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Abstract
Expansion of mosquito-borne pathogens into more temperate regions of the world necessi-

tates tools such as mathematical models for understanding the factors that contribute to the

introduction and emergence of a disease in populations naïve to the disease. Often, these

models are not developed and analyzed until after a pathogen is detected in a population. In

this study, we develop a spatially explicit stochastic model parameterized with publicly avail-

able U.S. Census data for studying the potential for disease spread in Urbanized Areas of

the United States. To illustrate the utility of the model, we specifically study the potential for

introductions of dengue to lead to autochthonous transmission and outbreaks in a popula-

tion representative of the Miami Urbanized Area, where introductions of dengue have

occurred frequently in recent years. We describe seasonal fluctuations in mosquito popula-

tions by fitting a population model to trap data provided by the Miami-Dade Mosquito Control

Division. We show that the timing and location of introduced cases could play an important

role in determining both the probability that local transmission occurs as well as the total

number of cases throughout the entire region following introduction. We show that at low

rates of clinical presentation, small outbreaks of dengue could go completely undetected

during a season, which may confound mitigation efforts that rely upon detection. We dis-

cuss the sensitivity of the model to several critical parameter values that are currently poorly

characterized and motivate the collection of additional data to strengthen the predictive

power of this and similar models. Finally, we emphasize the utility of the general structure of

this model in studying mosquito-borne diseases such as chikungunya and Zika virus in

other regions.
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Introduction
Higher global connectivity and the increased volume of international travel have escalated the
threat of importation, establishment, and expansion of many arboviral diseases [1–3]. The past
two decades alone have been witness to the emergence of dengue, chikungunya, West Nile, Jap-
anese encephalitis, and most recently, Zika viruses in naïve populations across the globe [1, 4–
7]. When importation of these viruses leads to outbreaks, local healthcare systems can be over-
whelmed, and resources for combating the spread of the virus are potentially inefficiently allo-
cated. As the threat of arbovirus emergence increases, so does the need for adequate tools (such
as mathematical models) for understanding the emergence potential and subsequent spread in
naïve populations. These models help identify the key factors that lead to the spread of a virus
and thereby inform policies aimed at mitigating the impacts on public health [8].

While these models are needed, there is a scarcity of data available for the model parameter-
ization necessary for predicting outbreaks in populations in which a disease has never (or
rarely) been present. Although this complicates the ability to make conclusive predictions
regarding the impact of an introduced disease on a naïve population, models remain useful for
developing a better understanding of which factors are critical for an introduction to lead to an
outbreak [8]. A number of mechanistic models have been utilized recently to study factors that
influence disease spread into new regions as well as to make predictions regarding the potential
for introduced infectious diseases to become established in novel areas [9–14]. For example,
following the introduction of chikungunya into the Western Hemisphere in late 2013, model-
ing studies were conducted to help understand the potential for spread throughout the Carib-
bean and the Americas [11, 12]. With no history of chikungunya in these regions, these studies
focused on the impact that typical drivers of mosquito-borne disease spread, such as human
travel and mosquito abundance, could have on the probability of chikungunya emergence.
These studies were also aided by insights gained from a richer history of studying dengue,
which is spread by the same vectors, throughout this region [6, 15].

Human movement via air and sea travel is often implicated as one of the primary factors in
the global spread of mosquito-borne disease [3, 16–20], as well as the global spread of some dis-
ease vectors such as Aedes aegypti and Aedes albopictus, the mosquito vectors of dengue, chi-
kungunya, yellow fever, and Zika viruses [21–26]. Human movement patterns also contribute
to the spread of mosquito-borne disease at a finer scale, such as within cities [27–29]. Stoddard
et al. [27] showed that movement of people among houses within Iquitos, Peru was a major
driver of the spread of dengue throughout the city, and Adams and Kapan [29] demonstrated
in a theoretical study that human movement across subpopulations may contribute to the per-
sistence of mosquito-borne pathogens in urban areas. These studies emphasize the need to con-
sider the role of human movement not only in the importation of mosquito-borne disease into
naïve populations, but also in the spread of a pathogen throughout well-connected populations
within urban areas. Unfortunately, data sets that describe human activity within and across
subpopulations of large urban areas are rare, so approaches for approximating the movement
of humans in infectious disease models have been borrowed from transportation theory. One
common model to estimate the flow of people among populations is the gravity model [30].
The gravity model has been used in a number of previous studies to characterize human move-
ment at the county level [31–34].

In this study, we develop a spatially explicit model that utilizes the gravity model to implic-
itly incorporate human movement into the probability of transmission to study the potential
for mosquito-borne disease emergence in an Urbanized Area (UA) of the United States. As a
case study, we parameterize the model to be representative of the Miami UA, and we describe
mosquito dynamics in the model by fitting a population dynamic model to a unique data set
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provided by the Miami-Dade Mosquito Control Division. We use the model to explore the
potential for importation of dengue to lead to emergence and spread within the Miami UA.

Dengue, which is vectored primarily by Ae. aegypti, was first reported in the Western Hemi-
sphere in the 1800s and is now endemic to many countries in the Americas [1, 35]. Dengue is
not thought to be currently established in any part of the United States; however, a number of
large outbreaks occurred throughout the state of Florida in the first half of the 20th century,
suggesting that the virus may have been established in the state during that period [35, 36].
Today, dengue is frequently imported into Florida from the many tropical and subtropical
regions of the world to which it is endemic [35, 37]. From 2010 to 2015, there were 646 con-
firmed imported cases of dengue in Florida, 383 of which occurred within the Miami UA (S1
and S2 Figs) [37]. In 2009 and 2010, two outbreaks of locally transmitted dengue occurred in
Key West, FL (Monroe County), with 28 locally acquired cases reported in 2009 and 56 in 2010
[37–39]. In 2013, another outbreak of 17 locally acquired cases was reported in Martin County,
FL [37]. Smaller chains of local transmission have been reported in each of the past six years in
parts of the Miami UA, but no outbreaks (which, for this study, we define to be more than 10
locally acquired cases that are related) were reported [37, 38].

Despite the few locally acquired cases of dengue reported in the Miami UA to date, it is
likely one of the regions within the U.S. most at risk of a dengue outbreak. In addition to poten-
tially being a dengue endemic region in the past, southern Florida is now home to both the pri-
mary and secondary (Ae. albopictus) vectors of the virus [36, 40–45]. The Miami UA also has a
tropical climate with little fluctuation in temperature and precipitation throughout the year,
which supports a suitable environment for both dengue virus and its vectors and is similar to
the climate of many dengue endemic regions of the world. Furthermore, the Miami UA is
highly connected to dengue endemic countries in the Caribbean and Latin America via three
international airports and four passenger and cargo seaports. In 2013, Miami International
Airport and Fort Lauderdale-Hollywood International Airport were the 16th and 22nd busiest
U.S. airports, respectively, by passengers enplaned [46]. Also in 2013, the Miami International
Airport was listed as the second busiest U.S. airport for international travel and the top gateway
to Latin America and the Caribbean [47]. The Port of Miami and Port Everglades in Fort Lau-
derdale are the two busiest seaports in the U.S. for cruise travel [46], and the majority of desti-
nations for ships departing these ports are in the Caribbean and Central America [48].

To demonstrate the utility of this model for detecting factors that could lead to dengue
emergence in the Miami UA, we study the impact of mosquito population dynamics and
human movement on the potential for emergence by investigating the influence of timing and
location of introduction on both the probability of autochthonous transmission occurring and
the size of outbreaks following successful local transmission. We further explore the influence
of clinical presentation rates on the ability to detect local transmission and outbreaks, and we
discuss sensitivity of the model to parameters that are poorly characterized for the Miami UA.

Materials and Methods

Model Description
We employ a vector-host epidemic model with discrete time and discrete state space. The
dynamics of the system are described by an adaptation of a Reed-Frost chain binomial system
to incorporate demographic stochasticity [49]. As the frequency at which local cases of dengue
in the Miami UA are reported is low (S2 Fig), we have developed this model to capture the
impacts of stochastic effects on the probability of emergence and outbreaks of dengue.

We track the dynamics of one serotype of dengue in humans and adult female Ae. aegypti
populations in the 186 cities, census designated places (CDPs), and census county divisions
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(CCDs) that comprise the Miami UA. Note that in this paper we are interested in studying the
potential for an outbreak following an introduction of a single serotype, so we ignore the poten-
tial for introduction and circulation of multiple serotypes. Throughout, we denote classes of
the human population with the subscript H and Ae. aegypti classes with the subscript G. At
each location i on each day t, we divide the human population into susceptible (SH(i, t)),
exposed (EH(i, t)), infectious (IH(i, t)), and recovered (RH(i, t)) classes. The total human popu-
lation in location i at time t is denoted by NH(i, t) = SH(i, t) + EH(i, t) + IH(i, t) + RH(i, t).
Throughout the study, we are primarily interested in the potential for emergence and outbreaks
within a year of introduction of the virus, so we neglect human births and deaths as well as
immigration and emigration in the region and assume that the human population in each loca-
tion remains constant throughout the year so that NH(i, t) = NH(i) for all t. Although rates of
travel into and out of the region may vary seasonally, we do not anticipate this having a signifi-
cant impact on the human population size.

Similar to the compartmentalization of the human population, we divide each vector popu-
lation into susceptible (SG(i, t)), exposed (EG(i, t)), and infectious (IG(i, t)) classes. The total
vector population in each location i at time t is denoted by NG(i, t) = SG(i, t) + EG(i, t) + IG(i, t).

Stochastic dynamics for humans are governed by the probabilities of becoming infected,
becoming infectious, and recovering from infection. We define all probabilities on a daily time
interval (i.e. on the time interval [t, t + 1]); however, time intervals of different lengths could be
considered by rescaling parameter values. We define the vector-to-host transmission rate (bit-
ing rate × probability of a bite leading to transmission of the virus) as β. In a single location i in
the absence of human movement in the region, the probability that a susceptible human
becomes infected is given by

lHði; tÞ ¼ 1� exp �bIGði; tÞ
NHðiÞ

� �
ð1Þ

Once infected, the probability that a host becomes infectious is given by σH, which is defined in

terms of the average intrinsic incubation period, ðŝHÞ�1:

sH ¼ 1� exp ð�ŝHÞ ð2Þ

The probability that an infectious host recovers is given by γH, which is defined in terms of the

average duration of infectiousness for humans, ðĝHÞ�1:

gH ¼ 1� exp ð�ĝHÞ ð3Þ

Taken together, the human dynamics in the absence of movement about the region are given
by the following equations:

WHði; tÞ � binomialðSHði; tÞ; lHði; tÞÞ ð4Þ

VHði; tÞ � binomialðEHði; tÞ; sHÞ ð5Þ

UHði; tÞ � binomialðIHði; tÞ; gHÞ ð6Þ

SHði; t þ 1Þ ¼ SHði; tÞ �WHði; tÞ ð7Þ

EHði; t þ 1Þ ¼ EHði; tÞ þWHði; tÞ � VHði; tÞ ð8Þ

IHði; t þ 1Þ ¼ IHði; tÞ þ VHði; tÞ � UHði; tÞ ð9Þ
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RHði; t þ 1Þ ¼ RHði; tÞ þ UHði; tÞ: ð10Þ

Here,WH(i, t), VH(i, t), and UH(i, t) represent the number of newly infected, newly infectious,
and newly recovered individuals, respectively, in location i at time t.

Unlike the human population, the vector population varies daily throughout the year due to
a seasonally varying per capita recruitment rate, ψG(t), where

cGðtÞ ¼ mG 1þ n cos
2p
365

ðt � tGÞ
� �� �

ð11Þ

In this equation, ν and τG determine the amplitude and the timing, respectively, of the peak
recruitment rate during the season. The parameter μG is the probability of vector mortality
each day. In order to maintain a stable average population size, we also set the average per cap-
ita recruitment rate to be μG. The recruitment rate is defined as the average number of adult
female mosquitoes produced by a single adult female mosquito each day (the number of eggs
laid, survival through juvenile stages, and sexing of offspring is modeled implicitly in this
recruitment rate). We define μG as

mG ¼ 1� exp ð�m̂GÞ ð12Þ

where ðm̂GÞ�1 is the average lifespan of Ae. aegypti in days.
Stochastic dynamics for vectors are governed by the probabilities of recruitment, death,

becoming infectious, and becoming infected. The number of new vectors recruited in location i
at time t is chosen from a Poisson distribution with mean ψG(t)NG(i, t). That is, ifMG(i, t) is
the number of newly recruited adult vectors in location i at time t, then

MGði; tÞ � PoissonðcGðtÞNGði; tÞÞ ð13Þ

In the absence of sufficient data to suggest differences in human-to-vector and vector-to-
human transmission rates, we define the human-to-vector transmission rate to be equal to the
vector-to-human transmission rate, β. The probability that a susceptible vector becomes
infected in location i at time t is

lGði; tÞ ¼ 1� exp � bIHði; tÞ
NHðiÞ

� �
ð14Þ

A susceptible vector can either remain susceptible, become infected and live to the next day, or
die (either infected or uninfected). We assume that death is independent of becoming infected
or becoming infectious. The probability that a susceptible vector becomes infected and lives to
the next day is (1 − μG)λG(i, t). The number of susceptible vectors that either progress to the
infected class, die, or remain susceptible is chosen from a multinomial distribution. LetWG(i,
t) be the number of vectors in location i at time t that become infected and survive and XS(i, t)
be the number of susceptible vectors in location i at time t that die. Then,

½WGði; tÞ;XSði; tÞ� � multinomial SGði; tÞ; ð1� mGÞlGði; tÞ; mG½ �ð Þ ð15Þ

Once infected, the probability that a vector becomes infectious is σG, which is defined in

terms of the average extrinsic incubation period, ðŝGÞ�1:

sG ¼ 1� exp ð�ŝGÞ ð16Þ

The probability that a vector becomes infectious and lives to the next day is (1 − μG)σG. The
number of infected vectors that either progress to the infectious class, die, or remain infected is
chosen from a multinomial distribution. Let UG(i, t) be the number of vectors that become
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infectious in location i at time t and XE(i, t) be the number of exposed vectors in location i at
time t that die. Then,

½UGði; tÞ;XEði; tÞ� � multinomial EGði; tÞ; ð1� mGÞsG; mG½ �ð Þ: ð17Þ
Once infectious, a vector dies with probability μG. The number of infectious vectors that die is
chosen from a binomial distribution. Let XI(i, t) be the number of infectious vectors in location
i at time t that die. Then,

XIði; tÞ � binomialðIGði; tÞ; mGÞ: ð18Þ

The mosquito dynamics in the absence of human movement are given by the following
equations:

SGði; t þ 1Þ ¼ SGði; tÞ þMGði; tÞ �WGði; tÞ � XSði; tÞ ð19Þ

EGði; t þ 1Þ ¼ EGði; tÞ þWGði; tÞ � UGði; tÞ � XEði; tÞ ð20Þ

IGði; t þ 1Þ ¼ IGði; tÞ þ UGði; tÞ � XIði; tÞ ð21Þ

Type Reproductive Number
For this model, we define the time-varying type reproductive number [50] in a single popula-
tion i to be RT

0 ði; tÞ, where

RT
0 ði; tÞ ¼

b2sGð1� mGÞNGði; tÞ
ðsGð1� mGÞ þ mGÞmGgHNHðiÞ

ð22Þ

Refer to S1 Text for details of this calculation. In S3 Fig, we show how this value varies across
the year with fluctuations in the vector population. We note that once movement is incorpo-
rated into the probability of infection term, the global value of RT

0 ðtÞ will be different from the
value given in Eq 22, but this value provides a good approximation.

Implicit Human Movement
Wemodel movement of humans about the Miami UA implicitly by including a term within
the probabilities of infection λH(i, t) and λG(i, t) that allows for infection to be acquired via con-
tact in locations throughout the region. The probability that an infection is acquired from
another location depends upon the rate of movement between locations, which is approxi-
mated by the gravity model [30]. The general premise of the gravity model is that movement
between locations is proportional to the population size of the two locations and inversely pro-
portional to the distance between locations. There are three parameters that determine the
degree of this relationship. Namely, a and b, which determine the degree of attractiveness of
the source and destination populations, respectively, and c, which determines the impact of the
distance between the two populations. For population i of size Ni and population j of size Nj,
the daily flux from i to j is given bymij, where

mij ¼
ðNiÞaðNjÞb

ðdijÞc
ð23Þ

Here, dij is the distance between populations i and j. For this study, we calculate the distance
between two populations using the Haversine formula (refer to S1 Text for details). We
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estimated the values of parameters a, b, and c by fitting the gravity model to daily commute
data obtained from the U.S. Census [51]. Details of the parameter estimation can be found in
S1 Text.

With implicit human movement incorporated, the probability that a human in location i at
time t becomes infected is now

lHði; tÞ ¼ 1� exp � bIGði; tÞ
NHðiÞ

� yðNHðiÞÞa
X
j 6¼i

ðNHðjÞÞb
ðdðj; iÞÞc �

bIGðj; tÞ
NHðjÞ

 !
; ð24Þ

and the probability that a vector in location i at time t becomes infected is now

lGði; tÞ ¼ 1� exp �bIHði; tÞ
NHðiÞ

� yðNHðiÞÞa
X
j6¼i

ðNHðjÞÞb
ðdðj; iÞÞc �

bIHðj; tÞ
NHðjÞ

 !
: ð25Þ

In these two terms, the parameter θ does not have a biological or demographic interpretation,
but determines the proportional impact of movement on the probability of acquiring infection.
The value of θ is on the order of magnitude of the inverse of the total population size in the
region; this parameter then summarizes the overall impact of human movement on new infec-
tions throughout the entire region. This characterization of the impact of human movement
on acquiring infections assumes that a susceptible human in population i can become infected
by contact with an infectious vector in population i or contact with an infectious vector in
another population j. Similarly, a susceptible vector in population i can become infected by an
infectious human in population i or an infectious human that is visiting from another popula-
tion j. We assume here that the impact of movement is independent of whether a human is sus-
ceptible or infectious, thus the value of θ is the same in both terms. Note here that we assume
that the movement about various locations does not significantly affect the population sizes in
each location.

We remark that for the purposes of this study, we do not consider the impacts of movement
of the vector population. Mark-release-recapture studies have found that Ae. aegypti females
do not disperse great distances, typically staying within 50–100 meters of the release site [52–
54]. Because the spatial structure of the population in our model is coarse (that is, at the level
of Census Designated Places (CDPs) and not houses within neighborhoods), we do not antici-
pate mosquito movement contributing to the spread of dengue from one location to another.

Parameterization of human population structure and movement
As of the 2010 U.S. Census, the Miami UA consists of the majority of Miami-Dade, Palm Beach,
and Broward counties as well as part of southern Martin County [55]. Within the four counties,
there are 186 cities, towns, villages, CDPs, and unincorporated regions of census county divi-
sions (CCDs) that are considered to be a part of the Miami UA (see S4 Fig) [55]. The Miami UA
has a total population size of 5.5 million people and a population density of 1715.72 people per
square km of land [55]. The human population size of the 186 locations within the region ranges
from 1 (the unincorporated area of Pompano Beach CCD) to 399,443 (Miami) with a median
size of 13,517. S4 Fig illustrates the 186 regions and the heterogeneity in population size across
the area. In our model, we include populations in the 161 different CDPs and 25 unincorporated
populations within CCDs. We obtained human population size data from U.S. Census Bureau
population and housing tables from the 2010 census [55]. Human daily commute data was
obtained from the U.S. Census Bureau OnTheMap tool [51]. For a detailed description of U.S.
Census data acquisition, see S1 Text. To estimate parameter values in the gravity model, we fit
Eq 23 to the daily commute data utilizing a nonlinear least squares approach. We remark that
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utilizing the gravity model rather than the raw daily commute data was necessary because the U.
S. Census Bureau OnTheMap tool includes only the 161 CDPs and not the 25 unincorporated
populations within the CCDs. Further details of the gravity model fitting are included in S1 Text
and error associated with fitting is shown in S5 Fig.

Parameterization of mosquito distribution and seasonality
The Miami-Dade County Mosquito Control Division placed CDC light traps in various loca-
tions throughout Miami-Dade county during 2010–2013 (S6 Fig). Of all of the traps, only ten
traps were present at the same locations across the four years, and we chose to analyze data for
these ten traps to estimate the average seasonal behavior of the Ae. aegypti populations during
this time period. We fit a deterministic model of mosquito population dynamics to data from
each of the traps to characterize the seasonality of the vector population. We utilized a general-
ized least squares approach to estimate a value for τG, which determines the time at which the
mosquito population reaches its peak each year (see Eq 11). Of the ten traps, data from two of
the traps were too sparse to capture seasonal variation (see S1 Text for details), so we estimated
the mean value for τG from eight different model fits. The mean value of τG was 90.89 days
with a 95% confidence interval of (81.01, 100.77). S1 Text contains a detailed description of the
process of estimating τG. Additionally, S7 Fig shows the dynamics of the population model fit
to the trap data for each of the traps. We note that the timing of seasonal peaks and troughs
observed with this estimate of τG (S8 Fig) are in agreement with those observed in a recent pre-
vious study in Palm Beach county [45].

Throughout this paper, we assume a vector-host ratio that varies seasonally according to Eq
11, but is constant across the subpopulations. S8 Fig shows the deterministic population
dynamics of vectors for different values of average vector-to-host ratios. We note that in this
study the average vector-host ratio is defined as the ratio of vectors to humans averaged across
a single year, and this value is determined by a priori simulations of population dynamics in a
deterministic model. We implemented a generalized least squares approach to estimate the
value of the initial population size of Ae. aegypti (and thus the initial vector-host ratio) that
would generate the desired average vector-host ratio in a homogeneously mixed human popu-
lation when we simulated one year of vector population dynamics with the deterministic
model given in Eq 26. We then initialized the vector populations in each of the 186 locations
within the Miami UA by calculating the initial population size of the vectors as the product of
the initial vector host ratio and the human population size at each location.

NGðt þ 1Þ ¼ NGðtÞ þ mGNGðtÞ 1þ n cos
2p
365

ðt � tGÞ
� �� �

� mGNGðtÞ ð26Þ

Parameter Selection
We utilized the data in the Florida Department of Health reports (S1 and S2 Figs, [37]) to assist
in selecting some parameter values for our model. Fixing all other parameters at the values
listed in Table 1, we first conducted a global sensitivity analysis of three poorly characterized
parameters: the average vector-host ratio; the transmission rate, β; and the gravity model pro-
portionality coefficient, θ. We generated 5000 sets of values for these parameters, each value
randomly and independently chosen from three distinct uniform distributions (the average
vector-host ratio* Uniform(0, 3), β* Uniform(0, 4), and log10(θ)* Uniform(−8, −4)). For
each parameter set, we conducted 100 simulations wherein one infectious person was intro-
duced in the city of Miami on May 30. We calculated the probability of autochthonous trans-
mission following introduction as well as the median number of cases that occurred within 100
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days of introduction when autochthonous transmission did occur. (We chose 100 days to
maintain a standard epidemiologically relevant measure of time following introduction
throughout the entirety of the study). We then grouped parameter values and compared the
cumulative distribution of each of these two metrics from simulations across parameter groups.
Detailed results of the sensitivity analysis are presented below in the last section of the Results.

To select values for these three parameters, we determined plausible parameter sets utilizing
an approach similar to that described in [61]. For each of the 5000 parameter sets, we com-
pared the model output for the total number of cases that occurred within 100 days of intro-
duction to the number of cases that occurred in the 2013 Martin County outbreak (S1 and S2
Figs). We assumed that only 5–10% of cases in the Martin County outbreak were reported
(based on calculations from data presented in [39] and [62] following the 2009-2010 Key West
Outbreak), and selected sets of values of the average vector-host ratio, θ, and β whose maxi-
mum outbreak size was within a range of 170–340 total cases when an introduction occurred
near the peak of the season (May 30). Here we chose to compare the maximum value of the
simulations because we assume that, due to low reporting rates, the outbreaks that have
occurred represent the extremes of local transmission events. The interval 170–340 was calcu-
lated by assuming that only 5–10% of the 17 cases that occurred in Martin county were
reported. We note that we chose to utilize Martin County for the selection of parameters
because the region in which the 2012 outbreak occurred is more representative of parts of the
Miami UA than is Key West, the only other location in Southern Florida where an outbreak
has occurred in recent years (in fact, part of Martin County is included in the Miami UA).

We found that of the 5000 parameter sets, 154 (3.04%) resulted in a maximum number of
cases in the interval of 170–340. We selected one parameter set of the 154 as the default values
for this study (See Table 1). We note that because the data available are sparse and because we
have a poor understanding of mosquito abundance in this region, multiple combinations of
these three parameters can lead to similar outcomes. In S1 Text, we further explore the non-
identifiability of these parameters. In particular, we show that in plausible sets of β and the
average vector host ratio, values of the two parameters are proportional to one another (S9
Fig). Also in S1 Text, we show the distribution of the parameter values in the plausible parame-
ter sets (S10 Fig).

Scenarios and Metrics of Interest
Previous work has shown that the potential for disease outbreaks can be influenced by factors
such as human population size, vector abundance, seasonality in transmission, and connectiv-
ity of populations [63–70]. In this study, we consider a number of scenarios to address the
impact of some of these factors on outbreaks of dengue in the Miami UA. Each scenario that
we consider has a unique parameter set. For example, a single scenario may have the default
parameters listed in Table 1, except that the imported case occurs on July 11 rather than May
30. For each scenario, we conducted 500 simulations. We note that, for the purpose of this
study, we are interested in the dynamics that follow a single introduction of dengue into the
region, and we do not consider the impacts of multiple introductions. By only considering a
single introduction, we can better understand the impacts of the factors that lead to successful
local transmission and outbreaks. Furthermore, given the relatively low numbers of imported
and locally acquired cases of dengue in the region, we assume an entirely susceptible popula-
tion prior to the first introduction.

Throughout the results, we primarily present two metrics of epidemiological relevance: the
probability of autochthonous transmission (i.e., the probability that an imported case leads to
at least one locally acquired human case) and the total number of human cases that occur
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throughout the entire Miami UA within 100 days of the initial import. These two metrics are
particularly important for preparing the public health community to respond to outbreaks and
helping to inform policies for implementing vector control. We calculate the probability of
autochthonous transmission by summing the number of simulations that lead to 1, 10, 50, 100,
or 500 locally acquired cases within one year of an imported case and dividing by the total
number of simulations conducted. These outbreak sizes were chosen to understand the poten-
tial for outbreaks of different sizes across different orders of magnitude. The total number of
cases that occur within 100 days of the initial import are presented only for simulations in
which at least one autochthonous case occurs.

Results

Timing of Introduction
Because the Ae. aegypti population varies seasonally, we investigate the impacts of the time of
year at which an imported case arrives in the region on the probability that local transmission
occurs and the number of cases that follow a single introduction (Fig 1). We held all parameters
at the values listed in Table 1 except for the day of introduction, and we introduced a single
infectious person into the city of Miami on different days throughout the year, starting with
January 10 and incrementing every 10 days until December 26. We calculated the probability
that autochthonous transmission occurred (Fig 1A) and recorded the total number of cases
that occurred in the 100 days following introduction (Fig 1B).

The probability of autochthonous transmission occurring increased from January until July
and decreased from July until December. Imports that occurred between January and February
led to at least one case caused by local transmission in fewer than 20% of simulations as did
imports that occurred in late October and November and December. The probability that local
transmission occurred increased through the spring months, and imports occurring between

Table 1. Table of default parameter values.

Parameter Description Default Value Source

β Vector to human transmission rate 0.16 Est.

ðŝGÞ�1 Average extrinsic incubation period 9 [56]

ðm̂GÞ�1 Average vector lifespan 10 [52, 57]

ν Amplitude of the vector recruitment seasonality function 0.25 Est.

τG Phase shift of the vector recruitment seasonality function 90.89 SM

Average vector-host ratio in each location 1 Est.

β Human to vector transmission rate 0.16 Est.

ðŝHÞ�1 Average intrinsic incubation period 4 [58]

ðĝHÞ�1 Average duration of infectiousness 7 [59, 60]

θ Gravity model proportionality coefficient 3 × 10−6 Est.

a Gravity model donating population exponent 0.296 SM

b Gravity model receiving population exponent 0.4371 SM

c Gravity model distance exponent 0.749 SM

Default location of dengue introduction Miami, Florida

Default day of dengue introduction 150 (May 30)

Default number of infectious individuals introduced 1

Parameters marked ‘Est.’ are estimated from the parameter selection process described in the text. For parameters marked SM, refer to S1 Text for details

regarding the estimation of the values shown here.

doi:10.1371/journal.pone.0161365.t001
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Fig 1. The impact of the timing of introduction on local transmission and outbreak. (A) The probability that at least n
autochthonous cases occurred following a single introduction on the date given on the horizontal axis (error bars are the
probability of autochthonous transmission ± the binomial standard deviation). (B) The total number of dengue cases that
occurred within 100 days of a single introduction on the date listed along the horizontal axis. (C) The fraction of total cases that
occurred in the location of introduction. All other parameter values are as given in Table 1. In the box plots in (B) and (C), red
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early June and early August led to local transmission in more than 60% of simulations, with the
highest probability of local transmission following imports in late June (80%). The probability
of local transmission remained above 50% following imports throughout August and early Sep-
tember, but decreased in the autumn months.

The probability of larger numbers of locally acquired cases occurring exhibited variation
similar to that of the probability that at least one case occurred; however, the rate of decline in
the probability that occurred following the peaks in May-July was greater for the probability of
having a larger number of cases (e.g. compare n = 100 with n = 1 in Fig 1). The peak timing at
which an introduction led to local cases also shifted to earlier in the year for the probability of
larger numbers of cases. For example, the probability that at least 500 cases occurred was high-
est following imports in early May whereas the probability that at least 100 cases occurred was
highest following imports in late May and early June.

The total number of cases that occurred within 100 days of an imported case varied across
the year in much the same way that the probability of observing outbreaks of at least 500 cases
did (Fig 1B). The median number of cases that occurred following imports from January to
mid-March as well as mid-September to December was fewer than 10. The variation in these
months was also low. The median number of cases and the variability in the number of cases
that occurred increased for imports during April and May and decreased for imports that
occurred in June and the following months. Imports in May led to the highest median number
of cases (around 100), and the median number of cases was greater than 50 for imports that
occurred in late April and June.

The differences in the probability that an autochthonous case occurred and the number of
cases within 100 days following an imported case were driven by the Ae. aegypti population
dynamics (see S8 Fig) which led to variation in the time-varying type reproductive number,
RT
0 ðtÞ (S3 Fig), due to the direct relationship between RT

0 ðtÞ and the vector population size (see
Eq 22). The probability that at least one locally acquired case occurred following an imported
case was highest when the vector population was highest, and the probability increased and
decreased with the vector population. Both the probability that larger numbers of locally
acquired cases occurred and the total number of cases that occurred within 100 days of the ini-
tial introduction were highest when introductions occurred as the vector population was
increasing towards its peak size in July. However, both of these metrics began decreasing when
the imported cases arrived before the vector population reached its peak.

To assess the impact of movement throughout the region on outbreaks and how that impact
varies with the timing of imported cases, we also calculated the fraction of total cases through-
out the region that were acquired in the location of introduction (for these results, the city of
Miami, Fig 1C). We found that when autochthonous transmission occurred, but the total num-
ber of cases was low, the majority of total cases were acquired in the location of introduction.
As the outbreaks grew, the fraction of cases acquired at the location of introduction (FCALOI)
decreased. In the larger outbreaks that occurred following introduction in late April and May,
the median FCALOI was about 0.40, and the variability in the FCALOI was lower for introduc-
tions during this time than for introductions earlier in the year. In contrast, the small chains of
transmission (typically fewer than 10 cases) that occurred following introductions in January-
February and October-December had a median FCALOI of about 1. There was very little vari-
ability in FCALOI in October-December, but high variability in FCALOI in January and Feb-
ruary. Although the median FCALOI was over 0.75 when introductions occurred in late July

lines indicate the median, blue dots indicate the mean, and the box represents the interquartile range. Whiskers indicate the
interquartile range multiplied by 1.5.

doi:10.1371/journal.pone.0161365.g001
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and August, the variability in FCALOI was high. This high variability was driven in part by the
low, but variable, number of cases that occurred following imports during these months.

Location of Introduction
Next, we address the impact that heterogeneity in human population size and movement have
on the probability of autochthonous transmission and the total number of cases that occurred
within 100 days of introduction (Fig 2). For this part of the study, we introduced a single infec-
tious person into one of the locations within the Miami UA on May 30 and observed the num-
ber of cases that occurred throughout the entire region following this introduction. We then
repeated this for each of the 186 different locations. To identify potential drivers of heterogene-
ity in results, we tested for correlations between our two primary metrics (the probability of at
least one autochthonous case and the median number of cases that occurred within 100 days)
and demographic characteristics of the CDPs where the initial import occurred (human popu-
lation size, the number of people who commute in each day relative to the CDP population
size, and the number of people who commute out each day relative to the CDP population size,
the latter two of which are calculated from the output of the gravity model in Eq 23). We

Fig 2. The impact of the location of introduction on local transmission and outbreak throughout the entire
Miami UA. Probability that at least one autochthonous case occurred in the Miami UA (A) and the total number of
dengue cases that occurred throughout the entire Miami UA in the first 100 days (B) following a single introduction on
May 30 in each of the 186 locations. The metric presented on each map represents the metric for an introduction in that
location. All other parameter values are as given in Table 1. The map included in this figure was obtained from U.S.
Census Bureau TIGER/LINE1Shapefiles [71].

doi:10.1371/journal.pone.0161365.g002
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calculated Spearman’s rank correlation coefficient (ρ) to quantify these relationships. We show
scatter plots of these relationships in Fig 3.

The probability that at least one autochthonous case occurred varied little with the location
of introduction (Fig 2A). This is due in part to the impacts of movement as defined by the grav-
ity model. That is, because people in smaller populations commute out frequently, they are
likely to encounter a similar number of mosquitoes as people in a large population that do not
commute as frequently. The 25th, 50th, and 75th percentiles for the probability of autochtho-
nous transmission were 0.51, 0.53, and 0.55, respectively. The probability of at least one
autochthonous case was negatively correlated with the population size of the location of intro-
duction (ρ = −0.3023, p< 0.0001), which suggests that autochthonous transmission was more
likely to occur when introductions appeared in locations with a smaller human population size
than introductions into locations with a larger human population, although this relationship
was weak. The probability of at least one autochthonous case was also positively correlated
with the number of commuters (ρ = 0.3206, p< 0.0001 for inbound commuters and ρ =
0.3585, p< 0.0001 for outbound commuters), suggesting that an introduction into a location
with higher numbers of commuters is more likely to lead to autochthonous transmission than
those with fewer commuters, but again this relationship was weak.

Fig 3. Scatter plots of relationships between location of introduction characteristics andmetrics of outbreak probability and size. Each column
shows a different population of introduction characteristic: (A,D) population size (log scale), (B,E) the number of commuters traveling to the population of
introduction relative to the population size of the location, and (C,F) the number of commuters traveling from the location of introduction relative to the
population size of the location. The first row (A-C) shows the probability of at least one autochthonous case, and the second row (D-F) shows the median
number of cases that occurred within 100 days of introduction (log scale). These relationships were generated from the model output presented in the Fig
2.

doi:10.1371/journal.pone.0161365.g003
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The median number of cases that occurred within 100 days of introduction varied more
with introductions in different locations than did the probability of at least one autochthonous
case. The median number of cases occurring within 100 days of introduction fell between a
minimum of 65 and a maximum of 279395, and the 25th, 50th, and 75th percentiles were 95,
122, and 207, respectively. We observed a strong negative correlation between the median
number of cases occurring within 100 days of introduction and the population size of the loca-
tion of introduction (ρ = −0.8579, p< 0.0001), indicating that introductions into locations
with a smaller human population size typically led to larger outbreaks in the region. We also
observed a strong positive correlation between the median number of cases occurring within
100 days of introduction and the relative number of commuters (ρ = 0.8217, p< 0.0001 for
inbound commuters and ρ = 0.9320, p< 0.0001 for outbound commuters), which suggests
that the number of commuters, and in particular, the relative number of people who commute
out of the location of introduction are driving the number of cases that occur throughout the
entire region following introduction.

We remark here that the impact of population size on the probability of local transmission
and the median number of cases that occur within 100 days of introduction is a consequence of
the assumptions associated with the use of the gravity model to approximate human move-
ment. Due to the structure of the gravity model, there is a negative correlation between human
population size and the daily number of outbound commuters. Thus, the negative correlations
between population size and our two primary metrics presented above are the result of the pos-
itive correlations between the relative number of outbound commuters and our two primary
metrics. If we assume that people do not move about the region (i.e., set θ = 0), there is no sig-
nificant correlation between population size and the number of cases that occur within 100
days of introduction (ρ = 0.058, p = 0.4422), and there is a weak, but significant, positive corre-
lation between population size and the probability of autochthonous transmission (ρ = 0.2696,
p = 0.002).

Reporting
The clinical presentation rate and thus the fraction of total cases that are reported will have a
significant impact on whether a dengue outbreak is detected. We investigate the potential
impacts of imperfect reporting rates on the probability that autochthonous transmission is
detected as well as the total number of cases detected within 100 days of the initial introduction
(Fig 4). We note here that, for the purpose of this study, reporting rates are synonymous with
clinical presentation rates. For this analysis, we introduced a single infectious individual in the
city of Miami at different times of the year, starting with January 10 and incrementing every 10
days until December 26 (as in our study of the timing of introduction), and we calculated the
probability of detecting at least one autochthonous case when reporting rates (r) are 2%, 10%,
and 50% (Fig 4A). The probability is calculated as the fraction of cases detected at each report-
ing rate given that autochthonous transmission actually occurred.

The probability of detecting autochthonous transmission at different reporting rates varied
with the timing of introduction, largely due to the associated variation in the number of
autochthonous cases (Fig 1B). However, the magnitude of that variability depended upon the
reporting rate. When reporting rates were high (50%), the probability of detecting autochtho-
nous transmission exhibited a small amount of variation with the timing of introduction,
because detection of autochthonous transmission was very likely even if only a few cases
occurred. At lower reporting rates, such as 2% (blue dots in Fig 4A), the probability of detecting
autochthonous transmission was highest when cases were imported in late May, which corre-
sponds to the timing of introduction that led to the highest number of cases (Fig 1B). In
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Fig 4. Probability of detecting local transmission at different reporting rates. (A) The probability of detecting local transmission at
different reporting rates (r) for different days of introduction (error bars are the probability of autochthonous transmission ± the binomial
standard deviation). (B) The total number of cases detected in the first 100 days following a single introduction on May 30 for different
reporting rates. All other parameter values are as given in Table 1. In (A), the number in parentheses indicates the number of total simulations
(out of 500 total simulations) in which at least one autochthonous case of transmission occurred. In the boxplot in (B), red lines indicate the
median, blue dots indicate the mean, and the box represents the interquartile range. Whiskers indicate the interquartile range multiplied by
1.5.

doi:10.1371/journal.pone.0161365.g004
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general, when the reporting rates were lower, the probability of detecting autochthonous trans-
mission was strongly affected by the number of cases that occurred (compare Figs 1B and 4A).
For instance, the probability of detecting autochthonous transmission was generally similar for
reporting rates of 2 and 10% when introductions occurred during the first six months of the
year (when outbreaks were larger, Fig 1B), whereas the probabilities differed by at least 0.2 for
much of the remainder of the year (when outbreaks were smaller, Fig 1B). Although expected,
this result emphasizes the influence of reporting rate on our ability to detect transmission dur-
ing smaller outbreaks.

To study the impact of reporting rates on the perceived size of an outbreak, we introduced a
single infectious person in the city of Miami on May 30 and compared the size of the detected
outbreak. We found that the total number of cases detected could differ by as much as almost
100% at lower reporting rates. For example, the median number of cases reported when the
reporting rate was 5% was fewer than 10, whereas the actual number of cases recorded for this
scenario was approximately 100. At a reporting rate of only 2%, no cases may be reported even
when there is an outbreak of over 100 cases. Note that this result is not surprising (e.g., 5% of
100 is 5), but it emphasizes how low reporting rates may impact the ability to detect local trans-
mission and outbreaks, even when the outbreaks are large for the region in which they occur.

Sensitivity Analysis
Finally, we study the impacts on the model of changes in the average vector-host ratio and β by
varying values for these parameters as well as the parameter θ in a global sensitivity analysis
and observing how values of our two primary metrics (probability of autochthonous transmis-
sion and number of cases that occur within 100 days of introduction) change as values for
these parameters change. In Fig 5, we present the marginal distributions of the two metrics for
a range of values of the average vector-host ratio and β. S11 Fig shows the global distributions
of the two metrics obtained in this sensitivity analysis, and S12 Fig shows RT

0 ðtÞ values on the
day of introduction for each of the 5000 parameter combinations. In S1 Text, we also present
results for the impacts of changes in θ on model output (S13 Fig).

In Fig 5 and S13 Fig, we present heat maps of the cumulative frequency of each metric. For
each heat map, the parameters on the horizontal axis are divided into 30 evenly spaced groups
and the values on the vertical axis are divided into 20 evenly spaced groups. The colored rectan-
gles present the cumulative frequency of simulations conducted with parameter values in the
group on the horizontal axis that led to values of the metric in the group on the vertical axis.
The solid black curve represents the median of the cumulative distribution for the metric pre-
sented on the vertical axis for each group of values on the horizontal axis (i.e. 50% of the simu-
lations conducted with parameters in the group of values on the horizontal axis led to values in
the groups on the vertical axis that were higher than those at the black curve).

As the average vector-host ratio increased, the probability of autochthonous transmission
increased gradually and began to saturate around an average vector-host ratio of 2 (Fig 5A).
The median number of cases that occurred within 100 days of introduction also increased with
the average vector-host ratio (Fig 5C). From the lowest group of values for the average vector-
host ratios considered (� 0.1) to an average vector-host ratio near 1, the median of the cumula-
tive distribution for the median number of cases that occurred within 100 days increased from
tens of cases to hundreds of cases. As the average vector-host ratio increased beyond 1.5, the
change in the median number of cases that occurred within 100 days was minimal.

As expected, increases in β had a greater impact than increases in the average vector-host
ratio on the probability of autochthonous transmission and the median number of cases that
occurred within 100 days of introduction (Fig 5B). The strong impact of this parameter on the
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Fig 5. Sensitivity analysis for the average vector-host ratio and transmission rate β. Heat maps depict cumulative distributions of the probability
of autochthonous transmission as it varies with changes in the average-vector host ratio (A) and β (B), and the median number of cases that occur
within 100 days of introduction as it varies with changes in the average vector-host ratio (C) and β (D). Note that the axis for the median number of
cases that occur within 100 days is on a log10 scale. In each heat map, the parameters on the horizontal axis are divided into 30 evenly spaced groups
and the values on the vertical axis are divided into 20 evenly spaced groups. The colored rectangles present the cumulative frequency of simulations
conducted with parameter values in the group on the horizontal axis that led to values of the metric in the group on the vertical axis. The solid black
curve represents the median value of the metric presented on the vertical axis for each group of values on the horizontal axis (i.e. 50% of the
simulations conducted with parameters in the the range of values on the horizontal axis led to values of the metric on the vertical axis higher than those
at the curve). These figures were generated from 5000 total simulation sets. Each simulation set is a unique parameter combination that is run 100
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dynamics is due in part to its role in both human-to-mosquito and mosquito-to-human trans-
mission, which leads to a nonlinear impact on RT

0 ðtÞ. As β increased from values close to zero
to values close to 0.4, the median of the cumulative distribution for the probability of autoch-
thonous transmission increased from approximately 0 to approximately 0.9. The values for the
probability of autochthonous transmission did not saturate with increases of β within the
group of values we considered. The median number of cases that occurred within 100 days of
introduction also increased rapidly with increases in β (Fig 5D). The median of the cumulative
distribution for the median number of cases that occurred within 100 days increased by four
orders of magnitude when β increased from 0.1 to 0.4, which indicates that small changes in β
can cause radically different model outcomes.

Discussion
In this study, we developed a mathematical model to understand the potential for emergence
of mosquito-borne disease in an Urbanized Area in the United States. We highlighted the util-
ity of this model by exploring the role of timing and location of introduction in determining
whether an introduction of dengue in the Miami UA will lead to autochthonous transmission
and outbreaks in the context of human movement patterns. Furthermore, we utilized the
model to understand the impact of reporting rates on detection and perceived outbreak size,
and we tested the sensitivity of the model to parameters that are poorly understood for the
Miami UA, namely the transmission rate and average vector-host ratio.

We showed that the time of year in which an imported case of dengue arrives within the
Miami UA influences both the probability of autochthonous transmission and the ultimate
number of locally acquired cases. Although introductions in June and July led to the highest
probability of autochthonous transmission, introductions in May often led to the greatest num-
ber of cases. This result reemphasizes the need for comprehensive vector control measures to
begin in late spring and early summer even if the vector population and the number of dengue
cases observed at the time are low. We found that outbreaks following introductions in autumn
were smaller than those following introductions in the late spring and summer. Most of the
imported cases of dengue that were reported in 2010–2014 occurred in late summer and early
autumn when the vector population is lower (S2 and S7 Figs). Importations in late spring and
early summer have been less common. This study of the impacts of the timing of introduction
also potentially assists in understanding why large outbreaks of dengue in southern Florida
have been rare despite numerous imported cases.

We also found a relationship between the timing of introduction and the fraction of cases
that occurred at the location of introduction. A smaller fraction of outbreaks following intro-
duction in the spring and summer occurred within the introduction location whereas introduc-
tions in the winter led to chains of transmission that occurred almost entirely within the
location of introduction. This result has the potential to inform vector control measures and
encourage more efficient allocation of resources throughout the region during the months
when the vector population is less abundant. Although available data does not allow us to link
the outbreaks that have occurred to specific introductions in the region, the larger chains of
transmission and the outbreaks that have been reported in southern Florida (which occurred
in autumn) were localized to specific locations (namely, Martin County and Key West). This
supports our result that the probability of an outbreak is seasonally driven.

times. For these simulations, the average vector-host ratio* Uniform(0, 3), β* Uniform(0, 4), and log10(θ)*Uniform(−8, −4). All other parameter
values are as given in Table 1.

doi:10.1371/journal.pone.0161365.g005
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In our effort to determine the impact of the location of introduction, we found that when
dengue introductions occurred in smaller populations, the total number of autochthonous
cases throughout the Miami UA was higher. This is due primarily to the higher rate of move-
ment of people in smaller populations. That is, based on the U.S. Census commuter data and
the gravity model with which we parameterized implicit human movement, people in smaller
cities and cities that are farther away from larger cities traveled more about the entire region
than those in large cities, and these people were potentially acting as carriers of the virus. This
led to the higher probabilities of transmission and subsequent acquisition of infection by popu-
lations in the smaller CDPs and unincorporated CCDs in the Miami UA. Although this result
is a consequence of the movement parameterization in the model, it could provide one expla-
nation as to why larger outbreaks of dengue have not been observed in the heavily populated
counties of the Miami UA (Miami-Dade, Broward, and Palm Beach) despite numerous intro-
ductions. In fact, the outbreaks that occurred were in counties with lower population sizes than
these three (Martin County and Monroe County) [37].

The fraction of total cases of dengue that are actually reported depends on the clinical pre-
sentation rate within the population. According to a study by Bhatt and colleagues in 2013,
approximately 24.6% of dengue cases are apparent, meaning that about 75.4% of dengue cases
will be subclinical and thus not likely to be reported to health authorities [72]. This presenta-
tion rate and reporting will have a significant impact on whether an outbreak of dengue is
detected. For instance, in 2009-2010, seroprevalence studies suggested that only about 2% of
the cases that occurred in Key West, Florida presented at health care facilities and were
reported [39, 62]. Investigating the impacts of reporting rates on the probability of detecting
autochthonous transmission and subsequent outbreaks, we showed that at reporting rates of
2%, the probability of detecting a locally acquired case was below 0.20 when introductions
occurred during the winter and fall (Fig 4A). Furthermore, we showed that at this reporting
rate, a large outbreak could potentially go completely undetected (Fig 4B). This result suggests
that the small chains of transmission that have occurred in the Miami UA in the past four
years are possibly part of larger outbreaks. Seroprevalence studies, such as the one conducted
in Key West following the 2009-2010 outbreaks [73], need to be conducted in the areas where
numerous imported cases have occurred to determine whether undetected outbreaks have
occurred. If seroprevalence of one or two serotypes of dengue (such as DENV1 or DENV2, the
two serotypes most frequently imported in Florida [37]) is higher than assumed, this would
indicate that a significant proportion of the population is at risk for secondary dengue infection
should an outbreak of another serotype of dengue occur in the region in the future, which
could challenge health care infrastructure.

Although we elucidated scenarios in which importation of dengue could lead to autoch-
thonous transmission and outbreaks, we emphasize that these results were obtained for spe-
cific parameter sets. We showed that our model is sensitive to parameters whose values are
not well understood, namely the dengue transmission rates and the vector-host ratio. Several
studies have aimed to better understand the distribution of Ae. aegypti in southern Florida
[42, 44, 45] and have found that Ae. aegypti populations tend to be associated with more
developed areas within the region and that the vector populations are greater in areas closer
to the Atlantic coast where the human population is also greater. Even with this knowledge,
quantifying the abundance of Ae. aegypti and understanding the relationship between the
vector population and the highly heterogeneous human population throughout the Miami
UA are difficult tasks. However, developing a better understanding of the relationship
between human and mosquito vector distributions as well as the potential for transmission of
dengue between the two populations in this region is critical to developing a model with
stronger predictive power.
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In addition to a better understanding of vector distribution and transmission potential, the
model presented here would benefit from a more thorough understanding of several other
unknown factors that contribute to heterogeneity of risk of infection throughout the Miami
UA, such as human movement and activity in the region and heterogeneity in human contact
with vectors. Risk of infection in our model is associated primarily with population size and
movement according to a parameterization of the gravity model obtained using U.S. Census
commuter data. Movement of humans is strongly associated with the spread of dengue
throughout a region [27, 28], but movement is more complex than that captured by the gravity
model and the data used to parameterize it. For instance, travel within a CDP, travel beyond
that of daily commuting, and recreational travel are all likely to influence risk of transmission.
To our knowledge, this information is not available for the Miami UA, but studies have been
conducted in some dengue endemic regions such as Iquitos, Peru to better understand hetero-
geneity in human movement and how that heterogeneity potentially impacts dengue risk [74].
Similar studies for the Miami UA as well as other areas within the U.S. where arbovirus intro-
duction is likely to lead to an outbreak would allow for investigation of the impacts on local
transmission and outbreak of different types of human movement.

This model also does not account for any spatiotemporal heterogeneity of the human popu-
lation or mosquito behavior. Human-mosquito contact within each of the subpopulations of
the Miami UA is assumed to be well-mixed in this model, but this is not likely the case for all
locations. Some locations potentially have varying degrees of assortative mixing that may
depend upon a number of factors, including daily activities and socioeconomic status. While
general socioeconomic measures are available for the CDPs and CCDs from the U.S. Census
[75], this information is not as easily obtainable for subdivisions of the CDPs and CCDs. Fur-
thermore, incorporating these measures into the model, either within or across locations,
would require an established relationship between socioeconomic status and human contact
with vectors within the Miami UA. To our knowledge, a study of this relationship has not been
conducted for the Miami UA, but studies to begin to quantify this relationship for dengue and
West Nile have been conducted in other locations within the U.S. such as Baltimore, Maryland
and Suffolk County, New York, among other places [76–78]. While the relationships derived
from these studies may not apply specifically to dengue in the Miami UA, they could be incor-
porated in the model as an a priori assessment of the potential impact of socioeconomic hetero-
geneity on disease spread and outbreaks. Heterogeneity in vector-host ratios and contact with
vectors could be another reason why introductions of dengue in larger populations have not
yet led to outbreaks while outbreaks have occurred in smaller populations (S1 Fig, [37]). In
addition to the influences of spatial heterogeneity, temporal variations in human exposure to
mosquitoes and mosquito feeding habits should be considered. Changes in precipitation and
temperature that occur across seasons are likely to influence human activity, and there is evi-
dence that Ae. aegypti biting rates are influenced by temperature [79], although the influence
of these temporally varying aspects on dengue transmission in the Miami UA are not well
understood.

The structure of our model follows a common framework for epidemiological models and is
parameterized with publicly available U.S. Census population and daily commute data [51, 55],
making this model adaptable to other regions of the United States. Although it is designed to
study mosquito-borne disease spread throughout urbanized areas, it can also be utilized to
study other diseases by adapting the basic epidemiological structure, and it can be parameter-
ized at the level of counties, CCDs, or CDPs for any region where similar data is available. For
example, this model could be adapted to study two other potential threats to the Miami UA
and other metropolitan areas in the U.S. such as New Orleans, Houston, and New York City:
chikungunya and Zika virus. Chikungunya became established in the western hemisphere in
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2014 and imported cases were detected in nearly all U.S. States. Over 400 imported cases were
detected in Florida in 2014, and the majority of those were in southern Florida [37] (S14 Fig).
New York reported the most imported cases of chikungunya of any state within the United
States (801) and although no locally transmitted cases were reported there, one of the major
vectors of chikungunya and dengue, Ae. albopictus, is present throughout the region [78, 80].
Zika virus was first detected in the Western Hemisphere in 2015 and is rapidly spreading
throughout Central and South America [7]. As of mid-June 2016, 755 travel-related cases of
Zika virus have been reported in the United States, 147 of which were reported in Florida (S15
Fig), but no autochthonous cases due to mosquito-human contact have been reported yet [37,
81]. While modeling studies have been conducted to study the potential spread of chikungunya
virus throughout the Americas, including cities within the United States [10–12], no studies
have examined the potential for introduction and emergence of dengue, chikungunya, or Zika
virus within U.S. cities with the detail afforded by the model presented here.

Supporting Information
S1 Text. Supplementary Text.We describe the acquisition of U.S. Census data, the fitting of
the vector dynamics and gravity model to data, the results of sensitivity analysis for the param-
eter θ, the calculation of RT

0 ði; tÞ, and complexities of parameter selection.
(PDF)

S1 Fig. Total dengue cases in Florida 2010–2016. Total cases of dengue imported (A) and
locally acquired (B) in the Miami UA and Florida. Broward, Miami-Dade, and Palm Beach
counties comprise the majority of the Miami UA. Martin County, part of which is considered
to be within the Miami UA, is located just north of Palm Beach county. Monroe county
includes the Florida Keys and is located west and southwest of the Miami UA. Data presented
here were obtained from [37]. Note that 2016 numbers are as of June 15, 2016.
(PDF)

S2 Fig. Time series of dengue cases in Florida 2010–2015. Time series of the number of
imported (A,C) and locally acquired (B,D) cases of dengue in the Miami UA (Broward,
Miami-Dade, and Palm Beach counties, A,B) and the remainder of Florida (C,D). Data pre-
sented in these figures were obtained from [37]. Each curve in the figure represents a different
year (2010–2015). Note that the time associated with cases is the time at which Florida Depart-
ment of Health reported the cases.
(PDF)

S3 Fig. The time-varying value of RT
0 ðtÞ (see Eq 22) in one CDP of introduction. RT

0 ðtÞ (not
taking into account the influence of human movement) at different times of the year when the
average vector-host ratio is 1. Note that this calculation assumes that the vector-host ratio
remains the same from the day of introduction forward and is thus an approximation of the
value of R0 on the day in which an imported case is introduced. The dashed black line indicates
the epidemiological threshold value of RT

0 ðtÞ ¼ 1. This RT
0 ðtÞ value is calculated with the

parameters listed in Table 1 of the main text.
(PDF)

S4 Fig. (Top) Location of the Miami UA in Florida. (Bottom) Population size (2010) of the
cities, towns, villages, CDPs, and CCDs within the Miami UA. The counties in the Miami
UA are, from top to bottom, Martin, Palm Beach, Broward, and Miami-Dade. The map
included in this figure was obtained from U.S. Census Bureau TIGER/LINE1Shapefiles [71].
(PDF)
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S5 Fig. (A) Residual values of gravity model predictions (actual commuter flow—model
estimate). (B) Boxplot of residual values (excluding outliers). In the boxplot, the red line rep-
resents the median value and the box represents the interquartile range.
(PDF)

S6 Fig. Location of CDC Light Traps in Miami-Dade county. The map included in this figure
was obtained from U.S. Census Bureau TIGER/LINE1Shapefiles [71].
(PDF)

S7 Fig. Ae. aegypti population counts from CDC light traps from 2010–2013. Blue dots are
weekly counts and the solid black line is Eq S4 fit to each trap using the data presented in each
figure.
(PDF)

S8 Fig. Deterministic dynamics of the Ae. aegypti population throughout a single year for
different values of the average vector-host ratio. The curves represent the vector-host ratio as
it changes throughout the year with fluctuations in the vector population. Each curve repre-
sents a deterministic simulation with a different value for the average vector-host ratio. In the
main text, the average vector-host ratio is 1, which is indicated by the black curve in this figure.
(PDF)

S9 Fig. Relationship between β and the average vector-host ratio in plausible parameter
sets. Scatter plot of 3000 combinations of values of β and the average vector-host ratio utilized
in simulations of dengue introduction in a single homogeneous population of size 38000. Light
blue circles represent all combinations of the two parameters. Dark black circles represent the
values of the two parameters that were deemed plausible (i.e. led to a maximum number of
cases from 100 simulations between 170–340). The pink star represents the combination of the
two parameters utilized as the default values in this study. For more information, see S1 Text.
(PDF)

S10 Fig. Boxplots of Plausible Parameter sets. (A) The maximum number of cases from 100
simulations of each parameter set. The red squares denote the upper (340) and lower (170)
bounds on the maximum number of infections required for a parameter set to be deemed plau-
sible. (B) β. (C) θ (log scale), and (D) The average vector-host ratio. For panels (B-D), the red
star represents the default value chosen for that parameter from one plausible parameter set.
The red line represents the median, and the box encases the Interquartile range (IQR). The
whiskers indicate 1.5×IQR.
(PDF)

S11 Fig. Distribution of metrics for all 5000 simulations utilized in the global sensitivity
analysis. (A) The relative frequency of the probability of at least one autochthonous case. (B)
The relative frequency of the median number of cases that occurred within 100 days of intro-
duction (on a log10 scale). For these simulations, the average vector-host ratio was chosen from
a uniform distribution with minimum 0 and maximum 3, β* uniform(0, 0.4), and log10(θ)*
uniform(-8, -4). All other parameter values are as given in Table 1 of the main text.
(PDF)

S12 Fig. Distribution of RT
0 ðtÞ (see Eq 22) for a single population on May 30 for all 5000

simulations utilized in the global sensitivity analysis. The relative frequency of RT
0 ðtÞ on May

30. For these simulations, the average vector-host ratio was chosen from a uniform distribution
with minimum 0 and maximum 3, β* uniform(0, 0.4), and log10(θ)* uniform(-8, -4). All
other parameter values are as given in Table 1 of the main text.
(PDF)
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S13 Fig. Sensitivity analysis for the parameter θ.Heat maps depict how the probability of
autochthonous transmission (A) changes with changes in θ and how the median number of
cases that occurred within 100 days of introduction (B) changes with changes in θ. Note that
the axis for the median number of cases that occur within 100 days is on a log10 scale. In each
heat map, the parameters on the horizontal axis are divided into 30 evenly spaced groups and
the values on the vertical axis are divided into 20 evenly spaced groups. The colored rectangles
represent the cumulative frequency of simulations conducted with parameter values in the
group on the horizontal axis that led to values of the metric in the group on the vertical axis.
The solid black curve represents the median of the cumulative distribution for the metric pre-
sented on the vertical axis for each group of values on the horizontal axis. These figures were
generated from 5000 total simulation sets. Each simulation set is a unique parameter combina-
tion that is run 100 times. For these simulations, the average vector-host ratio* uniform
(0, 3), β* uniform(0, 4), and log10(θ)* uniform(−8, −4). All other parameter values are as
given in Table 1 of the main text.
(PDF)

S14 Fig. Total cases of chikungunya in Florida 2014–2016. Imported (A) and locally
acquired (B) chikungunya cases in the Miami UA and Florida. Broward, Miami-Dade, and
Palm Beach counties are part of the Miami UA. Martin County, part of which is considered to
be within the Miami UA, is just north of Palm Beach County. Monroe county includes the
Florida Keys and is west and southwest of the Miami UA. Data presented in these figures were
aggregated from [37]. Note that 2016 numbers are as of June 15, 2016.
(PDF)

S15 Fig. Total cases of Zika virus in Florida 2016. Imported Zika virus cases in the Miami
UA and Florida. Broward, Miami-Dade, and Palm Beach counties are part of the Miami UA.
Martin County, part of which is considered to be within the Miami UA, is just north of Palm
Beach County. Monroe county includes the Florida Keys and is west and southwest of the
Miami UA. Data presented in these figures were aggregated from [37]. Note that numbers are
as of June 15, 2016.
(PDF)

Author Contributions

Conceived and designed the experiments:MAR RCC CNMHJW.

Performed the experiments:MAR.

Analyzed the data:MAR RCC HJW NJBS.

Contributed reagents/materials/analysis tools:MAR CV.

Wrote the paper:MAR RCC HJW.

References
1. Gubler DJ. Resurgent vector-borne diseases as a global health problem. Emerging Infectious Dis-

eases. 1998; 4(3):442–50. doi: 10.3201/eid0403.980326 PMID: 9716967

2. Gubler DJ. Vector-borne diseases. Revue Scientifique et Technique (International Office of Epizootics).
2009 Aug; 28(2):583–8.

3. Tatem AJ, Huang Z, Das A, Qi Q, Roth J, Qiu Y. Air travel and vector-borne disease movement. Parasi-
tology. 2012 Dec; 139(14):1816–30. doi: 10.1017/S0031182012000352 PMID: 22444826

Modeling Mosquito-Borne Disease Spread in U.S. Urbanized Areas

PLOS ONE | DOI:10.1371/journal.pone.0161365 August 17, 2016 24 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161365.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161365.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161365.s016
http://dx.doi.org/10.3201/eid0403.980326
http://www.ncbi.nlm.nih.gov/pubmed/9716967
http://dx.doi.org/10.1017/S0031182012000352
http://www.ncbi.nlm.nih.gov/pubmed/22444826


4. Mackenzie JS, Gubler DJ, Petersen LR. Emerging flaviviruses: the spread and resurgence of Japanese
encephalitis, West Nile and dengue viruses. Nature Medicine. 2004 Dec; 10(12):S98–109. doi: 10.
1038/nm1144 PMID: 15577938

5. Nasci RS. Movement of Chikungunya Virus into the Western Hemisphere. Emerging Infectious Dis-
eases. 2014 Aug; 20(8):1394–1395. doi: 10.3201/eid2008.140333 PMID: 25061832

6. Rezza G. Dengue and chikungunya: long-distance spread and outbreaks in naïve areas. Pathogens
and Global Health. 2014 Dec; 108(8): 349–55. doi: 10.1179/2047773214Y.0000000163 PMID:
25491436

7. Hennessey M, Fisher M, Staples JE. Zika Virus Spreads to New Areas-Region of the Americas, May
2015-January 2016. Morbidity & Mortality Weekly Report. 2016; 65(3):55–58. Available: http://www.
cdc.gov/mmwr/volumes/65/wr/mm6503e1.htm. doi: 10.15585/mmwr.mm6503e1

8. Anderson RM, May RM. Infectious Disease of Humans. Oxford: Oxford University Press; 1991.

9. Christofferson RC, Mores CN, Wearing HJ. Characterizing the likelihood of dengue emergence and
detection in naive populations. Parasites & Vectors. 2014 Jun; 7(1):282. doi: 10.1186/1756-3305-7-282

10. Ruiz-Moreno D, Vargas IS, Olson KE, Harrington LC. Modeling dynamic introduction of chikungunya
virus in the United States. PLoS Neglected Tropical Diseases. 2012 Jan; 6(11):e1918. doi: 10.1371/
journal.pntd.0001918 PMID: 23209859

11. Cauchemez S, Ledrans M, Poletto C. Local and regional spread of chikungunya fever in the Americas.
Euro Surveill. 2014; 19(28):20854. doi: 10.2807/1560-7917.ES2014.19.28.20854 PMID: 25060573

12. Johansson MA, Powers AM, Pesik N, Cohen NJ, Staples JE. Nowcasting the spread of chikungunya
virus in the Americas. PLoS ONE. 2014 Jan; 9(8):e104915. doi: 10.1371/journal.pone.0104915 PMID:
25111394

13. Poletti P, Messeri G, Ajelli M, Vallorani R, Rizzo C, Merler S. Transmission potential of chikungunya
virus and control measures: The case of Italy. PLoS ONE. 2011; 6(5). doi: 10.1371/journal.pone.
0018860

14. Lourenço J, Recker M. The 2012 Madeira dengue outbreak: epidemiological determinants and future
epidemic potential. PLoS Neglected Tropical Diseases. 2014; 8(8):e3083. doi: 10.1371/journal.pntd.
0003083 PMID: 25144749

15. Feldstein LR, Brownstein JS, Brady OJ, Hay SI, Johansson MA. Dengue on islands: A Bayesian
approach to understanding the global ecology of dengue viruses. Transactions of the Royal Society of
Tropical Medicine and Hygiene. 2015;p. 1–10.

16. Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic prob-
lem in the 21st century. Trends in Microbiology. 2002 Feb; 10(2):100–3. doi: 10.1016/S0966-842X(01)
02288-0 PMID: 11827812

17. Suk JE, Semenza JC. From global to local: vector-borne disease in an interconnected world. European
Journal of Public Health. 2014 Aug; 24(4):531–2. doi: 10.1093/eurpub/cku041 PMID: 25063828

18. Semenza JC, Sudre B, Miniota J, Rossi M, HuW, Kossowsky D, et al. International Dispersal of Den-
gue through Air Travel: Importation Risk for Europe. PLoS Neglected Tropical Diseases. 2014 Dec; 8
(12):e3278. doi: 10.1371/journal.pntd.0003278 PMID: 25474491

19. Johansson MA, Arana-Vizcarrondo N, Biggerstaff BJ, Staples JE, Gallagher N, Marano N. On the treat-
ment of airline travelers in mathematical models. PLoS ONE. 2011 Jan; 6(7):e22151. doi: 10.1371/
journal.pone.0022151 PMID: 21799782

20. Johansson MA, Arana-Vizcarrondo N, Biggerstaff BJ, Gallagher N, Marano N, Staples JE. Assessing
the risk of international spread of yellow fever virus: a mathematical analysis of an urban outbreak in
Asuncion, 2008. The American Journal of Tropical Medicine and Hygiene. 2012 Feb; 86(2):349–58.
doi: 10.4269/ajtmh.2012.11-0432 PMID: 22302873

21. Benedict MQ, Levine RS, HawleyWA, Lounibos LP. Spread of the tiger: global risk of invasion by the
mosquito Aedes albopictus. Vector-borne and Zoonotic Diseases. 2007 Jan; 7(1):76–85. doi: 10.1089/
vbz.2006.0562 PMID: 17417960

22. Knudsen AB. Global distribution and continuing spread of Aedes albopictus. Parassitologia. 1995 Dec;
37(2–3):91–7. PMID: 8778670

23. Gubler DJ. Prevention and Control of Aedes aegypti-borne Diseases: Lesson Learned from Past Suc-
cesses and Failures. Asian-Pacific Journal of Molecular Biology and Biotechnology. 2011; 19(3): 111–
114.

24. Guagliardo SA, Barboza JL, Morrison AC, Astete H, Vazquez-Prokopec G, Kitron U. Patterns of Geo-
graphic Expansion of Aedes aegypti in the Peruvian Amazon. PLoS Neglected Tropical Diseases.
2014 Aug; 8(8):e3033. doi: 10.1371/journal.pntd.0003033 PMID: 25101786

Modeling Mosquito-Borne Disease Spread in U.S. Urbanized Areas

PLOS ONE | DOI:10.1371/journal.pone.0161365 August 17, 2016 25 / 28

http://dx.doi.org/10.1038/nm1144
http://dx.doi.org/10.1038/nm1144
http://www.ncbi.nlm.nih.gov/pubmed/15577938
http://dx.doi.org/10.3201/eid2008.140333
http://www.ncbi.nlm.nih.gov/pubmed/25061832
http://dx.doi.org/10.1179/2047773214Y.0000000163
http://www.ncbi.nlm.nih.gov/pubmed/25491436
http://www.cdc.gov/mmwr/volumes/65/wr/mm6503e1.htm
http://www.cdc.gov/mmwr/volumes/65/wr/mm6503e1.htm
http://dx.doi.org/10.15585/mmwr.mm6503e1
http://dx.doi.org/10.1186/1756-3305-7-282
http://dx.doi.org/10.1371/journal.pntd.0001918
http://dx.doi.org/10.1371/journal.pntd.0001918
http://www.ncbi.nlm.nih.gov/pubmed/23209859
http://dx.doi.org/10.2807/1560-7917.ES2014.19.28.20854
http://www.ncbi.nlm.nih.gov/pubmed/25060573
http://dx.doi.org/10.1371/journal.pone.0104915
http://www.ncbi.nlm.nih.gov/pubmed/25111394
http://dx.doi.org/10.1371/journal.pone.0018860
http://dx.doi.org/10.1371/journal.pone.0018860
http://dx.doi.org/10.1371/journal.pntd.0003083
http://dx.doi.org/10.1371/journal.pntd.0003083
http://www.ncbi.nlm.nih.gov/pubmed/25144749
http://dx.doi.org/10.1016/S0966-842X(01)02288-0
http://dx.doi.org/10.1016/S0966-842X(01)02288-0
http://www.ncbi.nlm.nih.gov/pubmed/11827812
http://dx.doi.org/10.1093/eurpub/cku041
http://www.ncbi.nlm.nih.gov/pubmed/25063828
http://dx.doi.org/10.1371/journal.pntd.0003278
http://www.ncbi.nlm.nih.gov/pubmed/25474491
http://dx.doi.org/10.1371/journal.pone.0022151
http://dx.doi.org/10.1371/journal.pone.0022151
http://www.ncbi.nlm.nih.gov/pubmed/21799782
http://dx.doi.org/10.4269/ajtmh.2012.11-0432
http://www.ncbi.nlm.nih.gov/pubmed/22302873
http://dx.doi.org/10.1089/vbz.2006.0562
http://dx.doi.org/10.1089/vbz.2006.0562
http://www.ncbi.nlm.nih.gov/pubmed/17417960
http://www.ncbi.nlm.nih.gov/pubmed/8778670
http://dx.doi.org/10.1371/journal.pntd.0003033
http://www.ncbi.nlm.nih.gov/pubmed/25101786


25. Guagliardo SA, Morrison AC, Luis Barboza J, Wesson DM, Ponnusamy L, Astete H, et al. Evidence for
Aedes aegypti (Diptera: Culicidae) oviposition on boats in the Peruvian Amazon. Journal of Medical
Entomology. 2015; 52(4):726–729. doi: 10.1093/jme/tjv048 PMID: 26335482

26. Guagliardo SA, Morrison AC, Barboza JL, Requena E, Astete H, Vazquez-Prokopec G, et al. River
boats contribute to the regional spread of the dengue vector Aedes aegypti in the Peruvian Amazon.
PLoS Neglected Tropical Diseases. 2015; 9(4):e0003648. doi: 10.1371/journal.pntd.0003648 PMID:
25860352

27. Stoddard ST, Forshey BM, Morrison AC, Paz-Soldan VA, Vazquez-Prokopec GM, Astete H, et al.
House-to-house human movement drives dengue virus transmission. Proceedings of the National
Academy of Sciences of the United States of America. 2013 Jan; 110(3):994–9. doi: 10.1073/pnas.
1213349110 PMID: 23277539

28. Reiner RC, Stoddard ST, Scott TW. Socially structured humanmovement shapes dengue transmission
despite the diffusive effect of mosquito dispersal. Epidemics. 2014 Mar; 6:30–36. doi: 10.1016/j.
epidem.2013.12.003 PMID: 24593919

29. Adams B, Kapan DD. Man bites mosquito: understanding the contribution of humanmovement to vec-
tor-borne disease dynamics. PloS ONE. 2009 Jan; 4(8):e6763. doi: 10.1371/journal.pone.0006763
PMID: 19707544

30. Erlander S, Stewart NF. The gravity model in transportation analysis: theory and extensions. Utrecht,
The Netherlands: VSP; 1990.

31. Xia Y, Bjørnstad ON, Grenfell BT. Measles metapopulation dynamics: a gravity model for epidemiologi-
cal coupling and dynamics. The American Naturalist. 2004 Aug; 164(2):267–81. doi: 10.1086/422341
PMID: 15278849

32. Viboud C, Bjø rnstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT. Synchrony, waves, and spatial
hierarchies in the spread of influenza. Science (New York, NY). 2006 Apr; 312(5772):447–51. doi: 10.
1126/science.1125237

33. Bhoomiboonchoo P, Gibbons RV, Huang A, Yoon IK, Buddhari D, Nisalak A, et al. The spatial dynam-
ics of dengue virus in kamphaeng phet, Thailand. PLoS Neglected Tropical Diseases. 2014 Sep; 8(9):
e3138. doi: 10.1371/journal.pntd.0003138 PMID: 25211127

34. Wesolowski A, Qureshi T, Boni MF, Sundsø y PR, Johansson MA, Rasheed SB, et al. Impact of human
mobility on the emergence of dengue epidemics in Pakistan. Proceedings of the National Academy of
Sciences. 2015;p. 201504964. doi: 10.1073/pnas.1504964112

35. World Health Organization. Dengue and severe dengue—fact sheet; 2015. Available: http://www.who.
int/mediacentre/factsheets/fs117/en/.

36. Rey J. Dengue in Florida (USA). Insects. 2014 Dec; 5(4):991–1000. doi: 10.3390/insects5040991
PMID: 26462955

37. Florida Department of Health. Weekly Surveillance Information, Mosquito-borne Diseases; 2015. Avail-
able: http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/archive-
surveillance.html.

38. U. S. Geological Survey. USGS Disease Maps; 2015. Available from: http://diseasemaps.usgs.gov/.

39. Centers for Disease Control and Prevention (CDC). Locally Acquired Dengue x2014; KeyWest, Flor-
ida, 2009–2010. Morbidity & Mortality Weekly Report. 2010; 59(19):577–581. Available: http://www.
medscape.com/viewarticle/722515.

40. O’Meara GF, Evans LF, Gettman AD, Cuda JP. Spread of Aedes albopictus and Decline of Ae. aegypti
(Diptera: Culicidae) in Florida. Journal of Medical Entomology. 1995; 32(4):554–562. doi: 10.1093/
jmedent/32.4.554 PMID: 7650719

41. Juliano SA, O’Meara GF, Morrill JR, Cutwa MM. Desiccation and thermal tolerance of eggs and the
coexistence of competing mosquitoes. Oecologia. 2002; 130(3):458–469. doi: 10.1007/
s004420100811 PMID: 20871747

42. Braks MAH, Honório NA, Lourenço-De-Oliveira R, Juliano SA, Lounibos LP. Convergent habitat segre-
gation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida.
Journal of Medical Entomology. 2003 Nov; 40(6):785–94. doi: 10.1603/0022-2585-40.6.785 PMID:
14765654

43. Juliano SA, Lounibos LP, O’Meara GF. A field test for competitive effects of Aedes albopictus on A.
aegypti in South Florida: differences between sites of coexistence and exclusion? Oecologia. 2004
May; 139(4):583–93. doi: 10.1007/s00442-004-1532-4 PMID: 15024640

44. Rey J, Nishimura N. Habitat segregation of mosquito arbovirus vectors in South Florida. Journal of
Medical Entomology. 2006; 43(6):1134–1141. doi: 10.1093/jmedent/43.6.1134 PMID: 17162945

Modeling Mosquito-Borne Disease Spread in U.S. Urbanized Areas

PLOS ONE | DOI:10.1371/journal.pone.0161365 August 17, 2016 26 / 28

http://dx.doi.org/10.1093/jme/tjv048
http://www.ncbi.nlm.nih.gov/pubmed/26335482
http://dx.doi.org/10.1371/journal.pntd.0003648
http://www.ncbi.nlm.nih.gov/pubmed/25860352
http://dx.doi.org/10.1073/pnas.1213349110
http://dx.doi.org/10.1073/pnas.1213349110
http://www.ncbi.nlm.nih.gov/pubmed/23277539
http://dx.doi.org/10.1016/j.epidem.2013.12.003
http://dx.doi.org/10.1016/j.epidem.2013.12.003
http://www.ncbi.nlm.nih.gov/pubmed/24593919
http://dx.doi.org/10.1371/journal.pone.0006763
http://www.ncbi.nlm.nih.gov/pubmed/19707544
http://dx.doi.org/10.1086/422341
http://www.ncbi.nlm.nih.gov/pubmed/15278849
http://dx.doi.org/10.1126/science.1125237
http://dx.doi.org/10.1126/science.1125237
http://dx.doi.org/10.1371/journal.pntd.0003138
http://www.ncbi.nlm.nih.gov/pubmed/25211127
http://dx.doi.org/10.1073/pnas.1504964112
http://www.who.int/mediacentre/factsheets/fs117/en/
http://www.who.int/mediacentre/factsheets/fs117/en/
http://dx.doi.org/10.3390/insects5040991
http://www.ncbi.nlm.nih.gov/pubmed/26462955
http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/archive-surveillance.html
http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/archive-surveillance.html
http://diseasemaps.usgs.gov/
http://www.medscape.com/viewarticle/722515
http://www.medscape.com/viewarticle/722515
http://dx.doi.org/10.1093/jmedent/32.4.554
http://dx.doi.org/10.1093/jmedent/32.4.554
http://www.ncbi.nlm.nih.gov/pubmed/7650719
http://dx.doi.org/10.1007/s004420100811
http://dx.doi.org/10.1007/s004420100811
http://www.ncbi.nlm.nih.gov/pubmed/20871747
http://dx.doi.org/10.1603/0022-2585-40.6.785
http://www.ncbi.nlm.nih.gov/pubmed/14765654
http://dx.doi.org/10.1007/s00442-004-1532-4
http://www.ncbi.nlm.nih.gov/pubmed/15024640
http://dx.doi.org/10.1093/jmedent/43.6.1134
http://www.ncbi.nlm.nih.gov/pubmed/17162945


45. Reiskind MH, Lounibos LP. Spatial and temporal patterns of abundance of Aedes aegypti L. (Stego-
myia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida. Medi-
cal and Veterinary Entomology. 2013 Dec; 27(4):421–9. doi: 10.1111/mve.12000 PMID: 23278304

46. The Bureau of Transportation Statistics. State Transportation Statistics 2015; 2015. Available: http://
www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/state_transportation_statistics/state_
transportation_statistics_2015/chapter-4/table4_6.

47. Miami-Dade Aviation Department. 2013 Annual Report of the Miami International Airport; 2013. Avail-
able from: http://www.miami-airport.com/annual_report.asp.

48. U.S. Department of Transportation Bureau of Transportation Statistics. Cruise Ship Statistics; 2012.
Available from: http://www.rita.dot.gov/bts/data_and_statistics/by_subject/passenger.html.

49. Abbey H. An examination of the Reed-Frost theory of epidemics. Human Biology. 1952; 24(3):201–
233. PMID: 12990130

50. Heesterbeek JAP, Roberts MG. The type-reproduction number T in models for infectious disease con-
trol. Mathematical Biosciences. 2007 Mar; 206(1):3–10. doi: 10.1016/j.mbs.2004.10.013 PMID:
16529777

51. U. S. Census Bureau. OnTheMap; 2010. Available: http://onthemap.ces.census.gov/.

52. Muir LE, Kay BH. Aedes aegypti survival and dispersal estimated by mark-release-recapture in north-
ern Australia. The American Journal of Tropical Medicine and Hygiene. 1998; 58(3):277–82. PMID:
9546403

53. Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, Clark GG, et al. Dispersal of the
dengue vector Aedes aegypti within and between rural communities. American Journal of Tropical
Medicine and Hygiene. 2005; 72(2):209–220. PMID: 15741559

54. Trpis M, HausermannW. Dispersal and other population parameters of Aedes aegypti in an African vil-
lage and their possible significance in epidemiology of vector-borne-diseases. The American Journal of
Tropical Medicine and Hygiene. 1986; 35(6):1263–1279. PMID: 3789275

55. U. S. Census Bureau. 2010 Census Population and Housing Tables (CPH-Ts); 2010. Available: http://
www.census.gov/population/www/cen2010/cph-t/cph-t-9.html.

56. Carrington LB, Armijos MV, Lambrechts L, Scott TW. Fluctuations at a low mean temperature acceler-
ate dengue virus transmission by Aedes aegypti. PLoS Neglected Tropical Diseases. 2013; 7(4). doi:
10.1371/journal.pntd.0002190

57. Fouque F, Carinci R, Gaborit P, Issaly J, Bicout DJ, Sabatier P. Aedes aegypti survival and dengue
transmission patterns in French Guiana. Journal of Vector Ecology. 2006 Dec; 31(2):390–9. doi: 10.
3376/1081-1710(2006)31%5B390:AASADT%5D2.0.CO;2 PMID: 17249358

58. Rudolph KE, Lessler J, Moloney RM, Kmush B, Cummings DAT. Incubation periods of mosquito-borne
viral infections: A systematic review. The American Journal of Tropical Medicine and Hygiene. 2014
Mar; 90(5):882–891. doi: 10.4269/ajtmh.13-0403 PMID: 24639305

59. Gubler DJ, SuharyonoW, Tan R, Abidin M, Sie A. Viraemia in patients with naturally acquired dengue
infection. Bulletin of theWorld Health Organization. 1981; 59(4):623–630. PMID: 6976230

60. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, et al. Dengue viremia
titer, antibody response pattern, and virus serotype correlate with disease severity. The Journal of
Infectious Diseases. 2000; 181(1):2–9. doi: 10.1086/315215 PMID: 10608744

61. Drake JM, Kaul RB, Alexander LW, O’Regan SM, Kramer AM, Pulliam JT, et al. Ebola cases and health
system demand in Liberia. PLOS Biology. 2015; 13(1):e1002056. doi: 10.1371/journal.pbio.1002056
PMID: 25585384

62. Adalja AA, Sell TK, Bouri N, Franco C. Lessons learned during dengue outbreaks in the United States,
2001–2011. Emerging Infectious Diseases. 2012; 18(4):608–614. doi: 10.3201/eid1804.110968 PMID:
22469195

63. Ross R. The prevention of malaria. London, UK: John Murray; 1910.

64. Ross R. Some quantitative studies in epidemiology. Nature. 1911; 87:466–467. doi: 10.1038/087466a0

65. Macdonald G. The analysis of equilibrium in malaria. Tropical Disease Bulletin. 1952; 49(9):813–829.

66. de Jong MCM, Diekmann O, Heesterbeek H. How does transmission of infection depend on population
size? Epidemice Models. Publication of the Newton Institute 1995:84–94.

67. Bacaër N. Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic
vector population. Bulletin of Mathematical Biology. 2007 Apr; 69(3):1067–91. doi: 10.1007/s11538-
006-9166-9 PMID: 17265121

68. Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P. Seasonality and the dynamics of
infectious diseases. Ecology Letters. 2006; 9(4):467–484. doi: 10.1111/j.1461-0248.2005.00879.x
PMID: 16623732

Modeling Mosquito-Borne Disease Spread in U.S. Urbanized Areas

PLOS ONE | DOI:10.1371/journal.pone.0161365 August 17, 2016 27 / 28

http://dx.doi.org/10.1111/mve.12000
http://www.ncbi.nlm.nih.gov/pubmed/23278304
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/state_transportation_statistics/state_transportation_statistics_2015/chapter-4/table4_6
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/state_transportation_statistics/state_transportation_statistics_2015/chapter-4/table4_6
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/state_transportation_statistics/state_transportation_statistics_2015/chapter-4/table4_6
http://www.miami-airport.com/annual_report.asp
http://www.rita.dot.gov/bts/data_and_statistics/by_subject/passenger.html
http://www.ncbi.nlm.nih.gov/pubmed/12990130
http://dx.doi.org/10.1016/j.mbs.2004.10.013
http://www.ncbi.nlm.nih.gov/pubmed/16529777
http://onthemap.ces.census.gov/
http://www.ncbi.nlm.nih.gov/pubmed/9546403
http://www.ncbi.nlm.nih.gov/pubmed/15741559
http://www.ncbi.nlm.nih.gov/pubmed/3789275
http://www.census.gov/population/www/cen2010/cph-t/cph-t-9.html
http://www.census.gov/population/www/cen2010/cph-t/cph-t-9.html
http://dx.doi.org/10.1371/journal.pntd.0002190
http://dx.doi.org/10.3376/1081-1710(2006)31%5B390:AASADT%5D2.0.CO;2
http://dx.doi.org/10.3376/1081-1710(2006)31%5B390:AASADT%5D2.0.CO;2
http://www.ncbi.nlm.nih.gov/pubmed/17249358
http://dx.doi.org/10.4269/ajtmh.13-0403
http://www.ncbi.nlm.nih.gov/pubmed/24639305
http://www.ncbi.nlm.nih.gov/pubmed/6976230
http://dx.doi.org/10.1086/315215
http://www.ncbi.nlm.nih.gov/pubmed/10608744
http://dx.doi.org/10.1371/journal.pbio.1002056
http://www.ncbi.nlm.nih.gov/pubmed/25585384
http://dx.doi.org/10.3201/eid1804.110968
http://www.ncbi.nlm.nih.gov/pubmed/22469195
http://dx.doi.org/10.1038/087466a0
http://dx.doi.org/10.1007/s11538-006-9166-9
http://dx.doi.org/10.1007/s11538-006-9166-9
http://www.ncbi.nlm.nih.gov/pubmed/17265121
http://dx.doi.org/10.1111/j.1461-0248.2005.00879.x
http://www.ncbi.nlm.nih.gov/pubmed/16623732


69. Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in a globalized world. Proceed-
ings of the National Academy of Sciences of the United States of America. 2004; 101(42):15124–
15129. doi: 10.1073/pnas.0308344101 PMID: 15477600

70. Read JM, Keeling MJ. Disease evolution on networks: the role of contact structure. Proceedings Biolog-
ical sciences / The Royal Society. 2003 Apr; 270(1516):699–708. doi: 10.1098/rspb.2002.2305 PMID:
12713743

71. U. S. Census Bureau. Tiger/Line Shapefiles and Tiger/Line Files; 2010. Available: https://www.census.
gov/geo/maps-data/data/tiger-line.html

72. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and
burden of dengue. Nature. 2013 Apr; 496(7446):504–7. doi: 10.1038/nature12060 PMID: 23563266

73. Messenger AM, Barr KL, Weppelmann TA, Barnes AN, Anderson BD, Okech BA, et al. Serological evi-
dence of ongoing transmission of dengue virus in permanent residents of KeyWest, Florida. Vector-
borne and Zoonotic Diseases. 2014 Nov; 14(11):783–7. doi: 10.1089/vbz.2014.1665 PMID: 25409268

74. Vazquez-Prokopec GM, Bisanzio D, Stoddard ST, Paz-Soldan V, Morrison AC, Elder JP, et al. Using
GPS Technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a
resource-poor urban environment. PLoS One. 2013; 8(4):1–10. doi: 10.1371/journal.pone.0058802

75. U. S. Census Bureau. American FactFinder; 2010. Available from: http://factfinder.census.gov/faces/
nav/jsf/pages/index.xhtml.

76. Dowling Z, Ladeau SL, Armbruster P, Biehler D, Leisnham PT. Socioeconomic status affects mosquito
(Diptera: Culicidae) larval habitat type availability and infestation level. BioOne 2013; 50(4):764–772.

77. Becker B, Leisnham PT, Ladeau SL. A tale of two city blocks: Differences in immature and adult mos-
quito abundances between socioeconomically different urban blocks in Baltimore (Maryland, USA).
International Journal of Environmental Research and Public Health. 2014 Jan; 11(3):3256–70. doi: 10.
3390/ijerph110303256 PMID: 24651396

78. Rochlin I, Ninivaggi DV, Hutchinson ML, Farajollahi A. Climate change and range expansion of the
Asian tiger mosquito (Aedes albopictus) in Northeastern USA: Implications for public health practition-
ers. PLoS ONE. 2013; 8(4):1–9. doi: 10.1371/journal.pone.0060874

79. Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, et al. Longitudinal stud-
ies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. Journal
of Medical Entomology. 2000 Jan; 37(1):89–101. PMID: 15218911

80. U. S. Centers for Disease Control and Prevention. Chikungunya virus in the United States, 2014; 2014.
Available: http://www.cdc.gov/chikungunya/geo/united-states-2014.html.

81. U. S. Centers for Disease Control and Prevention. Zika virus disease in the United States 2015-2016,
2016; 2016. Available: http://www.cdc.gov/zika/geo/united-states.html.

Modeling Mosquito-Borne Disease Spread in U.S. Urbanized Areas

PLOS ONE | DOI:10.1371/journal.pone.0161365 August 17, 2016 28 / 28

http://dx.doi.org/10.1073/pnas.0308344101
http://www.ncbi.nlm.nih.gov/pubmed/15477600
http://dx.doi.org/10.1098/rspb.2002.2305
http://www.ncbi.nlm.nih.gov/pubmed/12713743
https://www.census.gov/geo/maps-data/data/tiger-line.html
https://www.census.gov/geo/maps-data/data/tiger-line.html
http://dx.doi.org/10.1038/nature12060
http://www.ncbi.nlm.nih.gov/pubmed/23563266
http://dx.doi.org/10.1089/vbz.2014.1665
http://www.ncbi.nlm.nih.gov/pubmed/25409268
http://dx.doi.org/10.1371/journal.pone.0058802
http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml
http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml
http://dx.doi.org/10.3390/ijerph110303256
http://dx.doi.org/10.3390/ijerph110303256
http://www.ncbi.nlm.nih.gov/pubmed/24651396
http://dx.doi.org/10.1371/journal.pone.0060874
http://www.ncbi.nlm.nih.gov/pubmed/15218911
http://www.cdc.gov/chikungunya/geo/united-states-2014.html
http://www.cdc.gov/zika/geo/united-states.html

