the regions surrounding the three nucleotide positions
with the highest error rates (>1%), it is obvious that there
is a marked drop in sequencing coverage exactly at, and
upstream of, the high-error base (Figure 4). Miscall fre-
quency may thus also be directly linked to the observed
bias in sequence coverage. This link could potentially
arise as a consequence of read trimming. If reads (or
parts of reads) from SSE regions have lower quality
scores, they will be more likely to be trimmed away dur-
ing initial read filtering steps. To explore this, we also
investigated coverage based on raw (untrimmed) reads
(Additional file 1: Figure S3). The coverage variation
pattern seen after mapping the raw reads was strikingly
similar to the trimmed coverage data (but with higher

overall coverage levels and with even stronger ampli-
tude in variation).
Alternatively, the link between error rates and sequen-

cing coverage could also be an effect of imperfect mapping
of reads with sequencing errors if mapping parameters are
stringently set. Observed coverage is thus expected to de-
crease in such regions [10] and may be falsely interpreted
as having copy number variation (for genomic sequencing)
or reduced expression levels (for transcriptomic sequen-
cing), if these factors are not properly controlled for.
However, it should be noted that not all positions with
an error prone sequence motif seems to be effected by
sequencing coverage bias. For example, the sequence
motif “CCNGCC” (and its reverse complement) occurs
22 times in the wolverine mtDNA sequence, and most
of these show neither elevated error rates nor decreased
sequencing coverage. In order to be able to apply proper
controls for SSE bias it is thus important to elucidate
why some, but not all, regions with certain sequence
motifs show marked increases in sequencing errors. An
important development for the future is to develop and
utilise more precise methods to control for these biases
in bioinformatics pipelines (including base calling, read
trimming, error correction and mapping algorithms).
Additionally, wet-lab based methods can be improved
to produce a more even coverage across regions with
different sequence characteristics [41]. As different se-
quencing technologies show different signatures of bias,
combining different types of sequencing data could be a
suitable strategy to reduce these effects [20].

Conclusions
We have reported a striking variation in sequencing cover-
age across the mitochondrial genome. Reproducibility of
coverage patterns within and across species provide evi-
dence that this variation is largely due to intrinsic prop-
erties of the DNA sequence, with GC content as an
important explanatory factor. Coverage is also related to
local levels of sequencing error rates, with peaks in se-
quencing error also showing marked drops in coverage.
Such error peaks are also often associated with certain
error prone sequencing motifs. This highlights the import-
ance of controlling for coverage bias when investigating
sequencing data for applications such as RNA-Seq, CNV
identification or whole genome sequencing.

Methods
Samples and sequencing
Sequencing was performed on a HiSeq2000 instrument
(Illumina Inc) using TruSeq SBS v3 chemistry, according
to the manufacturer’s protocols, with paired-end (PE)
reads (length varying from 65 bp to 150 bp) and with in-
sert sizes from 180 bp to 500 bp (Table 1). Base calling
was done on the instrument by RTA 1.12.4.2 or 1.13.48
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and the resulting .bcl files were converted to Qseq format
with OLB-1.9.0 (Illumina Inc) and then demultiplexed,
allowing for one mismatch base, and converted to fastq
format with CASAVA-1.7.0 (Illumina Inc). Reads that did
not pass the quality filtering were excluded.
We used whole genome sequencing data from one

mammal (wolverine, G. gulo) and one bird (collared fly-
catcher, Ficedula albicollis). Wolverine data were obtained
from one female sequenced to a nuclear genome depth of
45X (raw PE data; Ekblom et al., unpublished). DNA from

this animal sampled in the province of Jämtland, Sweden
in 2010 was extracted from muscle tissue using DNeasy
Blood and Tissue kit (Qiagen). In addition, DNA sam-
ples were extracted from muscle tissue of 10 unrelated
wolverine individuals (all males from different parts of
the Scandinavian population) and were sequenced to
approximately 10X nuclear coverage each. Flycatcher
data were obtained from one focal individual (DNA
sampled from muscle tissue with phenol-chloroform ex-
traction) sequenced to 85X as described in [35]. Raw

Figure 4 Sequencing coverage around peaks of sequencing errors. Sequencing coverage (main individual in red, additional individuals,
scaled to the same mean as the main individual, in pink) in the regions with peaks of sequencing error rates (main individual in black, additional
individual in grey) associated with the sequence motif “CCNGCC” (purple arrow). Note the coinciding location of marked drops of sequencing
coverage exactly at the sequencing error peak.
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sequence read data is available at NCBI SRA (accession
number ERP001377).

Read mapping
Raw wolverine reads were quality trimmed using Con-
DeTri [42] and reads from the individual sequenced at
high depth were then simultaneously mapped to a pub-
lished mtDNA reference sequence for this species NCBI
Accession number: NC_009685; [32], together with the
draft genome assembly (Gugu1.0, R Ekblom unpublished),
using BWA [43]. A consensus mtDNA sequence was
extracted with samtools and bcftools [44], and manually
edited to include also insertions and deletions. The con-
sensus was then used as reference when mapping reads
from the additional individuals sequenced at lower cover-
age. The rationale of mapping reads to both the mitochon-
drial and the nuclear genome, despite our interest here
only lies in mtDNA coverage, relates to the possible occur-
rence of nuclear copies of mtDNA sequences so-called
numts; [45]. Reads originating from such copies will
preferentially map to the nuclear genome, when this is
included in the reference, and will thus not contribute
to the calculation of mtDNA coverage [29].
A collared flycatcher mtDNA reference sequence was

first generated by mapping reads from the sequenced in-
dividual onto the mitochondrial genome of the closely
related species Ficedula zanthopygia (NCBI Accession
number: NC_015802). From this, a consensus sequence
was extracted as above. We found several regions where
the sequence differed notably between F. albicollis and
F. zanthopygia. Manual editing of the sequence was per-
formed iteratively, with mapping to the new consensus
after every update until albicollis reads corresponded
perfectly to the new consensus sequence. Finally, as for
the wolverine, mapping was performed using both the
mtDNA consensus sequence and nuclear genome as-
sembly (fAlb15, GI:513788161) together as reference.
Pileup files were extracted with samtools and merged
between individuals and species. Since mtDNA is a cir-
cular molecule and given that BWA only map reads to a
linear reference, we introduced a break in the mtDNA
molecule. As a consequence, coverage in the end regions
became progressively lower towards the start and end
nucleotide of the reference. We therefore performed the
mapping using a two hundred basepair overlap in the
ends of the mtDNA reference sequence. There were also
low coverage and high error rates in the region down-
stream of the cyt-b gene (i.e. the D-loop, or the control
region), because of problems of correctly aligning reads
to the long repeat region (bp 15,988-16,256). In order to
avoid biases introduced by these mapping issues we used
only data between position 29 and 15,816 for all down-
stream analyses of coverage and error rates (trimming
away a total of 749 bp).

Analyses
k-mer counting was done using the jellyfish (ver.1.1.6)
software [46], with default settings and k-mer length set
to 25 bp. Depth of sequencing (N) was calculated using
the formula N =M*(L-k + 1)/L, where M represents the
mean k-mer coverage, k is the k-mer length and L is the
mean read length [34]. Annotation of the mitochondrial
consensus sequences was performed using the Mitos
web interface [47] and visualised using CGView [48].
For tests of correlation between GC content and cover-
age we used coverage from the individual sequenced at
high depth and mean GC content in non-overlapping
sliding windows of size 50 bp of the mitochondrial gen-
ome of the respective species. For the analysis of coverage
at individual nucleotides we performed an ANCOVA ana-
lysis using nucleotide identity and gene type as categorical
variables, and GC content of the surrounding region
(50 bp window) as a continuous variable.
We identified regions of the mtDNA sequence that

were homologous between wolverine and flycatcher using
two-sequence megablast (all hit regions extracted using
default settings; http://blast.ncbi.nlm.nih.gov), extracted
these using in-house perl scripts and aligned them using
MAFFT [49]. Additional data handling and statistical
analyses were performed using R 2.15 [50].

Availability of supporting data
The annotated consensus sequences for the complete
mtDNA genomes sequenced in this study are available
at NCBI [GenBank: KF415127.1 (wolverine), GenBank:
KF293721.1 (collared flycatcher)].

Additional file

Additional file 1: Table S1. Summary output from ANCOVA analysis of
depth of coverage of individual bases of the wolverine mtDNA. Table
S2. Sequencing error rates (percentages), for all possible nucleotide
substitutions, in the wolverine mtDNA. Table S3. Positions in the
wolverine mitochondrial genome with evidence for heteroplasmy in one
of the 11 sampled individuals. Figure S1. Visualisation of the wolverine
mitochondrial DNA sequence. Figure S2. k-mer count of wolverine
mtDNA sequence read data. Figure S3. Comparison of sequencing
coverage of the wolverine mtDNA sequence depending on whether read
depth or fragment depth were used. We also compare differences in
coverage variation for quality trimmed reads versus raw reads. Figure S4.
Mean depth of sequencing coverage of individual nucleotides. Figure S5.
Sequencing coverage in three mtDNA regions with similar coverage across
all wolverine individuals sequenced. Figure S6. Sequencing coverage in
three mtDNA regions with different coverage across all wolverine individuals
sequenced. Figure S7. Relationship between depth of sequencing coverage
at orthologous positions of the wolverine and collared flycatcher mtDNA.
Figure S8. Sequencing coverage for all 11 sampled wolverine individuals.
Figure S9. Close-up view of error rates around the three positions with a
sequencing error rate exceeding 1%.
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