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Abstract: Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors
are an important complement to regulatory-grade instruments in pollutant monitoring. Previous
studies focused on one or several species, while comprehensive assessments of multiple sensors
remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and
used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR),
and neural network (long short-term memory (LSTM)) methods to calibrate and validate the mea-
surements with nearby reference measurements from national monitoring stations. For performances,
CO > O3 > NO2 > SO2 for the coefficient of determination (R2) and root mean square error (RMSE).
The MLR did not increase the R2 after considering the temperature and relative humidity influences
compared with the SLR (with R2 remaining at approximately 0.6 for O3 and 0.4 for NO2). However,
the RFR and LSTM models significantly increased the O3, NO2, and SO2 performances, with the R2

increasing from 0.3–0.5 to >0.7 for O3 and NO2, and the RMSE decreasing from 20.4 to 13.2 ppb for
NO2. For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean
relative bias of approximately zero (e.g., <5% for O3 and NO2), indicating that these sensors combined
with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM
is better than that of random forest and linear methods. This study assessed four electrochemical
air quality sensors and different calibration models, and the methodology and results can benefit
assessments of other low-cost sensors.

Keywords: low-cost gas sensors; electrochemical air quality sensors; field evaluation; single and
multiple linear regression; random forest; LSTMs; environmental factors

1. Introduction

Due to rapid economic development over the past three decades, fossil fuel con-
sumption has substantially increased, and thus, the associated air pollutants, e.g., carbon
monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2) [1,2], particulate matter
(e.g., PM2.5 and PM10) [3,4], and greenhouse gases (e.g., carbon dioxide (CO2)), have also
increased in China [5,6]. According to the World Health Organization (WHO), pollutants,
including particulate matter, nitrogen dioxide, sulfur dioxide, and ozone, pose the highest
risk to human health [7]. Exposure to air pollution, such as ground-level ozone, even in
the short term, can affect the respiratory system [8]. Many related studies have linked
air pollution with serious health problems, poor birth outcomes, and even premature
death [9–11]. Pollutants have received public attention in China since the 2000s, and central
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and local governments have begun to implement stricter laws on pollutant reductions
and monitoring since that time, including “China’s Action Plan of Prevention and Control
of Air Pollution” in 2013 [12,13]. For example, with the implementation of the action
plan, the emissions of SO2, nitrogen oxides (NOX), and PM2.5 decreased in 2017 by 36%,
31%, and 30% from the 2012 levels in Beijing–Tianjin–Hebei, respectively [12]. These
achievements cannot be realized without accurate and widespread monitoring of air pol-
lutants at environmental observatories. At a standard station of the Ministry of Ecology
and Environment (MEE), reference instruments based on differential optical absorption
spectrometry (DOAS) theory are used [14,15]. The working principle of DOAS involves
using the narrow-band absorption spectrum of molecules to distinguish gas compositions
and deduce the concentrations of measured gases based on the intensity of its absorption
spectrum. The theoretical basis of DOAS is the Lambert–Beer law. Moreover, these research
grade instruments generally require a cabin with an air conditioner to maintain the tem-
perature (Temp) at approximately 25 ◦C, and high precision and accuracy are ensured by
using people trained in regular instrument checks and data quality control [16].

However, due to the large spatial-temporal heterogeneity of air pollutants in urban
areas resulting from variations in emission sources and atmospheric transport [17,18], it is
difficult to monitor pollutants at finer resolutions, such as at the street scale, which is
an urgent need for both MEE grid level reductions for fine management and the public
need for local pollution information. With the development of low-cost electrochemical air
quality sensors, this monitoring has become possible in recent years, especially for low-
and middle-income countries [19]. Low-cost sensors integrated in Internet of Things (IoT)
applications are operated in dense sensor networks for urban air quality monitoring of
pollutant gases, particulate matter, and greenhouse gases with high spatial and temporal
resolutions [20,21]. Sensor networks and mobile monitoring on ground vehicles and
unmanned aerial vehicles [22,23] or tethered balloons [24] are presented for smart and
sustainable cities and as supplements to expensive air quality monitoring stations.

Electrochemical sensors are based on a chemical reaction between gases in the air and
the electrode in a liquid inside a sensor [25]. Szulczynski et al. (2017) [26] reviewed the
detection of odorants (with thresholds ranging from <1 ppb for sulfur compounds to dozens
of ppm for ethanol) in the vicinity of municipal processing plants using electronic and
bioelectronic sensors. Low-cost sensor networks have become an important complement
to regulatory-grade instruments. The advantages are outlined as follows: (1) due to the
low cost, sensors can be deployed as a dense network to capture high variations; and (2)
sensors are more easily deployed than standard instruments with smaller volumes and
masses. The disadvantage is that the sensor’s accuracy requires corrections in ambient
environments, and sensors need to be replaced at 1–2 year intervals due to chemical
material consumption by the sensor [27]. Linear (zero “check” and span “check”) and
multiple linear regression (MLR) and machine learning models are the most widely used
methods to calibrate low-cost sensors [28,29]. Using Alphasense as an example, several
studies have evaluated and calibrated sensors for NO2, SO2, or O3 using simple or multiple
linear regression or neural network methods. Using support vector regression and random
forest methods, the root mean square error (RMSE) of the corrected results for NO2 with
a reference instrument was <5 ppb in ambient environments, and the R2 was between
0.74 and 0.95; these methods can be used to detect 8–10 ppb differences in NO2 with 90%
confidence [30]. Spinelle et al. (2014) [31] used MLR and artificial neural network (ANN)
methods to calibrate multiple gas sensors and found that single linear regression (SLR)
and MLR produced the highest measurement uncertainty. By colocation with regulatory-
grade instruments on the island of Hawaii, Hagan et al. (2019) [32] used a nonparametric
algorithm (k nearest neighbors) to correct the raw signal for SO2, and the RMSE was
<7 ppb. Previous studies generally focused on one or a few species, and some studies
lacked adequate calibration.

The objectives of this study were to (1) measure and assess multiple pollutant gases
(CO, NO2, O3, and SO2) in heavily polluted areas and (2) calibrate and validate their
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performances in a field environment using SLR, MLR, random forest regressor (RFR),
and long short-term memory (LSTM).

2. Materials and Methods
2.1. Sensor Configuration and Field Deployment

We focused on the performance and calibration of the Alphasense gas sensor through
a field comparison experiment between these four types of sensors and the national control
monitoring station of the MEE. As shown in Figure 1, two models were deployed in
October 2019 at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP,
CAS) (39◦47′ N, 116◦57′ E) tower station, which is located in Jiandemen, Haidian District,
Beijing, within 2 km of the Olympic Stadium Center MEE site (39◦98′ N, 116◦40′ E).
The monitoring site is located in the urban residential area of Beijing, surrounded by roads,
so it is considered to be a typical traffic site.
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We used a homemade multipollutant measuring instrument known as the SENSE
Model S to conduct the experiments. Based on a literature review, we selected Alphasense
sensors (B4 for CO, NO2, OX, and SO2) as the research objects, which are suitable for out-
door environments, while the A4 series is suitable for where space is critical, such as spaces
with mobile air quality monitors [33–36]. Alphasense sensors measure gas pollutants (CO,
NO2, O3, and SO2), and the sensor produces electronic current (in nA) and is converted to
amplified voltage by a circuit board. We used both the original Individual Sensor Board
(ISB) from Alphasense [37] and a domestic substitute named MMS as a potentiostat to
transmit data (MMS is only half the price of the ISB). This potentiostat provides a dual
channel voltage output from both the working electrodes (Vw) and auxiliary electrodes
(Va), and these two voltages are collected by a Python script and stored in the micropro-
cessor. Vw and Va were converted into air quality units (ppb) according to the formula
provided by the manufacturer when collecting sensor data. Both the working electrode
and auxiliary electrode have equivalent two-stage amplifiers, and there are no adjustments
on the ISB for zero offset and gain. However, after a careful analysis of the correlation
between Va and temperature, Va is positively related to the temperature change rate and
not the temperature itself, and the performance is much better without Va (Figure S1).
Therefore, the manufacturer’s correction for Va is not effective and thus was removed from
our corrections. The raw data of sensors mentioned below refers to Vw. We designed two



Sensors 2021, 21, 256 4 of 18

versions of motherboards for imported and domestic sensor boards, which also hold other
sensors. The motherboard is connected to a microprocessor named BeagleBone Green Wire-
less (BBGW) through general-purpose input/output (GPIO) pins [38], and meteorological
data, including temperature and relative humidity (RH), were collected from the Adafruit
BME280 sensor. All data were collected with a time resolution of 2 s, then stored in the
microprocessor and later uploaded to a remote server through the IoT, and data were also
stored in a built-in secure digital memory (SD) card daily for backup. The date and time
were automatically synchronized from the Alibaba Cloud through an ntpd service and
ensured by a real-time clock (RTC) module in case of poor service.

2.2. Data Processing

Since the B4-OX sensor measured signals of both O3 and NO2, the O3 concentration
was calculated by subtracting the B4-NO2 concentration from the B4-OX concentration.
The B4 sensor had a warm-up time of approximately 2 h [39]. Therefore, data collected
during the first 2 h after powering on were excluded from this study. The raw second data
were first quality control checked by eliminating outliers that were beyond 3 sigma and
then averaged into minute data and hourly data. We collected the MEE data measured at
official monitoring stations from the China National Environmental Monitoring Center
website (http://www.cnemc.cn/) [40]. The data obtained from MEE were at 1-h resolution.
The raw gas sensor signal outputs were collected at 2-s resolution and resampled to 1-h
resolution using Python function pandas. Data Frame. Resample () for comparison with
reference measurements. The statistical calculations and figure plots were performed using
the Python Scipy package.

2.3. Evaluation Parameters

We used three parameters to evaluate the performance of the sensors. The coefficient
of determination (R2) (Equation (1)) is calculated by the square of R. It is used to reflect the
relationship between the low-cost sensor (sensor) and the reference instrument (reference).
The value of R2 ranges from 0–1, and the larger the R2 value is, the better the correlation
relationship between the sensor and the reference is. The RMSE is used to measure the de-
viation between the observed value and the true value. In this study, the deviation between
the sensor and the reference was evaluated to reflect whether the sensor is reliable under
severe field conditions. The percentage relative bias (Equation (2)) was also calculated to
determine the measurement error of the sensor compared with the reference.

R2 =

 ∑ (sensor− sensor)
(

re f erence− re f erence
)

√
∑ (sensor− sensor)2 ∑

(
re f erence− re f erence

)2


2

(1)

Relative bias =
(

sensor− re f erence
average (re f erence)

)
∗ 100% (2)

2.4. Calibration Methods
2.4.1. Simple Linear Regression and Multiple Linear Regressions

Two linear calibration models were built: simple linear regression (SLR) and multiple
linear regression (MLR). The calibration by an SLR used Equation (3). C_raw is the value
measured by the low-cost sensor. C_correction is a model-predicted (calibrated) value.
SLR was performed for different sensors, and the a, b coefficients applicable to each sensor
were obtained. The MLR used C_raw, temperature, and RH measured by the low-cost
sensor as predictors because the low-cost sensor only measured these parameters. The MLR
model is expressed as Equations (4)–(6). To include as many environmental factor ranges
as possible, we used one set of sensors as the training data and the other set of sensors as
the test.

http://www.cnemc.cn/


Sensors 2021, 21, 256 5 of 18

SLR: C_correction = a*C_raw + b (3)

MLR: C_correction = a*C_raw + b*Temp + c (4)

C_correction = a*C_raw + b*RH + c (5)

C_correction = a*C_raw + b*Temp + c*RH + d (6)

2.4.2. Random Forest Regressor

The random forest regressor (RFR) is a very mature and widely used regressor [41].
It works by constructing a multitude of regression trees during training time. RFR has been
used in sensor data correction in many studies and has achieved good results [42,43].

We implemented six selected variables, including working electrodes (Vw) and auxil-
iary electrodes (Va), concentration data calculated by the original factory formula (Alpha),
temperature (Temp), and RH data of the sensor to train a random forest machine learning
regression model. To prevent overfitting, we limited the maximum depth of each tree.
For CO data, the maximum depth of trees was set to 8, the number of trees was set to 300,
and the criterion function was the mean absolute error. For O3 and NO2 data, the maximum
depth of trees was set to 6 and 9, respectively, the number of trees was set to 300, and the
criterion function was also the mean squared error. Similar to the MLR method, we used
one set of sensors as the training data and the other set of sensors as the testing data in the
RFR model.

2.4.3. Long Short-Term Memory Networks

Among all deep learning applications, recurrent neural networks (RNNs), as well as
long short-term memory (LSTM) neural networks, are commonly utilized to handle various
problems with temporal information. In each LSTM cell, one hidden layer represents the
output information at the previous time and provides short-term memory similar to RNN
cells, and another cell state carries long-term memory. The forget gate helps to discard
some information that is not essential. Therefore, LSTM can process longer time series
information better than RNN. At present, some studies have applied LSTMs to data
processing, correction, and prediction, and good results have been obtained [44–47].

In the LSTM model used in this study, we used seven selected variables (Time, MEE,
Alpha, Vw, Va, Temp, RH) as inputs. The LSTM model used in our study had one LSTM
layer and one fully connected layer. The variables of the input layer corresponded to
Alpha, Vw, Va, Temp, and RH with timesteps of 25, 3, and 29 (which means we used the
data of the first 24/2/28 h to predict the data of the 25/3/29th h) for NO2, O3, and CO
data, respectively. The size of the mini batch for each epoch was set to 200. The detailed
configuration of the model is expressed in Table 1. The MEE data were used as the target
to supervise the neural network process. Similar to the MLR and RFR methods, we used
sensor 1 as the training data and sensor 2 as testing data in the LSTM method.

Table 1. Detailed configuration of the neural network.

Configuration Value

Number of hidden layers 10
Number of neurons in the hidden layer 150

Input variable Time, MEE, Alpha, Vw, Va, Temp, RH
Number of the output variable 1

Training data percentage 50%
Validation data percentage 50%

Data normalization Minmax
Training algorithm Long short-term memory networks
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3. Results and Discussion
3.1. Performances of Sensors with Linear Regressions (SLR/MLR)

The two sets of instruments were deployed in the field for approximately one year.
Figure 2 shows the raw data and SLR correction results of the two sets of sensors just after
deployment for half a year before April 2020. It can be seen from the raw data that the
two sensors, especially O3 and SO2, have different degrees of zero drift, but the trends of
the two sensors are very consistent. CO, O3, and NO2 are very close to MEE after SLR
correction. Because of the low SO2 concentrations in the environment, the signal monitored
through SLR correction cannot achieve the same effect as the other three. Figure S2 is
the complete uncalibrated original time series of the two sets of instruments. The data
quality before April 2020 was good, but after April 2020, the performance of the sensors
deteriorated due to the temperature rise and the potential impacts of sensor life. This result
can be confirmed in Table 2, which shows the changes in the stability and biases of the four
gas sensors in one of two models after deployment by calculating the seasonal statistics of
the sensor including R2, RMSE, and slope and intercept when applied with SLR.
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calibration on 10 November 2019, to 1 April 2020, in Beijing based on a 24 h rolling average.

From the statistical results, the performance of these four sensors varied with the
seasons, and R2 had different degrees of attenuation. Among them, CO decreased from
R2 = 0.85 in the autumn of 2019 to R2 = 0.64 in the summer of 2020. Then, the temperature
dropped in the autumn of 2020, and the impact of the high temperature on the sensors was
weakened, so R2 increased to 0.67. Similarly, the R2 of O3 decreased from 0.74 in the fall of
2019 to 0.35 in the summer of 2020. In the fall of 2020, no statistical results were obtained
due to missing MEE O3 data. The NO2 result went from R2 = 0.76 to R2 = 0.12, and in the
fall of 2020, it rose slightly to R2 = 0.32, which was similar to the CO result.
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Table 2. Seasonal changes in the stability and biases of four sensors in one model after deployment.

Pollutant Statistic
Autumn (October–

November
2019)

Winter (December
2019–February

2020)

Spring
(March–May

2020)

Summer
(June–August

2020)

Autumn
(September–October

2020)

CO number 633 1513 1559 957 665
R2 0.85 0.88 0.79 0.64 0.67

RMSE 232 239 156 168 145
slope 1.41 1.71 1.32 1.03 1.11

intercept 701.73 767.28 598.10 579.68 567.64

O3 number 884 627 2140 1705 0
R2 0.74 0.79 0.45 0.35 –

RMSE 11 12 34 43 –
slope 1.34 1.59 1.31 0.89 –

intercept 60.45 74.93 80.35 95.97 –

NO2 number 866 2096 1890 1118 754
R2 0.76 0.77 0.28 0.12 0.32

RMSE 13 12 18 17 17
slope 0.93 1.22 0.32 0.12 0.32

intercept −51.2 −94.05 −2.11 15.82 1.33

SO2 number 866 2096 1890 1118 752
R2 0.01 0.05 0.00 0.00 0.00

RMSE 5 5 3 1 1
slope −0.03 0.11 0 0 −0.01

intercept 4.04 12.44 3.77 2.64 2.2

The SO2 sensor performance was the worst among these sensors, with R2 values
ranging from 0.00 to 0.01 in Table 2. This result is not surprising since Beijing had very
low SO2 concentrations (with an annual mean value of 4 ppb for MEE and 75% of the
MEE data were generally <4 ppb). According to the datasheet of Alphasense SO2-B4 [36],
the noise (or resolution) is 5 ppb, and performances are tested from 0–200 ppb for general
use. For MEE, one type of reference instrument generally used is Thermo Scientific Model
43 i, with a lower detectable limit <0.5 ppb and noise (in RMSE) of 0.25 ppb with a
300 s averaging time [48]. These values indicated that Alphasense is not suitable for
such low-concentration monitoring, while the MEE reference instrument is qualified.
The low SO2 concentrations are largely attributed to the strong implementation of the SO2
control policy; thus, good monitoring and treatment measures were achieved at the stacks
near large individual emissions factories [49], and coal consumption was largely reduced
due to the shift to natural gas [50]; these measures reduced the SO2 emissions by 62%
from 2010–2017 [51]. Due to the low SO2 environmental concentrations and subsequent
poor performance of the sensor response, we mainly analyze CO, O3, and NO2 in the
following text.

In addition to the R2 values in Table 2, the slope and intercept of the sensors and MEE
also varied greatly with season, which reflects the high sensitivity and poor stability of
the sensor to the environment. Many studies have also mentioned that environmental
monitoring instruments, especially low-cost electrochemical instruments, are prone to
drifting and performance degradation as the environment and service life change. The CO,
O3, and NO2 sensor data can be corrected by SLR within half a year to achieve ideal results
(e.g., R2 > 0.75); however, it is often improbable to maintain this effect for a long time
(e.g., >6 months). For electrochemical sensors, the correction effect was different with time
due to the impact of seasonal environmental changes and the consumption of chemical
materials by the sensor; therefore, time-varying coefficients are recommended at seasonal
time intervals.

We also conducted MLR training and tests. The MLR method included the influences
of environmental factors, i.e., temperature (Temp) and relative humidity (RH). Table 3
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shows the performances of the CO sensor with linear regressions (SLR and MLR), and Ta-
bles S2 and S3 show those of O3 and NO2, respectively.

Table 3. Performances of the CO sensor with linear regressions (SLR and MLR).

Linear Regression
Calibration Model

Train Data Test Data

before Correction after Correction before Correction after Correction

C_correction = a*C_raw
+ b

R2 = 0.83 R2 = 0.85
RMSE = 227.85 RMSE = 242.33

C_correction = a*C_raw
+ b*Temp + c

R2 = 0.83 R2 = 0.86
R2 = 0.83 RMSE = 217.19 R2 = 0.85 RMSE = 221.72

C_correction = a*C_raw
+ b*RH + c

RMSE = 734.13 R2 = 0. 83 RMSE = 788.68 R2 = 0.85
RMSE = 227.85 RMSE = 242.33

C_correction = a*C_raw
+ b*Temp + c*RH + d

R2 = 0.79 R2 = 0.81
RMSE = 295.10 RMSE = 325.25

Generally, we found that there were no obvious improvements in terms of R2 and
RMSE after including these environmental factors in the MLR model, and R2 was even
slightly decreased after including both Temp and RH compared with SLR. For the CO train-
ing data, the R2 was maintained at 0.83 before and after MLR Temp or RH correction, but a
worse performance (R2 = 0.79) was seen when including Temp and RH. Although there
were no changes to R2, the SLR and MLR methods substantially improved the performance
of O3 because the RMSE decreased from 734 ppb to 217–295 ppb after corrections. Using
sensor 2 as the test set, R2 performed better than sensor 1 because of its shorter deployment
time in the field and because it was less affected by high temperatures in summer. Using
the model trained by sensor 1 to test sensor 2, the results obtained were basically the same
as the results of the training set. After the SLR and MLR corrections, R2 did not change,
and after adding Temp and RH simultaneously, R2 decreased from 0.85 to 0.81. The O3 and
NO2 results were basically the same as the CO results.

Therefore, MLR generally did not improve the performances of these sensors after
considering the influences of temperature and RH compared with SLR.

3.2. Calibration by Machine Learning (RFR)

We used the machine learning method (RFR) after failing in the use of linear methods
such as SLR and MLR to eliminate temperature and humidity noise. Figure 3 shows the
results of the CO, O3, and NO2 data calibrated by RFR. For CO, as shown in Figure 3a,
this method increased R2 from 0.83 to 0.92 and from 0.85 to 0.89 for the training procedure
and testing procedure, respectively. This result shows that the improvement in CO by
the RFR method is not obvious since the SLR already performed well. When the training
model is applied to the test set, the test set does not increase significantly, which shows
that the characteristics of different CO sensors are different, and the applicability of the
RFR model is limited. For O3 sensor calibration in our study (Figure 3b), the corrected
results of the training set and test set are R2 = 0.74 (R2 = 0.54 before correction) and
R2 = 0.64 (R2 = 0.59 before correction). However, the high value of O3 after correction
will be significantly underestimated, especially in the test set, which is a shortcoming of
the model from Figure 3b. For NO2 (Figure 3c), the R2 of the training and testing data
increased from 0.35 and 0.44 to 0.85 and 0.75, respectively, which proved that the RFR
model significantly improved the NO2 sensor.

RFR has been used in sensor data correction in many studies and has achieved good
results. In Zimmerman’s research [42], the RF model was applied to low-cost sensors and
was proven to accurately characterize air pollution concentrations at the low levels typical
of many urban areas in the United States and Europe. The R2 of the models in his research
was 0.91 for CO, approximately 0.86 for O3, and approximately 0.67 for NO2, which was



Sensors 2021, 21, 256 9 of 18

close to our research results. Bigi [30] also applied three algorithms, including multivariate
linear regression, support vector regression, and random forest, and demonstrated that RF
is the best correction algorithm, with R2 reaching 0.79 for NO2 correction.
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3.3. Calibration by Neural Network (LSTMs)

After only using the information of one certain time to perform calibration, we propose
a deep learning approach that contains temporal characteristics for our regression task.
In this part of our work, we show how LSTM neural networks can be employed to correct
the raw sensor data. Figure 4 shows the results of the CO, O3, and NO2 data calibrated by
LSTM networks.
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For CO (Figure 4a), LSTM had further improvements, mainly reflected in the testing
procedure (R2 = 0.93), compared with RFR (R2 = 0.89), as shown in Figure 4a. This result
shows that the improvement in CO by the LSTM method is more obvious, and when the
training model is applied to the test set, the test set is also improved, which shows that the
applicability of the LSTM model to different CO sensors is better than RFR.

In the research of Spinelle [48], an Alphasense-O3 B4 sensor was used, and its effect
after MLR correction reached approximately R2 = 0.5. There are few existing studies on
correcting the low-cost sensor of O3 using deep learning and other algorithms, and the
control of O3 pollution has attracted increasing attention from the public and scientific
community [49], so the correction and application of a low-cost sensor for O3 is urgently
needed. For O3 sensor calibration in our study (Figure 4b), the corrected results of the
training set and test set are R2 = 0.75 (R2 = 0.54 before correction) and R2 = 0.77 (R2 = 0.59
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before correction), and the LSTM correction effect of O3 is significantly improved compared
with RFR, especially in the test set. However, from Figure 4b, the high value of O3 after
correction is also significantly underestimated, especially in the test set, which is also a
shortcoming of the LSTM model.

For NO2 (Figure 4c), the R2 of the training and testing data increased from 0.35 and 0.44
to 0.85 and 0.84, respectively, which proved that the LSTM model significantly improved
the NO2 sensor compared with RFR. Using nonlinear algorithms (support vector regression
and random forest), Bigi et al. (2018) [30] found a better performance of the Aphasense
NO2-B4 sensor for urban sites, with an RMSE < 5 ppb, an R2 between 0.74 and 0.95 and an
mean absolute error (MAE) between 2 and 4 ppb. Bigi et al. also found that all algorithms
exhibited a drift (mean daily residual) that ranged between 5 and 10 ppb for random forest
and 15 ppb for MLR at the end of deployment. NO2 concentration differences of 8–10 ppb
were reliably detected, depending on the level of air pollution.

A separate analysis of SO2 was conducted. The concentration signal measured by
the sensor was very weak because the environmental concentration of SO2 was very low
(~40 ppb) and greatly affected by the environment. The use of SLR and MLR to correct SO2
had no effect (R2 is basically 0). Therefore, we selected a period of time with the best quality
from the SO2 observation data of one of the sensors, with 50% for the training set and
50% for the testing set. Figure S3 shows the results of the SO2 data calibrated by LSTMs.
The R2 of the sensor and MEE before training was 0.15, and the R2 was 0.36 after training.
For the test set, R2 increased from 0.17 to 0.33. Therefore, the LSTM model improved the
SO2 sensor more significantly than the linear model, but it still did not reach the accuracies
of the CO, O3, and NO2 sensors. In the research of Hagan [52], in an environment near a
volcano, where the SO2 concentration is as high as 1000 ppb, the correction effect of the
SO2 sensor after applying the linear and K-Nearest Neighbor (KNN) algorithms reached
R2 = 0.99. Therefore, the sensor performs poorly at low concentrations, but it is worth
continuing to explore monitoring and early warnings of high concentrations.

In general, for CO, O3, NO2, and SO2, the best agreement between sensors and
reference measurements was observed for neural network calibrations compared with the
linear and multilinear regressions and RFR. This shows that these sensor data have some
nonlinear characteristics that we have not yet understood. The neural network method can
actively learn data features, so using AI methods can quickly solve some problems in the
case of not fully clarifying the data features.

3.4. Sensor Biases under Different Pollution Conditions

To further compare the differences between the traditional linear method and AI
method, we evaluated the sensor performances under different pollution levels and differ-
ent temperature and RH conditions using SLR corrected data and LSTM corrected data.

The responses of electrochemical air quality sensors under different pollution con-
ditions are very important for providing complimentary spatial information to standard
instruments, especially under high pollution conditions. Most of the previous studies were
conducted in countries and regions with good air quality [28], such as the United States
and Europe. This study illustrated the performance of low-cost CO, NO2, O3, and SO2
sensors at high concentrations. In reference to the MEE [53] value for different pollution
conditions (Table S4), we evaluated the sensor performances under different pollution
levels. For SLR, there were either positive or negative relative biases for the three sensors,
while LSTMs successfully overcame this disadvantage and maintained a close mean bias of
approximately zero for all three types of sensors. Moreover, the SLR method had obvious
positive biases under low concentrations, which is not a large problem since the value
under clean air can tolerate relatively large errors and would not surpass the first-grade
critical value. CO showed the best performances for all these sensor types, with mean
relative biases decreasing from 10% to −5% under concentrations of 0–500 to >3000 ppb for
SLR (Figure 5a). CO is not a major polluting species in Beijing and is part of the “Excellent”
level (Table S4) most of the time. Moreover, CO measurement is also useful as a tracer
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for fossil fuel combustion and other pollutants due to their homology and needs further
investigation in future studies. For O3, the relative biases decreased from 90% to −10%
under concentrations of 0–40 to >150 ppb for SLR (Figure 5b). For O3 light pollution and
moderate pollution (Table S4), the SLR was not good enough, while the LSTMs decreased
the biases to <5%. The mean relative biases for NO2 decreased from 180% to −20% under
concentrations of 0–15 to >100 ppb for SLR (Figure 5c). The NO2 pollution in Beijing is also
light and is primarily less than 150 ppb (excellent to good).
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3.5. Impacts of Different Environmental Factors on the Calibration Results

Temperature influenced electrochemical air quality sensors in a complicated manner
by affecting the working electrode and auxiliary electrode [52,54], as well as the resistance
and capacitance sensors on ISBs or motherboards; thus, there was no universal law for the
responses of the three sensors to temperature in this study. To compare the two calibration
methods, there were relatively large positive or negative biases for the three sensors for
SLR, while the LSTMs performed much better. For CO and NO2, there were increasing
trends of relative biases with the increase in temperature and an abrupt drop when the
temperature surpassed 40 ◦C (Figure 6a,c), which is due to the sharp decline in sensor
measurements when the temperature is >40 ◦C (Figure S4). Specifically, for CO, the relative
biases were −10%, 0%, 22%, 24%, and −10% under temperatures of <10 ◦C, 10–20 ◦C,
20–30 ◦C, 30–40 ◦C, and >40 ◦C for SLR, respectively (Figure 6a). The mean relative biases
for NO2 were −2%, 1%, 40%, 40%, and −120% under temperatures of <10 ◦C, 10–20 ◦C,
20–30 ◦C, 30–40 ◦C, and >40 ◦C for SLR, respectively (Figure 6c). For O3, the relative biases
were 25%, 2%, −20%, −10%, and 40% under temperatures of <10 ◦C, 10–20 ◦C, 20–30 ◦C,
30–40 ◦C and >40 ◦C for SLR, respectively (Figure 6b). For the LSTMs, the relative biases
were less than 10% in most cases (Figure 6a–c).
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Humidity affects the reaction activities of different gas species [54]. CO is an inert
gas, and thus, its relative biases showed no trend with increasing RH for either the SLR
or LSTM models. O3 showed a decreasing trend of relative biases, and NO2 showed an
increasing trend for the SLR method. In detail, the relative biases were less than 5% for all
the RH conditions (Figure 7a). For O3, the relative biases decreased from 25% to 0% for
RHs of <20% and 20–40%, while they increased to−25% for RH conditions >40% using the
SLR method (Figure 7b). For NO2, the relative biases decreased from 40% to approximately
0% from RH < 20% to RH = 60% and then increased to 75% for RH > 75% with the SLR
(Figure 7c). For the LSTM method, the relative biases were less than 5% for O3 and less
than −50% for NO2. Hagan et al. [52] also found that RH was negligible for Alphasense
sensors, although the sensor response may be dependent on RH; for certain specific datasets,
RH does not contribute to the signal uniquely due to the strong coverage of temperature.
In the experiments of Bigi et al. [30], RH was proven useful in NO regressions.
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The comparisons between the simple linear correction and the neural network show
that the neural network works well under various environmental conditions and is a
promising method for sensor calibration when SLR cannot achieve satisfactory perfor-
mances.

4. Conclusions

In this paper, four types of electrochemical air quality sensors, namely, CO, NO2, O3,
and SO2 were comprehensively studied in a field environment in Beijing. We used linear
regression methods (SLR and MLR), machine learning methods (RFR), and neural networks
(LSTMs) to train and test the measurements with nearby reference measurements from
MEE. We found that the MLR generally did not improve the performances of these sensors
after considering the influences of temperature and RH compared with SLR. However,
the RFR and LSTM models significantly increased the performances of O3, NO2, and SO2
compared with the SLR and MLR, while CO did not increase significantly since the SLR
already performed well. The SO2 sensor did not perform as satisfactorily as the other three
sensors, largely due to the low environmental gas concentrations. However, in general,
for CO, O3, and NO2, the best agreement between sensors and reference measurements
was observed for neural network calibrations (LSTM) compared in all methods.

In addition, we evaluated the sensor performances under different pollution levels.
For the SLR calibrated data, there were either positive or negative relative biases for the
three sensors, while the LSTMs successfully overcame this disadvantage and maintained
a close mean bias of approximately zero for all three types of sensors (CO, NO2, and O3).
Moreover, the SLR method had obvious positive biases under low concentrations, which
is not a large problem since the value under clean air can tolerate relatively large errors
and would not surpass the first-grade critical value. We found that systematic biases of
the CO, O3, and NO2 sensors are small for the SLR and LSTM calibrated data at high
concentrations, indicating that the sensors have good responses and high measurement
accuracies under high concentration conditions. The results also show that after calibration,
these sensors are suitable for hot spots with high pollution.

Regarding the impacts of different environmental factors on the calibration results,
we found that there was no universal law for the CO, O3, and NO2 sensor responses
to temperature and RH in this study. The three sensors had relatively large positive or
negative biases for the SLR calibrated data, while the LSTMs performed much better, which
indicated that the LSTMs obviously eliminated the influence of temperature and humidity
on the sensor signals. For CO and NO2, there were increasing trends of relative biases with
increasing temperature and an abrupt drop when the temperature surpassed 40 ◦C.

The methodology and results have extensive potential benefits and implications for
assessing other low-cost sensors. We have evaluated the performances of the sensors over
the course of one year, and much longer study periods are still needed to evaluate the
length of a chemical sensor’s life. Three of the four sensors we evaluated (CO, O3, and NO2)
are suitable for pollution hotspot monitoring with LSTM calibrations.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-8
220/21/1/256/s1, Figure S1: Scatter plot of sensor voltage signals (with Va and without Va) and
MEE data. (a) CO, (b) O3, (c) NO2, (d) SO2. Figure S2. Comparison of (a) CO, (b) O3, (c) NO2,
(d) SO2 volume concentrations between the MEE Olympic Sports Center station (MEE) and the
two uncalibrated sensor, (e) and (f) are temperature and relative humidity of the field where the
sensor packages is located on 25 October 2019 to 10 October 2020, in Beijing based on a 24 h rolling
average. Figure S3. Time series in winter (December 2019–February 2020) of SO2 sensor’s SLR/LSTM
calibrated data and MEE data based on a 24 h rolling average. Figure S4. Time series of CO, NO2
and temperature sensors and MEE during high temperature period in summer (2 July 2020–10 July
2020), the blue vertical line represents the time corresponding to the sensor temperature > 40 ◦C.
Table S1: Pairwise correlation coefficients (R2) between sensor signals, environmental variables,
and reference data. Table S2. Performances of O3 sensor with linear regressions (SLR, MLR). Table S3.
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Performances of NO2 sensor with linear regressions (SLR, MLR). Table S4. Individual air quality
index and corresponding pollutants volume concentration limit table in China.
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a Measurement Instrument of E-Nose Type to Evaluate Ambient Air Quality with Respect to Odour Nuisance in a Vicinity of
Municipal Processing Plants. Sensors 2017, 17, 2671. [CrossRef] [PubMed]

27. Martin, C.R.; Zeng, N.; Karion, A.; Dickerson, R.R.; Ren, X.; Turpie, B.N.; Weber, K.J. Evaluation and environmental correction of
ambient CO2 measurements from a low-cost NDIR sensor. Atmos. Meas. Tech. 2017, 10, 2383–2395. [CrossRef] [PubMed]

28. Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the
Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [CrossRef]

29. Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.K.; Britter, R. The rise of
low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [CrossRef]

30. Bigi, A.; Mueller, M.; Grange, S.K.; Ghermandi, G.; Hueglin, C. Performance of NO, NO2 low cost sensors and three calibration
approaches within a real world application. Atmos. Meas. Tech. 2018, 11, 3717–3735. [CrossRef]

31. Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Calibration of a cluster of low-cost sensors for the
measurement of air pollution in ambient air. In Proceedings of the IEEE SENSORS 2014, Valencia, Spain, 2–5 November 2014;
Institute of Electrical and Electronics Engineers (IEEE): Interlaken, Switzerland, 2014; pp. 21–24.

32. Hagan, D.H.; Gani, S.; Bhandari, S.; Patel, K.; Habib, G.; Apte, J.S.; Ruiz, L.H.; Kroll, J.H. Inferring Aerosol Sources from Low-Cost
Air Quality Sensor Measurements: A Case Study in Delhi, India. Environ. Sci. Technol. Lett. 2019, 6, 467–472. [CrossRef]

33. Alphasense. Alphasense CO-B4 Carbon Monoxide Sensor Datasheet. 2019. Available online: http://www.alphasense.com/
WEB1213/wp-content/uploads/2019/09/CO-B4.pdf (accessed on 1 January 2019).

34. Alphasense. Alphasense NO2-B43F Nitrogen Dioxide Sensor Datasheet. 2019. Available online: http://www.alphasense.com/
WEB1213/wp-content/uploads/2019/09/NO2-B43F.pdf (accessed on 1 January 2019).

35. Alphasense. Alphasense OX-B431 Ozone + Nitrogen Dioxide Sensor Datasheet. 2019. Available online: http://www.alphasense.
com/WEB1213/wp-content/uploads/2019/09/OX-B431.pdf (accessed on 1 January 2019).

36. Alphasense. Alphasense SO2-B4 Sulfur Dioxide Sensor Datasheet. 2019. Available online: http://www.alphasense.com/WEB121
3/wp-content/uploads/2019/09/SO2-B4.pdf (accessed on 1 January 2019).

37. Alphasense. Alphasense Individual Sensor Board (ISB) Datasheet. 2019. Available online: http://www.alphasense.com/WEB121
3/wp-content/uploads/2019/10/ISB.pdf (accessed on 1 January 2019).

38. Mei, H.; Han, P.; Wang, Y.; Zeng, N.; Liu, D.; Cai, Q.; Deng, Z.; Wang, Y.; Pan, Y.; Zeng, N. Field Evaluation of Low-Cost Particulate
Matter Sensors in Beijing. Sensors 2020, 20, 4381. [CrossRef]

39. Liu, X.; Jayaratne, R.; Thai, P.; Kuhn, T.; Zing, I.; Christensen, B.; Lamont, R.; Dunbabin, M.; Zhu, S.; Gao, J.; et al. Low-cost
sensors as an alternative for long-term air quality monitoring. Environ. Res. 2020, 185, 109438. [CrossRef]

40. CNEMC, China National Environmental Monitoring Centre. National Air Quality Monitoring Data. 2020. Available online:
http://www.cnemc.cn/ (accessed on 30 July 2013).

41. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
42. Zimmerman, N.; Presto, A.; Kumar, S.P.N.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L.; Subramanian, R. A ma-

chine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring.
Atmos. Meas. Tech. 2018, 11, 291–313. [CrossRef]

43. Peng, W.; Sun, L.; Anand, A.; Zhang, Q.; Zong, H.; Deng, Z.; Wang, Y.; Ning, Z. Development and evaluation of a robust
temperature sensitive algorithm for long term NO2 gas sensor network data correction. Atmos. Environ. 2020, 230, 117509.

44. Tian, Y.; Zhang, K.; Li, J.; Lin, X.; Yang, B. LSTM-based traffic flow prediction with missing data. Neurocomputing 2018, 318, 297–305.
[CrossRef]

45. Kanjo, E.; Younis, E.M.; Ang, C.S. Deep learning analysis of mobile physiological, environmental and location sensor data for
emotion detection. Inf. Fusion 2019, 49, 46–56. [CrossRef]

46. Zhang, W.; Guo, W.; Liu, X.; Liu, Y.; Zhou, J.; Li, B.; Lu, Q.; Yang, S. LSTM-Based Analysis of Industrial IoT Equipment. IEEE Access
2018, 6, 23551–23560. [CrossRef]

47. Yang, Y.; Dong, J.; Sun, X.; Lima, E.; Mu, Q.; Wang, X. A CFCC-LSTM Model for Sea Surface Temperature Prediction. IEEE Geosci.
Remote Sens. Lett. 2018, 15, 207–211. [CrossRef]

http://doi.org/10.5194/amt-2019-408
http://doi.org/10.5194/acp-16-13449-2016
http://doi.org/10.5194/amt-11-2683-2018
http://doi.org/10.5194/amt-13-1671-2020
http://doi.org/10.1080/16742834.2020.1746627
https://ec.europa.eu/jrc/en/publication/brochures-leaflets/measuring-air-pollution-low-cost-sensors
https://ec.europa.eu/jrc/en/publication/brochures-leaflets/measuring-air-pollution-low-cost-sensors
http://doi.org/10.3390/s17112671
http://www.ncbi.nlm.nih.gov/pubmed/29156597
http://doi.org/10.5194/amt-10-2383-2017
http://www.ncbi.nlm.nih.gov/pubmed/30996750
http://doi.org/10.3390/atmos10090506
http://doi.org/10.1016/j.envint.2014.11.019
http://doi.org/10.5194/amt-11-3717-2018
http://doi.org/10.1021/acs.estlett.9b00393
http://www.alphasense.com/WEB1213/wp-content/uploads/2019/09/CO-B4.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2019/09/CO-B4.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2019/09/NO2-B43F.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2019/09/NO2-B43F.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2019/09/OX-B431.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2019/09/OX-B431.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2019/09/SO2-B4.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2019/09/SO2-B4.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2019/10/ISB.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2019/10/ISB.pdf
http://doi.org/10.3390/s20164381
http://doi.org/10.1016/j.envres.2020.109438
http://www.cnemc.cn/
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.5194/amt-11-291-2018
http://doi.org/10.1016/j.neucom.2018.08.067
http://doi.org/10.1016/j.inffus.2018.09.001
http://doi.org/10.1109/ACCESS.2018.2825538
http://doi.org/10.1109/LGRS.2017.2780843


Sensors 2021, 21, 256 18 of 18

48. Thermo Scientific. Thermo Scientific Model 43 i: Sulfur Dioxide Analyzer—Pulsed Fluorescence Gas Analyzer. 2020. Avail-
able online: https://assets.thermofisher.com/TFS-Assets/LSG/Specification-Sheets/EPM-43i-Datasheet.pdf (accessed on 25
November 2020).

49. Tang, L.; Xue, X.; Qu, J.; Mi, Z.; Bo, X.; Chang, X.; Wang, S.; Li, S.; Cui, W.; Dong, G. Air pollution emissions from Chinese power
plants based on the continuous emission monitoring systems network. Sci. Data 2020, 7, 1–10. [CrossRef]

50. Meng, W.; Zhong, Q.; Chen, Y.; Shen, H.; Yun, X.; Smith, K.R.; Li, B.; Liu, J.; Wang, X.; Ma, J.; et al. Energy and air pollution
benefits of household fuel policies in northern China. Proc. Natl. Acad. Sci. USA 2019, 116, 16773–16780. [CrossRef]

51. Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic
emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [CrossRef]

52. Hagan, D.H.; Isaacman-VanWertz, G.; Franklin, J.P.; Wallace, L.M.M.; Kocar, B.D.; Heald, C.L.; Kroll, J.H. Calibration and
assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments. Atmos. Meas. Tech. 2018,
11, 315–328. [CrossRef]

53. Ministry of Ecology and Environment. Ambient Air Quality Standards. 2017. Available online: http://www.cnemc.cn/jcgf/
dqhj/201711/P020181010540074249753.pdf (accessed on 5 November 2017).

54. Wei, P.; Ning, Z.; Ye, S.; Sun, L.; Yang, F.; Wong, K.C.; Westerdahl, D.; Louie, P.K.K. Impact Analysis of Temperature and Humidity
Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring. Sensors 2018, 18, 59. [CrossRef] [PubMed]

https://assets.thermofisher.com/TFS-Assets/LSG/Specification-Sheets/EPM-43i-Datasheet.pdf
http://doi.org/10.1038/s41597-020-00665-1
http://doi.org/10.1073/pnas.1904182116
http://doi.org/10.5194/acp-18-14095-2018
http://doi.org/10.5194/amt-11-315-2018
http://www.cnemc.cn/jcgf/dqhj/201711/P020181010540074249753.pdf
http://www.cnemc.cn/jcgf/dqhj/201711/P020181010540074249753.pdf
http://doi.org/10.3390/s18020059
http://www.ncbi.nlm.nih.gov/pubmed/29360749

	Introduction 
	Materials and Methods 
	Sensor Configuration and Field Deployment 
	Data Processing 
	Evaluation Parameters 
	Calibration Methods 
	Simple Linear Regression and Multiple Linear Regressions 
	Random Forest Regressor 
	Long Short-Term Memory Networks 


	Results and Discussion 
	Performances of Sensors with Linear Regressions (SLR/MLR) 
	Calibration by Machine Learning (RFR) 
	Calibration by Neural Network (LSTMs) 
	Sensor Biases under Different Pollution Conditions 
	Impacts of Different Environmental Factors on the Calibration Results 

	Conclusions 
	References

