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Exopolysaccharides (EPS) are extracellularmacromolecules excreted as tightly bound capsule or loosely attached
slime layer inmicroorganisms. They playmost prominent role against desiccation, phagocytosis, cell recognition,
phage attack, antibiotics or toxic compounds and osmotic stress. In the last few decades, natural polymers have
gained much attention among scientific communities owing to their therapeutic potential. In particular the EPS
retrieved fromprobiotic bacteriawith varied carbohydrate compositions possess a plenty of beneficial properties.
Different probioticmicrobes have unique behavior in expressing their capability to display significant health pro-
moting characteristics in the form of polysaccharides. In this new era of alternative medicines, these polysaccha-
rides are considered as substitutes for synthetic drugs. The EPS finds applications in various fields like textiles,
cosmetics, bioremediation, food and therapeutics. The present review is focused on sources, chemical composi-
tion, biosynthetic pathways of EPS and their biological potential. More attention has been given to the scientific
investigations on antimicrobial, antitumor, anti-biofilm, antiviral, anti-inflammatory and immunomodulatory
activities.
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1. Introduction

Microbial polysaccharides are extracellular polymeric substances ei-
ther soluble or insoluble that are synthesized by bacteria, yeast, algae,
a).
fungi etc. are considered to be value added substances and exploited
for different purposes [1,2]. EPS are metabolic by-products of microor-
ganisms [3]. They are high molecular weight compounds composed of
carbohydrates (sugar residues), substituted with proteins, DNA, phos-
pholipids and non-carbohydrate substituents such as acetate, glycerol,
pyruvate, sulfate, carboxylate, succinate and phosphates [4–6]. Accord-
ing to the definitions of WHO and Food and Agriculture Organization of
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Fig. 1. Different sources of probiotic bacteria.
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the United Nations (FAO), ‘Probiotics are live micro-organisms, which
when consumed in adequate amounts confer ahealth benefit on the
host’ [7,8]. Amongmicrobial polysaccharides, EPS produced by probiotic
lactic acid bacteria (LAB) have been chosen for various applications be-
cause they are generally regarded as safe (GRAS) and utilized for biolog-
ical activities in-vitro as well as in-vivo conditions [9,10].

Microbial polysaccharides have interesting and attractive character-
istics and are exploited in food, cosmetic and pharmaceutical industries
as bio-flocculants, bio-absorbents, and drug delivery agents [11,12].
Since polysaccharides are more advantageous compared to synthetic
polymers, they are used in green synthesis of silver nanoparticles [13].
The shape and size of a nanoparticle is greatly influenced by association
of metal ions with hydroxyl groups of EPS. EPS are biodegradable, non-
toxic, bio-compatible and abundantly present in natural sources [14].
The most prominent EPS producing LAB are Lactobacillus, Lactococcus,
Bifidobacterium, Leuconostoc, Pediococcus, Streptococcus, Enterococcus
and Weissella sp. [15,16]. Among several microorganisms consumed
by the human beings, probiotic bacteria have the ability to survive in
the presence of bile, low pH, gastric juices and colonize in the epithelial
layer of the gastrointestinal tract [17,18]. Use of antibiotics reduces the
antagonistic activity of normal microbial flora against the pathogenic
microorganisms [19,20]. Probiotics have the capacity to act against anti-
biotics which creates immune suppression if ingested regularly [21].
They boost the immune system to fight against the diseases initiated
by the pathogenic microorganisms [18,22]. Therefore, probiotic EPS
are supplemented in the treatment of human disorders such as inflam-
matory bowel diseases, autoimmune diseases, colon cancer, gastric ul-
cers, cardiovascular diseases and obesity [23,24]. EPS are extensively
studied in the field of pharmacological applications as anticoagulants,
anti-allergic, antithrombotic, immunomodulatory, blood cholesterol
lowering, nutraceuticals etc. [25–27]. EPS has strongwater binding abil-
ity, water retention capacity, immense swelling and gelation potential
[2]. EPS like xanthan, sphingan, alginate, cellulose promotes biofilm for-
mation on the bacterial cell surfaces as a protecting barrier [28].

The EPS produced by Lactobacillus acidophilus, Lactobacillus gasseri,
Lactobacillus plantarum and Lactobacillus rhamnosus isolated from vari-
ous sources have been reported to possess antitumor as well as antiox-
idant activities [29,30]. Recent studies on EPS produced by Lactobacillus
plantarum C70 and L. plantarum RJF4 of different origin revealed its anti-
diabetic activity by inhibiting α-glucosidase and α-amylase enzymes
under in-vitro condition [1,31]. The EPS extracted from Lactobacillus
sp. Ca6 had shown to possess in-vivo dermal wound healing property
in male wistar rats [32]. The EPS of Lactobacillus strains have the ability
to stimulate innate immune response and EPS from Lactobacillus
plantarum JLK0142, Leuconostoc citreum, Lactobacillus johnsonii 142
and Bifidobacterium sp. contain significant immunomodulatory activity
[10,33,34]. It was observed that EPS produced by Bifidobacterium sp. re-
duce cholesterol level in diet induced obese mice [35]. The present re-
view is focused on EPS produced by probiotic bacteria and their
sources, structure and classification of EPS, physical properties, biosyn-
thetic pathways and various biological potential of EPS reported in re-
cent years. The current review holds upper edge over the most recent
review articles [36,37] as it discusses various captivating aspects of re-
cent researches conducted on novel probiotic EPS obtained from
fermenteddairy andnon-dairy food products. Diverse health promoting
characteristics of EPS were discussed in depth covering the up to date
investigations on this subject. The most fascinating feature is the inclu-
sion of the most recent exploration on in-vitro anti-diabetic activity of
EPS since the research on this attribute is much debated and delayed
due to its polysaccharide nature. The impact of varied physical proper-
ties of EPS on its biological activity is explored in detail.

2. EPS secreting probiotic bacteria and their sources

Probiotic strains can be obtained from dairy based and non-dairy
based sources as depicted in Fig. 1. Dairy based sources include milk
and milk products whereas non-dairy based sources include cereals,
fruits and vegetables. Although dairy based sources are studied for
their potential health benefits, they are unsuitable for peoplewho suffer
from lactose intolerance, high cholesterol, and are allergic milk proteins
[38]. In non-dairy based sources, the nutritional content of fruits, vege-
tables and cereals such as minerals, vitamins, dietary fibers, antioxi-
dants and other therapeutic properties helps in the survival of
enormous probiotic strains [39]. Any food based sources that contain
fermentable sugars have the potential to support the growth of
probiotics. In recent years to identify novel probiotic LAB, fermented
foods were also employed since they possess many advantages like ex-
tended shelf life, enhanced flavor and texture of the final product [27].
Probiotic bacteria can also be isolated from animal origin (meat and
meat products). Fermented food products contain probiotic bacteria
which are employed as starter cultures in their production. The EPS re-
trieved from the probiotics isolated from fermented foods also exerts
considerable benefits along with good probiotic properties and striking
functional characteristics [40]. A detailed list of EPS producing bacterial
sources with their biological properties is displayed in Table 1.

3. Structure and classification of EPS

Probiotic bacteria produce EPS extracellularly above the cell enve-
lope as capsules or slime layer (Glycocalyx) [41]. Polysaccharides accu-
mulated inside the cells are known as intracellular polysaccharides.
Capsular polysaccharides are closely attached to the bacterial cell sur-
face which offers protection to bacterial cells against phagocytosis, bac-
teriophage attack, desiccation and osmotic stress [15]. On the other
hand, EPS produced as slime layers are less closely attached to the
cells which can be removed easily. EPS are synthesized throughout the
logarithmic or in late logarithmic or in stationary phase. However, max-
imum production occurs only during late logarithmic phase than in sta-
tionary phase [4]. The quantity of EPS produced varies with strains,
medium composition, and culture conditions such as pH, temperature
and carbon/nitrogen ratios. The EPS secreted by probiotics differ by
monosaccharide composition, charge, linkage, presence of repeated
side-chains and substitutions [16,42]. In general, EPS are classified into
homopolysaccharides (HoPs) and heteropolysaccharides (HePs). HoPs
are either branched or unbranched and composed of either glucose or
fructose and are categorized into α-D-glucans (Ex. Dextran, Mutan,
Alternan, and Reuteran), β-D-glucans, fructans (Ex. Levan and Inulin)



Table 1
EPS producing probiotic bacteria with their source/s and biological properties.

S. no. Probiotic bacteria Source/s Biological properties References

1. Enterococcus faecium WEFA23 Healthy infant's feces Antioxidant activity and strong inhibition against the adhesion
of Listeriamonocytogenes CMCC54007 on HT-29 cells

[131]

2. Lactobacillus sp. Ca6 Gastrointestinal tract (GIT) of indigenous
poultry

Antimicrobial activity and sensitive to several antibiotics [132]
The wound healing activity of EPS-Ca6 was assessed using
excision wound model in rats

[32]

3. Lactobacillus gasseri FR4 Native chicken In-vitro antioxidant, antibacterial against food borne pathogens
and anti-biofilm activity of EPS

[97]

4. Lactobacillus plantarum KX041 Chinese Paocai Possessed the immune activity, DPPH/ABTS radicals scavenging
activities and DNA damage productive effect

[133]

5. Pediococcus pentosaceus M41 Marine source (low water activity dried
fish)

Antimicrobial activity, antioxidant activity, antitumor activity,
α-amylase and α-glucosidase inhibitions

[107]

6. Lactobacillus strains Pulp of the durian (Durio zibethinus) fruit Antimicrobial, antioxidant and reduces cholesterol [134]
7. Bacillus tequilensis FR9 GIT of free range chicken Gallus gallus

domesticus
Higher antioxidant activity [66]

8. Lactobacillus plantarum C70 Camel milk Antioxidant and cytotoxic activities against colon cancer and
breast cancer lines

[31]

9. Enterococcus faecium (BDU7) “Ngari” (traditional fermented fish of
Manipur)

Strong DPPH and superoxide radical scavenging ability (in-vitro) [135]

10. Lactobacillus plantarum YO175 and OF101 Traditional fermented cereal beverage Antioxidant activity [30]
11. Lactobacillus acidophilus (LA1) Infant feces Antioxidant activity by suppression of malondialdehyde and

nitric oxide serum levels
In-vivo antitumor against Ehrlich ascites carcinoma (EAC) cells

[100]

12. Lactobacillus gasseri Human vagina L-EPS of L. gasseri strains inhibit proliferation and induce
apoptosis in HeLa cells in strain dependent manner

[29]

13. Lactobacillusacidophilus 606 Human feces Cell bound EPS inhibited the proliferation of HT-29 colon cancer
cells by directly affecting cell morphology and not the cell cycle

[136]

14. Lactobacillus plantarum MTCC9510 Curd Antitumor activity and immunomodulatory activities [105]
15. Lactobacillus plantarum WLPL04 Healthy female breast milk Inhibits the adhesion of E. coli O157:H7 to HT-29 cells, antitumor

activity and anti-tumor activity against pathogens
[137]

16. Lactobacillus paracasei M7 Human breast milk Antioxidant, anti-biofilm and hypocholesterolemic activity [115]
17. Enterococcus faecium MC13 Gut of fish In-vitro anti-biofilm activity against Listeria monocytogenes [124]
18. Lactobacillusplantarum JLK0142 Fermented dairy tofu Improvement of the intestinal immunoglobulin A(IgA) content

and the serum levels of the cytokines, IL-2 and TNF-α
[73]

19. Leuconostoc citreum L3C1E7 Pico cheese Suppresses allergen-specific IgE synthesis and may alleviate
Th2-mediated allergic symptoms

[138]

20. Lactobacillus plantarum HY Home-made Sichuan pickle Antioxidant activity and α-amylase inhibitory activity [129]
21. Lactobacillus plantarum LRCC5310 Kimchi In-vitro anti-viral activity against Rota virus induced diarrhea

and regulates inflammatory response
[139]

22. L. plantarum 86, Weisellaconfusa AI10,
Pediococcusparvulus AI1, Weisellacibaria
142

Traditional Indian fermented foods
including dhokla batter, idli batter, dahi,
vegetables such as carrot, cabbage,
turmeric, cucumber and tomato

Antibacterial activity E. coli [40]

23. Lactobacillusplantarum 70,810 Chinese Paocai c-EPS significantly inhibited the proliferation of HepG-2,
BGC-823, especially HT-29 tumor cells

[106]

24. Lactobacillus plantarum H31 Pickled cabbage Reduce α-amylase activity and up-regulation of GLUT-4, AKT-2
and AMPK gene expression in insulin-resistant HepG2 cells

[118]

25. Lactobacillus helveticus LZ-R-5 Tibetan kefir In-vitro immunomodulatory activity [140]
26. Lactobacillus plantarum Tunisian traditional fermented food EPS induced gene expression in immunity and antioxidant

responses in fish
[141]

27. Lactobacillus bulgaricus subsp. delbrueckii Traditional Bulgarian yoghurt EPS activated NK cells, with the contribution of INF-γ, IL-12,
IL-18 cytokines via MyD88-driven signaling in mice

[142]

28. Leuconostoc mesenteroides Traditional fermented sourdough
samples

Levan up-regulates anti-inflammatory cytokine IL-4 [143]
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and polygalactans [43]. HePs are made up of D-glucose, D-galactose and
rare sugars such as L-rhamnose,mannose, arabinose and fucose. In some
cases, N-acetylglucosamine, N-acetylgalactosamine or glucuronic acid
are also present. They are designated as gellan, xanthan and kefiran
[44]. The molecular weight of HoPs is greater than 106 Da [45] whereas
for HePs it ranges from 104 and 6.0 × 106 Da [25]. The schematic classi-
fication of EPS is displayed in Fig. 2. Tables 2 and 3 represent the com-
plete list of HoPs and HePs with their probiotic source, composition
and potential industrial application/s.

4. Physical properties of EPS

EPS produced by LAB enhances the texture, mouth-feel and stability
of food products which greatly contributes to the significant progress in
production of novel food products. Microbial EPS have enormous func-
tional effects in food processing like viscosifiers, bio-thickeners, emulsi-
fiers, stabilizers, etc. which depends on temperature, pH and ionic
strength [46,47]. Thermal stability of EPS is a key feature in dairy indus-
tries, where it is used for its emulsifying and flavor retaining activities.
The purified EPS samples recovered from Leuconostoc citreum-BMS (bo-
vinemeat sausages), Leuconostoc mesenteroides-TMS (Turkeymeat sau-
sages), Pediococcus pentosaceus-DPS (date palm sap) and Leuconostoc
pseudomesenteroides-CM (cow milk) showed high thermostability
with the melting points higher than 224 °C which could be exploited
in thermal processed foods [47]. The EPS produced by Streptococcus
thermophilus CRL1190 with potential gastro-protective role, could be
used as a healthy food grade additive in the dairy industry for various
reasons such as good water and oil holding capacity, high aqueous sol-
ubility, thermal stability, antioxidant, emulsifying and flocculating ac-
tivities [48]. With its high water solubility, emulsifying activity and
thermal stability, the EPS retrieved from Leuconostoc citreum N21
could be employed in food processing as a food additive [49]. A novel
EPS produced by probiotic strain Enterococcus faecium F1 is being ex-
plored for food and pharmaceutical applications in industries due to



Fig. 2. Classification of bacterial exopolysaccharides.
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its potential emulsifying, thermal stability and other physicochemical
characteristics [50]. In-vitro evaluation of flocculation, emulsification,
solubility and other functional properties provides promising results
on the EPS produced by Lactobacillus rhamnosus which could be used
for commercial purposes [51]. Leuconostoc pseudomesenteroides XG5
isolated from home-madewine produced a dextranwhich has high vis-
cosity, making it ideal as thickening or viscosifying agent. Also it has
high water solubility and water holding capacity which provides con-
vincing characteristics to be used as hydrocolloids and stabilizer [52].

5. Biosynthetic pathways of EPS

Biosynthesis of EPS in probiotic bacteria occur in twoways, intra and
extracellular as represented in Fig. 3. HoPs are generally produced by
extracellular biosynthetic pathwaywhereas HePs are synthesized by in-
tracellular or extracellular pathways. Extracellular biosynthesis of HoPs
is mediated by specific extracellular glycosyl transferases and fructosyl
transferases during the polymerization process [53,54]. The sugar resi-
dues are cleaved into monomeric units outside the cell and assembled
extracellularly into a polymer with the help of glycosyl transferases.
Table 2
Homopolysaccharides from probiotic bacteria and their applications.

S. no EPS Organism Monomer Chemic

1. Dextran Leuconostoc mesenteroides, Lactobacillus
reuteri, Lactobacilluscasei,
Lactobacillussakei,
Lactobacillusfermentum, L. parabuchneri

Glucose Linked b
bonds;
1,4-bon
some de

2. Mutan Streptococcus mutans S. sobrinus,
Lactobacillus sp., Leuconostoc sp.

Glucose α-1,3-D

3. Alternan Leuconostoc mesenteroides Glucose α-1,3 an
bonds

4. Reuteran Lactobacillus reuteri ATCC 55730 Glucose α-1,4 gl
5. Curdlan Alcaligenes faecalis Glucose β-1,3-D-

α-1,3-β
6. Levan Bacillussubtilis, Streptococcus salivarius,

Streptococcusmutans
Fructose β-2,6 gl

7. Inulin-type Streptococcusmutans, Lactobacillusreuteri Fructose β-2,1 gl

8. Poly-galactans Lactococcus lactis subsp. lactis H414
Lactobacillus delbrueckii subsp. bulgaricus
(CRL 406 and 142)

Galactose Pentam
galactos
Sucrose is utilized as a specific substratewhich gets cleaved into glucose
and fructose and polymerized into glucan and fructan by glucan sucrase
and fructan sucrase [55] (Fig. 3). Glucan sucrases are further classified
into dextran sucrases (dextran), mutan sucrases (mutan), reuteran su-
crases (reuteran) and alternan sucrases (alternan) whereas fructan su-
crases are divided into levan sucrases (levan) and inulin sucrases
(inulin) respectively [27]. These polymerized HoPs are directly released
to the extracellular environment [55].

In intracellular biosynthetic pathway, the sugar residues are
transported into cell, converted to different monomeric units, polymer-
ized partially and attached to a membrane bound isoprenoid lipid car-
rier [56]. At this stage necessary modification of the polymer occurs
and then the polymer is transported outside and assembled as polysac-
charides. HePs synthesis by intracellular pathway is relatively complex
which involves various enzymes, carriers and transporter proteins
encoded by genes of chromosomal or plasmid origin [57]. The four
groups of enzymes involved in the biosynthesis of bacterial EPS are
listed in the Table 4. The HePs synthesis relies on Wzx/Wzy pathway
wherein except polymerization, all other processes takes place inside
the cytoplasm (Fig. 3). Sugar transportation, sugar nucleotide synthesis,
al structure Applications

y α-1,6 glycosidic
some 1,2-, 1,3- or
ds are also present in
xtran

As adjuvant, emulsifier, carrier and stabilizer in food,
pharmaceutical industries, plasma substitute, matrix of
chromatography column, anticoagulant, paper industry,
metal plating processing, for enhanced oil recovery and
biomaterials

-Glucan –

d α-1,6 glycosidic Prebiotics, sweeter in confectionaries, low viscosity,
bulking agent and extender in foods

ycosidic bonds Used in bakery
Glucan and
-D-glucans

Starter culture

ycosidic bonds Prebiotics, antitumor property, hypocholesterolemic agent,
adhesive, bio-thickener in food industry

ycosidic bonds Prebiotics nourishes gut mucosal cells and inhibits
pathogens, for targeted drug delivery against colon cancer
and substitute of fat in food products

eric repeating unit of
e

–



Table 3
Heteropolysaccharides from probiotic bacteria and their applications.

S.
no

Organism Sugar composition Molecular
weight

Molecular ratio Applications References

1. Lactobacillus
plantarum
JLK0142

Glucose and galactose 1.34 × 105 Da 2.3:1.06 Useful as food adjunct or clinical
immunomodulatory agent for use in
functional foods or in medicines

[73]

2. Lactobacillus
johnsonii 142

D-Glucose and D-galactose 1.0 × 105 Da 1:4 – [34]

3. Enterococcus
faecium MC13

Galactose and glucose 2.0 × 105 Da – Strong emulsifying and flocculating agent [124]

4. Streptococcus
thermophilus
CC30

Glucose and galactose 58 to 180 kDa 1:1 Useful as emulsifier in food industry [144]

5. Lactobacillus
helveticus
MB2-1

Glucose, mannose, galactose,
rhamnose and arabinose

1.83 × 105 Da 3.12:1.01:1.00:0.18:0.16 – [145]

6. Lactobacillus
plantarum C70

Arabinose, mannose, glucose and
galactose

3.8 × 105 Da – Improving the texture and rheological
properties of various food systems

[31]

7. Lactobacillus
plantarum
WLPL04

Xylose, glucose and galactose 6.61 × 104 Da 3.4:1.8:1 Development of functional food [137]

8. Bacillus
tequilensis FR9

Glucose, arabinose, galactose,
mannose and xylose

– – Stabilizer and thickener in food and dairy
industries

[66]

9. Enterococcus
faecium
WEFA23

Mannose, glucose and galactose 2.50 × 104 Da 1.38:1.00:1.42 Development of therapeutics and
functional food

[131]

10. Lactobacillus
gasseri FR4

Glucose, mannose, galactose,
rhamnose, and a small fraction
fucose

1.86 × 105 Da – Used in food industries as an antioxidant
agent, viscosifying agent and
antimicrobial agent.

[97]

11. Lactobacillus
plantarum
JLAU103

Arabinose, rhamnose, fucose, xylose,
mannose, fructose, galactose and
glucose

12.4 kDa 4.05:6.04:6.29:5.22:1.47:5.21:2.24:1.83 Used as a natural antioxidant or
functional additive in food industry

[146]

12. Lactobacillus
casei WXD030

Glucose, glucosamine, and mannose 37.37 kDa 1.4:1.1:1 Used as adjuvant and to develop subunit
vaccines

[75]
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repeating unit synthesis, and polymerization of the repeating units
formed in the cytoplasm are the four main steps of the synthesis of
HePs. The entry of substrates depends on the type of sugars and occurs
via active or passive transport or phosphoenol pyruvate-
Fig. 3. Biosynthetic p
phosphotransferase transport system [4,9]. The glucose molecule
which enters the cytoplasm is phosphorylated by hexokinase (group 1
enzyme) into glucose-6-phosphate which further gets converted to
glucose-1-phosphate by the action of phosphoglucomutase. The
athway of EPS.



Fig. 4. Biological activities of EPS.
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enzyme belong to group 2, uridine-5′-di-phosphate (UDP)-glucose
pyrophosphorylase catalyzes conversion of glucose-1-phoshphate to
UDP-glucose (key molecule in EPS synthesis) [58]. Direct precursors
for bacterial EPS biosynthesis are formed intracellularly from intermedi-
ates of the central carbonmetabolism. The precursors and donormono-
mers for the biosynthesis of most of the repeating units are sugar
nucleotides such as nucleoside di-phosphate sugars (NDP-glucose), nu-
cleoside di-phosphate sugar acids (GDP-mannuronic acid), and nucleo-
side diphosphate sugar derivatives (UDP-glucose, UDP-N-acetyl
glucosamine, UPD-galactose and deoxythymidine di-phosphate
(dTDP)-rhamnose) [59,60]. In the Wzx/Wzy dependent pathway,
these sugar nucleotides considered as individual repeating units are at-
tached to undecaprenyl di-phosphate anchor (C55 lipid carrier) located
at the inner membrane, by glycosyl transferases (group 3 enzyme) and
translocate across the cytoplasmic membrane by a Wzx protein
(flippase) [26,61,62]. The carrier lipid is identified as isoprenoid alcohol,
and its terminal alcohol group is attached to a monosaccharide residue
through a pyrophosphate bridge. At this stage, polysaccharides may be
modified by different enzymatic activities such as acetylation,
sulphation and methylation. Thus, these modified polymers are re-
leased at the external surface of the bacterial cell either as capsular poly-
saccharides or as slime layer (EPS) by the action of group 4 hydrophobic
enzymes like flippase, permease or ABC transporters [6,63].

6. Health potential of EPS

The biological potential of EPS depends on its chemical naturewhich
is influenced by fermentation conditions employed in the cultivation of
probiotic bacteria [55,64]. EPS from different sources are influenced by
monosaccharide composition, glycosidic linkage, chemical modifica-
tions, etc., that encompasses the specific conformation, expanded
chain, molecular weight etc. [17]. The occurrence of these constituents
contributes to the health promoting activities of EPS. The EPS produced
by probiotic bacteria have gained much importance in therapeutic
applications such as antimicrobial, immunomodulatory, anti-
inflammatory, antioxidant, anti-tumor, anti-viral, anti-diabetic, anti-
ulcer and cholesterol lowering activities [25,27] (Fig. 4).

6.1. Antimicrobial activity

Several studies reports LAB are able to produce many antimicrobial
compounds that include bacteriocins, diacetyl, organic acid, carbon di-
oxide and some other low-molecular weight substances, such as
reuterin, reutericyclin and antifungal peptides [65]. Apart from these
compounds, EPS produced by LAB has the ability to express antagonistic
effect towards the pathogenic bacteriawhich iswell recorded by several
researchers. The EPS producing Lactobacillus rhamnosus isolated from
human breast milk showed strong anti-bacterial activity against patho-
genic E. coli and Salmonellatyphimurium under in-vitro condition [51].
EPS from probiotic bacterium Bifidobacterium longum impairs the cell
Table 4
Enzymes involved in biosynthetic pathway of EPS.

S.
no.

Group Enzyme Mode of action

1.
Group-1 Hexokinase Intracellular enzymes

2.
Group-2 Uridine-5′diphosphate (UDP)-glucose

pyrophosphorylase
Catalyzes conversion

3.
Group-3 Glycosyl transferases (GTFs) Transfers sugar nucle

4.
Group-4 Wzx protein (flippase), permease and

ABC-transporters
Involved in the polym
membrane and cell w
Translocate individua
membrane
division rather than inhibiting the growth of pathogenic bacteria [10].
The HePs from Lactobacillus gasseri was investigated for its anti-
bacterial activity on various test pathogens which revealed that it has
inhibited Listeria monocytogenes MTCC 657 to a greater extent [97].
EPS from Lactobacillus sp.Ca6 inhibited the growth ofMicrococcus luteus
and Salmonella entericawith zone of inhibition of around 14 and 10mm,
respectively [32]. EPS-C70 from camel milk exhibited 2 to 3 log reduc-
tion against tested food-borne pathogens with initial population of 9
log CFU/ml and highest inhibition was observed against
Staphylococcusaureus and E. coli [31].

6.2. Immunomodulatory activity

Various LAB and their extracellular polysaccharides were discovered
tomodulate the host immune system by boosting the proliferation of T/
B lymphocytes, natural killer (NK) cell tumoricidal activity, mononu-
clear cell phagocytic capacity, mitogenic activity, inducing cytokines
and collectively increases the host immune defense against pathogen
[67]. Most importantly, the immunomodulatory activities of EPS syn-
thesized by LAB are controlled by the physicochemical properties such
as averagemolecular weight, monosaccharide composition, water solu-
bility, electric charges and stereochemistry [68]. Some researchers have
postulated that EPS of small molecular weight and/or negative charges
are strong immunomodulators whereas a neutral polymer with larger
molecular weight is weak immunomodulators and possess immuno-
suppressive activity [69]. EPS are employed as immunomodulators in
References

converts glucose to glucose-6-phosphate [43]

of glucose-1-phosphate to UDP-glucose (key molecule of EPS synthesis) [147]

otides to a glycosyl carrier lipid [55]
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l repeating units attached to UDP-C55 lipid carrier across cytoplasmic
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regulating both innate and adaptive immunity. These
exopolysaccharides improves antibody mediated immunity produced
by B lymphocytewhich is accountable for specific recognition and elim-
ination of antigens [70]. They play a vital role in reducing the chance of
infections, prevent gastrointestinal tract cancers and inflammatory dis-
eases, such as inflammatory bowel disease (IBD) [51]. The modulation
of cytokines has been promoted by these immunomodulators which
leads to the change in the regular behavior of immune system [71]. Lac-
tobacillus johnsonnii 142 and its corresponding EPS isolated from intes-
tine of mice with experimentally induced IBD promoted the
differentiation of dendritic cells, triggered the production of cytokines,
and preferentially induced Th-2 immune response [72]. EPS isolated
from Lactobacillus plantarum JKL0142 stimulated the immunomodula-
tory activity of RAW 264.7 macrophage cells in cyclosphamide induced
immunosuppressed mice [73]. In-vivo studies conducted in treated fe-
male Swiss albino mice revealed that EPS produced by wild type
Weissella confusa has stimulated highest production IgM and IgG anti-
bodieswhereasmutant type producedmore IgA antibodies [74]. Subcu-
taneous administration of EPS from Lactobacillus casei in mice has
promoted humoral and cellular immune responses by increasing
serumantibodies, T cell proliferation, enhanced expression of cytokines,
and up-regulation of dendritic cell maturation [75].

6.3. Anti-inflammatory activity

In general, inflammation is the process of restoration of normal tis-
sue and its function in response to infection and tissue injury that occurs
in host. The prolonged inflammatory action leads to serious
inflammatory diseases and cancer [76]. The microorganisms initiate in-
flammation through endotoxin lipopolysaccharide (LPS) which targets
Toll-like receptor-4 (TLR-4) to promote inflammatory gene expression
[77]. LPS generates the production of mediators and cytokines such as
nitric oxide (NO) and pro-inflammatory cytokines like IL-1β, IL-6, and
tumor necrosis factor (TNF-α) and suppress the secretion of anti-
inflammatory cytokines such as IL-10 [78]. The excessive production
of pro-inflammatory cytokines via NF-κB activation results in both
acute and chronic inflammation causing inflammatory diseases such
as tissue injuries, asthma, IBD and rheumatoid arthritis. Microbial bio-
molecules activate macrophages which kill bacteria by secreting cyto-
kines, regulate immunity, stimulate phagocytosis, and present
bacterial antigens to helper T cells [79]. EPS produced by probiotic bac-
teria has been reported to control inflammatory mechanism of the im-
mune cells [80]. In particular, more in-vitro studies on macrophage
cell lines are performed by several researchers to evaluate the innate
immune response induced by EPS. The purified novel EPS from Lactoba-
cillus pentosus LZ-R-17 showed significant immunostimulatory activity
by increasing the viability of RAW264.7 macrophage cells, enhancing
phagocytosis, improving macrophage activation and promoting the se-
cretion of NO, TNF-α, Il-1β, IL-6 and IL-10 [81]. EPS from Lactobacillus sp.
isolated from healthy human vagina showed considerable anti-
inflammatory activity with decrease and increase in the production of
TNF-α and IL-10 respectively in HeLa cells [29]. The polymer extracted
and purified from Bifidobacterium longum BCRC 14634 demonstrated
mild immunomodulatory activities on J77A.1 macrophages with the in-
crease in the secretion of IL-10 and reduction in the level of TNF-α [10].
In-vitro evaluation of EPS produced by the Lactobacillus rhamnosusKL37
stimulated the production of both pro-inflammatory (TNF-α, IL-6, IL-
12) and anti-inflammatory (IL-10) cytokines in mouse peritoneal mac-
rophages [42]. The probiotic strain Lactobacillus paraplantarum BGCG11
tested in the peritonitis rat model induced by carrageenan decreased
the levels of pro-inflammatory mediators, IL-1β, TNF-α and iNOS, and
enhanced the secretion of anti-inflammatory IL-10 [82]. The EPS from
Bacillus licheniformis BioE-BL11 and Lactobacillus mesenteroides
BioE-LMD18 (Korean Kimchi) showed inhibition in secretion of pro-
inflammatory cytokine IL-6 in LPS stimulated RAW264.7mouse macro-
phages and enhanced secretion of the anti-inflammatory cytokine IL-10
in dose dependent manner. This property encourages EPS to be
employed in food, cosmetic and pharmaceutical industries [83]. The
study conducted with EPS obtained from isogenic Bifidobacterium
animalis subsp. lactis strains represents its capability to stimulate
TLR-4 regardless of their molar mass in mouse colitis model [84]. The
monosaccharide galactose present in EPS of Lactobacillus reuteri Mh-
001 influenced anti-inflammatory activity on the macrophages [85].
Acidic EPS103 produced by Lactobacillus plantarum significantly re-
duced excessive release of IL-6, TNF-α, NO and Prostaglandin E2
(PGE2) through the suppression of NF-κB activation by inhibition of
Iκ-Bα phosphorylation in RAW 264.7 macrophages activated by LPS
[86]. The EPS extract from Lactobacillus fermentum Lf2 combined with
yoghurt given to BALB/c mice resulted in the increased concentration
of short chain fatty acids such as acetate and butyrate [87]. These fatty
acids are volatiles produced by gut microbiota and have intestinal
anti-inflammatory properties. It was observed that Bifidobacteria can
protect the host against enteropathogenic infections through the pro-
duction of acetate [88]. Butyrate participates in the mobility of the
colon, reduces inflammation, increases visceral irrigation, induces apo-
ptosis and inhibits the progression of tumor cells, contributes with the
prevention of colorectal cancer [89]. Based on these recent research
findings, diagrammatic representation of in-vitro anti-inflammatory ac-
tivity of EPS on LPS stimulated RAW 264.7 macrophages is proposed in
Fig. 5.

6.4. Antioxidant activity

Reactive oxygen species (ROS) such as superoxide, hydroxyl radical,
and hydrogen peroxide are produced from normal cellular metabolism
responsible for severe ill-effects in humans, including cancer, athero-
sclerosis, rheumatoid arthritis, and neurodegenerative diseases [65]. Su-
peroxide free radicals considered the most harmful ROS, serves as a
precursor for other ROS such hydroxyl radical, hydrogen peroxide and
singlet oxygen. Oxidative stress created by these ROS results in damage
of proteins, mutations in DNA, oxidation of membrane phospholipids,
and modification in low-density lipoproteins which leads to tissue
damage and death [90,91]. Antioxidants are substances that retard
and hinder oxidation. Although synthetic antioxidants like butylated
hydroxyl-anizole, butylated hydroxyl-toluene and n-propyl gallate are
used to encounter these free radicals but fails in their complete elimina-
tion resulting in carcinogenesis and liver damage [92]. There are many
reports on EPS from probiotic bacteria with potential antioxidant activ-
ity. In general, LAB stains confronts free radicals through inherent cellu-
lar antioxidant defense by secreting enzymes like superoxide dismutase
and assists the production of the major non-enzymatic antioxidant and
free radical scavenger glutathione (GSH). The exopolysaccharides ex-
tracted from various probiotics were evaluated for their ability to ex-
hibit antioxidant potential by the degradation of superoxide anion and
hydrogen peroxide, reduction of ROS and metal chelating activity and
it is desired to employ them as food supplement or in direct drug deliv-
ery system [93]. The partially purified EPS of Lactobacillusplantarum
YML009 has been proved to have antioxidant effects that may involve
scavenging the ROS, up-regulation of enzymatic and non-enzymatic an-
tioxidant activities. The same report admitted that probiotics and their
secondarymetabolites lowers the ROS accumulation aswell as degrades
superoxide anion and hydrogen peroxide [94]. The EPS from
Lactobacillusdelbrueckii sp. bulgaricus SRFM-1 which was obtained
from fermented milk provides satisfactory results on antioxidant activ-
ity [95]. The EPS extracted from Lactobacillus plantarum ZDY2013 has
been reported to show increased antioxidant activity after sulfonation
[96]. The DPPH scavenging activity of EPS from Lactobacillus gasseri
FR4 isolated fromnative chicken at 4mg/ml concentrationwas reported
as 75.95% with ascorbic acid (92.94%) as standard [97]. Glucan (500 μg/
ml) isolated from idli batter displayed significant antioxidant activity in
DPPH (74%) and hydroxyl radical scavenging assays (97.8%). This en-
sures that the glucan has the promising future in food and



Fig. 5. In-vitro anti-inflammatory activity of EPS from LAB on LPS stimulated RAW264.7macrophages. EPS binds to TLR-4 onmacrophage cell surface and activates the cell throughNF-κB
and MAPK pathways. It has been observed that EPS treatment down regulates the NF-κB activation by inhibiting the phosphorylation of NF-κB inhibitor (Iκ-B). Consequently the level of
pro inflammatory mediators decreases and anti-inflammatory mediators increases in the cell. Activation of MAPK pathway results in enhanced proliferation of macrophages. The
expression of relevant mRNAs and proteins were confirmed by qRT-PCR and western blotting.
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pharmaceutical industry [98]. Two EPS fractions of acidic HePs rich in
mannose and galactose produced by Weissella cibaria SJ14 showed
strong antioxidant activity [99].

6.5. Anticancer activity

Cancer is an abnormal development of cells leading to destruction of
various organs of the body resulting in death. Among different types of
cancer, the prevalence of colon cancer has become common, increases
death rate every year. The current chemo and radiation therapy given
to cancer patients destroys tumor cells as well as normal cells. The cur-
rent research aims to develop antitumor drugs with low side effects on
the immune system than current synthetic drugs [100]. Anticancer po-
tential by Lactobacilli involves apoptosis induction, differentiation of
cancer cells, and binding of genotoxic carcinogens [101]. The possible
mechanisms of anticancer activity exerted by EPS are follows: (1) pre-
vention of tumorigenesis, (2) induction of cancer cell apoptosis, and
(3) improvement of the immunity. Apoptosis or programmed cell
death is necessary in the treatment of cancer. It is characterized by
caspase-dependent intrinsic and extrinsic pathways. The intrinsic path-
way is indicated by the expression of caspase-3, caspase-9, BCl-2 and
BAX, while, the extrinsic pathway is marked by the expression of
caspase-8 and caspase-10. Among caspases, the caspase-8, caspase-9
and caspase-10 are initiators that are activated via binding to specific
proteins; while caspase-3 is an effector caspase that is eventually
activated by the active initiator caspases through photolytic cleavage
[102,103]. Activation of Caspase-3 is often the indicator to confirm
that the cancer cells have been subjected to cell shrinkage, nuclear frag-
mentation and chromatin condensation without affecting surrounding
healthy tissues [104]. EPS of probiotic origin displays anti-cancer activ-
ity with reduced side effects based on their chemical characteristics like
molecular composition, chain linkage and molecular weight [105,106].
The diversity in sugar composition of EPS is responsible for anti-
proliferative effects. A recent finding reported that the EPS G10 from
Lactobacillus gasseri inhibits the proliferation of HeLa cells. At the con-
centration 400 μg/ml, G10 EPS showed better anti-proliferation activity
because of its up-regulation of BAX in HeLa cells and an increase in Cas-
pase 3 protein expression that activates apoptosis was also noted [29].
EPS-M41 from probiotic marine source Pediococcus pentosaceus M41
was reported to possess antitumor activity against Caco-2 and MCF-7
cells [107]. EPS from Lactobacillus plantarum NCU116 increased the ex-
pression of pro-apoptotic genes such as Fas, FasL and c-Jun, through
toll-like receptor-2 (TLR-2) whichmediates apoptosis in mouse intesti-
nal epithelial cancer cells [108]. EPS produced by wild and mutant Lac-
tobacillus delbrueckiihas been studied to disclose their inhibitory role on
tumor cell by the reduction in carcino-embryonic antigen level of tumor
induced mice [109]. Silver nanoparticles synthesized using EPS from
Lactobacillus brevis demonstrates various applications in the biomedical
field especially as a powerful anti-proliferative agents against various
human cancer cell lines [110]. In-vitro anti-cancer activity exhibited
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by newly extracted MSR101 EPS from Lactobacillus kefiri on HT-29 can-
cerous cells showed satisfactory apoptotic mechanism through up-
regulation of the expression of cytochrome-c, BAX, BAD, caspase-3,
caspase-8 and caspase-9 [111]. Acidic EPS produced by Lactobacillus
strain SB27 showed maximal increase of capsase-3 activation inducing
apoptosis, G0/G1 cell cycle arrest and anti-proliferative activity on HT-
29 cells [112].

6.6. Hypocholestrolemic and antidiabetic activity

The accumulation of cholesterol in the human leads to cardiovascu-
lar disorders resulting in life-threatening conditions [113]. The high
serum cholesterol level can be considerably managed through choles-
terol lowering drugs but endswith side effects. Themechanisms behind
cholesterol reduction by probiotic bacteria are as follows:
(i) assimilation of cholesterol by growing bacterial cells, (ii) de-
conjugation of bile salts by bile salt hydrolase, (iii) precipitation of cho-
lesterol with de-conjugated bile and (iv) binding of cholesterol to cells
[114]. Very limited researches has been conducted on cholesterol low-
ering properties but in recent studies aiming at lowering blood choles-
terol level through EPS of probiotic origin gained significant attention.
The EPS produced by Lactobacillus paracasei M7 reported the reduction
of cholesterol level (30 μg at 25 °C for 20 min) to 70.78% in-vitro with
optimum dose of 0.1% EPS [115]. The EPS derived from Lactobacillus
plantarum RJF4 was shown to reduce the cholesterol to 42.24% [1]. The
EPS of a novel probiotic strain Enterococcus faecium F1 isolated from
fermented milk product kalarei may be helpful in lowering raised cho-
lesterol level if incorporated in functional foods [50]. Diabetes mellitus
is a metabolic disorder characterized by increased blood glucose level
due to abnormal glucose metabolism which results in multiple organ
dysfunction [116]. The most essential biochemical reaction in the
human body is carbohydrate metabolism since any alteration in carbo-
hydratemetabolismwill result inmetabolic disorders such as Type-2 di-
abetesmellitus (T2DM). Anti-diabetic drugs such as acarbose, voglibose
and miglitol causes abdominal distension, bowel disruption and diar-
rhea, unsuitable for patients with gastrointestinal disorders [117]. The
only and most satisfied anti-diabetic activity exerted by EPS from LAB
came in this current year 2020. The two common pathways examined
were PI3k/AKT (Phosphatidylinositol 3-kinase/protein kinase B) and
AMPK (AMP activated protein kinase) pathwayswhich plays prominent
role in the coordination of anabolic and catabolic processes, particularly
in T2DM. The HePs obtained from Lactobacillus plantarum H31 de-
creased α-amylase and increased the gene expression of GLUT-4 (insu-
lin-regulated glucose transporter type-4), AKT-2 and AMPK in insulin
resistant HepG2 cell line in in-vitro condition [118]. These genes en-
hance glucose uptake in the insulin resistant cells through insulin sig-
naling pathway. The action of insulin in glucose uptake from blood
into cells (hepatocytes) through translocation of GLUT-4 vesicles to
the plasma membrane is regulated by PI3K/AKT signaling pathway.
With insulin resistance, the normal amount of insulin secreted is not
sufficient to move glucose into the cells [119]. The main reason for
T2DM is insulin resistance, which involves failure in the translocation
of GLUT-4 vesicles to the plasmamembrane, leading to inhibition of glu-
cose consumption. In liver, AMPK is a key master switch in regulating
glucose and lipid metabolism [120]. Therefore, medium dosage of EPS
H31 treatment with insulin-resistant HepG2 cells increased expression
of GLUT-4, AMPK and AKT-2 indicates that glucose consumption has
been achieved. This research suggests that the EPS could be employed
to treat hyperglycemia but requires in-vivo studies to evaluate reduc-
tion in blood glucose level [118].

6.7. Anti-biofilm activity

As an outcome to exogenous stress exerted on the microorganisms
by the environmental conditions, group of microorganisms forms bio-
film and gets attached to protect them from host antagonistic activity
[121]. These biofilm producing pathogenic bacteria are responsible for
antibiotic resistance, chronic and recurrent infections because of their
capability to reside in medical surfaces and in dwelling devices [122].
These biofilms are a great threat to food safety and they are resistant
to conventional therapy [123]. The potential of EPS extracted from LAB
to lower the levels of biofilm could be used in the treatment andpreven-
tion of infectious diseases caused by biofilm producing pathogenic bac-
teria. The inhibition of initial auto-aggregation and cell attachment of
bacterial cells occur either throughweakening the cell surfacemodifica-
tions or by reducing cell to cell interactions [124]. The highest activity
on disrupting the pre-formed biofilms and biofilm inhibition was de-
tected in EPS-BMS produced by Leuconostoc citreum isolated from bo-
vine meat sausages [47]. The cell free supernatant of Lactobacillus
acidophilus A4 restrained the biofilm formation of entero-hemorrhagic
E. coli O157:H7 [122]. EPS from Lactobacillus fermentum LB-69 isolated
from children feces displayed highest biofilm inhibition on Bacillus ce-
reus RSKK 863 [123]. The dextran produced by probiotic bacteria
Weissella confusa isolated from Romanian yoghurt has shown 70%
anti-biofilm activity on Candida albicans SC5314 strain [125].

6.8. Anti-viral activity

Generally viral diseases are treated with vaccination, chemopreven-
tion and chemotherapy. Apart from these treatments, a new approach
prevails in which probiotic microorganisms and their metabolic prod-
ucts provide favorable results in counteracting viruses. LAB exerts anti-
viral activities by various mechanisms like, direct interaction with
viruses, production of viral inhibitory substances or by stimulation of
immunity [126]. Most important aspect is that sulfated polysaccharides
are responsible for the antiviral effect even in crude form [92].
Immunobiotics are supplement that combines both prebiotics and
probiotics with immunoglobulin to boost immunity and promote intes-
tinal health. It was proved that immunobiotics provides protection
against viral infection by enhancing innate and adaptive antiviral im-
munity that leads to the reduction in the duration of the disease, the
number of episodes and viral shedding. EPS of LAB permit the commu-
nication of immunobioticswith the host by interactingwith pattern rec-
ognition receptors (PRRs) expressed in non-immune and immune cells.
A research conducted on antiviral immune response used polyinosinic-
polycytidylic acid (poly (I:C)), a synthetic analogue of viral ds RNA and
this is considered as a common tool for scientific research on the im-
mune system. EPS extracted from Lactobacillus delbrueckii OLL1073R-1
improved antiviral activity in poly (I:C) induced porcine intestinal epi-
thelial cells which significantly increased expression of IFN-α, IFN-β,
MxA and RNase L and other interferon stimulated genes [127]. The
EPS of probiotic bacteria Lactobacillus, Leuconostoc and Pediococcus are
indicated to show stronger antagonistic activity against human adeno-
virus type 5 [128]. Lactobacillus plantarum LRCC5310 EPS reduced the
duration of diarrhea, limited the epithelial lesions, decreased the rotavi-
rus replication in the intestine and shortened the time to recovery of
suckling mice [129]. EPS obtained from Lactobacillus plantarum showed
inhibitory effect on transmissible gastroenteritis corona virus prolifera-
tion in epithelial swine testicle cell line [130].

7. Conclusion

Exopolysaccharides produced by microorganisms has favorable ad-
vantages with regard to industrial as well as therapeutic applications
when compared to other natural agents. EPS obtained from Lactic acid
bacteria contains remarkable valuable properties which replaces poly-
saccharides of plant or animal origin. In recent years, non-dairy sources
that possess probiotic bacteria are targeted to explore their health pro-
moting and rheological properties. In this review, the studies conducted
on EPS of probiotic bacteria during latest years alongwith their sources,
chemical structure, biosynthesis, applications and biological potential
are recorded. Some researchers have investigated the improved level
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of therapeutic activities upon chemical modification in EPS structure.
More in-vitro studies have been reported on antioxidant, anti-
microbial, anticancer, anti-biofilm, immunomodulatory activities etc.
Only limited researches were done on in-vivo models to evaluate anti-
tumor and anti-inflammatory activities. Novel EPS are identified from
different resources with outstanding benefits for commercial purposes.
From this review, we conclude thatmore scientific investigations on in-
crease in the yield of EPS and in-vivo studies on therapeutic properties
are required to exploit EPS to its complete potential.
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