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Abstract

Human speech has a unique capacity to carry and communicate rich meanings. However, it is not known how
the highly dynamic and variable perceptual signal is mapped to existing linguistic and semantic representa-
tions. In this novel approach, we used the natural acoustic variability of sounds and mapped them to magne-
toencephalography (MEG) data using physiologically-inspired machine-learning models. We aimed at
determining how well the models, differing in their representation of temporal information, serve to decode
and reconstruct spoken words from MEG recordings in 16 healthy volunteers. We discovered that dynamic
time-locking of the cortical activation to the unfolding speech input is crucial for the encoding of the acoustic-
phonetic features of speech. In contrast, time-locking was not highlighted in cortical processing of non-speech
environmental sounds that conveyed the same meanings as the spoken words, including human-made sounds
with temporal modulation content similar to speech. The amplitude envelope of the spoken words was particu-
larly well reconstructed based on cortical evoked responses. Our results indicate that speech is encoded corti-
cally with especially high temporal fidelity. This speech tracking by evoked responses may partly reflect the
same underlying neural mechanism as the frequently reported entrainment of the cortical oscillations to the
amplitude envelope of speech. Furthermore, the phoneme content was reflected in cortical evoked responses
simultaneously with the spectrotemporal features, pointing to an instantaneous transformation of the unfolding
acoustic features into linguistic representations during speech processing.
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Significance Statement

It has remained unclear how speech is processed differently from other sounds with comparable meanings
and spectrotemporal characteristics. In this study, computational modeling of cortical responses to spoken
words highlights the relevance of temporal tracking of spectrotemporal features especially for speech. This
mechanism is likely pivotal for transforming the acoustic-phonetic features into linguistic representations.

Introduction
Humans effortlessly recognize and react to natural

sounds but are especially tuned to speech. Numerous
studies have attempted to localize speech-specific proc-
essing stages in the brain (Price et al., 2005; Zatorre and
Gandour, 2008; Schirmer et al., 2012), but while subtle

differences in the time sequence of activation for process-
ing speech versus other meaningful sounds have been
described (Salmelin, 2007; Renvall et al., 2012), it remains
unclear whether and how they relate to possible unique
computations in speech processing. A major challenge
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has been to describe how the brain matches highly vari-
able acoustic signal to linguistic representations, when
there is no one-to-one correspondence between the two.
Superior temporal cortices show sensitivity to spectro-
temporal features of speech that correspond to different
phonemes (Chang et al., 2010; Mesgarani et al., 2014),
and to temporal structure of speech sounds but not other
sounds with similar acoustic content (Overath et al.,
2015). Thus, detailed tracking of temporal modulations
that distinguish between phonemes may be crucial for
speech processing (Poeppel, 2003; Zatorre and Gandour,
2008).
Recently, temporal locking (“entrainment”) of cortical

oscillations to the amplitude envelope of speech has
emerged as a potential mechanism for mapping between
multiscale spectrotemporal features and linguistic struc-
tures (Ding and Simon, 2014; Ding et al., 2016; Obleser
and Kayser, 2019). Low-frequency cortical oscillatory ac-
tivation to speech appears to be best modeled as a com-
bination of spectrotemporal features and phonetic-
feature labels, highlighting tracking of spectrotemporal
detail within speech (Di Liberto et al., 2015). However,
whether temporal tracking, by continuous oscillatory acti-
vation or evoked responses as used here, is particularly
relevant for processing of speech, and less crucial for
other types of sounds, remains an open question.
Subcortical and cortical neurons, starting from the coch-
lea, show phase-locked encoding of both environmental
and speech sounds (Worden and Marsh, 1968; Coffey
et al., 2016), and oscillatory entrainment is observed
also for other sounds than speech, for example music
(Doelling and Poeppel, 2015). In contrast, recent studies
have suggested that spectrotemporal modulations corre-
sponding to different phonetic features might not be best
represented in a linear, time-locked manner (Chi et al.,
2005; Pasley et al., 2012). Indeed, accurate reconstruc-
tion of speech can be achieved from functional magnetic
resonance imaging (fMRI) recordings by modeling the
encoding of the speech signal as frequency-specific
spectrotemporal modulation filters, despite the loss of
temporal information due to the sluggish hemodynamics
and poor temporal sampling of the blood oxygen level-de-
pendent (BOLD) response (Santoro et al., 2014, 2017).

This suggests spatially distributed representations of tem-
poral information, similarly to frequency content, and
questions the crucial role of temporal tracking of the
speech signal.
The question of whether there is something special in

the cortical processing of speech has often been ap-
proached through careful acoustic matching of linguistic
and nonlinguistic stimuli and comparison of their activa-
tion patterns in the brain (Scott et al., 2000; Peelle et al.,
2013; Overath et al., 2015). Here, we take a different
approach: Our stimuli are natural spoken words and envi-
ronmental sounds and, instead of delimiting their acoustic
properties, we make full use of their large natural variabili-
ty. We evaluate the hypothesis that temporal tracking
of the spectrotemporal content is particularly important
in cortical encoding of spoken words by modeling and
decoding the sounds, using multiple physiologically-in-
spired representations that differ in temporal detail.
Cortical activation is measured with magnetoencephalog-
raphy (MEG), which detects cortex-wide neuronal signal-
ing on a millisecond scale. Decoding of the time-varying
features of the sounds is achieved using a convolution
model (Bialek et al., 1991; Mesgarani et al., 2009; Pasley
et al., 2012; Faisal et al., 2015), with a new formulation
that efficiently handles the high spatiotemporal dimen-
sionality of MEG data. The convolution model assumes
that the activation of neuronal populations follows closely
in time the time sequence of stimulus features. It is com-
pared with a regression model where no such time-lock-
ing is assumed (Mitchell et al., 2008; Sudre et al., 2012;
Santoro et al., 2014). The ability of each model to decode
and reconstruct the sounds, using variations in the MEG
signal, reveals whether the underlying assumptions of the
model are an accurate description of how the human
brain encodes the stimulus features. Importantly, this ap-
proach does not require a direct comparison of cortical
responses to speech versus other sounds. Earlier studies
that have combined machine learning-based neural de-
coding models (Mitchell et al., 2008) with models of corti-
cal processing of sounds (Chi et al., 2005) have
demonstrated tonotopy as well as selectivity for specific
spectrotemporal modulations in the auditory cortical
areas (Santoro et al., 2014), and allowed successful re-
construction of spoken word acoustics based on fMRI
and intracranial recordings (Pasley et al., 2012; Santoro et
al., 2017; Akbari et al., 2019). Phoneme categories or ar-
ticulatory features have been shown to be reflected in
EEG, fMRI, and intracranial recordings and have been de-
coded with quite good accuracy (Formisano et al., 2008;
Chang et al., 2010; Mesgarani et al., 2014; Di Liberto et
al., 2015), while semantic classification of spoken words
has so far been reported only for small sets of stimuli
(Simanova et al., 2010; Chan et al., 2011; Correia et al.,
2015) or based on dissimilarity to preceding context
(Broderick et al., 2018). The current work is the first to ad-
dress acoustic, phonological, and semantic levels of anal-
ysis in the same study and to systematically evaluate the
same time-varying and non-time-varying decoding mod-
els for spoken words and environmental sounds that refer
to corresponding meanings (e.g., the uttered word “cat,”

This work was supported by the Academy of Finland Grants 255349,
256887, 292552, and 315553 (to R.S.) and 277655 (to H.R.); the Finnish
Cultural Foundation (H.R.); the Sigrid Jusélius Foundation (R.S.); Maastricht
University (E.F.); the Dutch Province of Limburg (E.F.); the Netherlands
Organization for Scientific Research (NOW) Grant 453-12-002 (to E.F.); the
Doctoral Program Brain and Mind (A.N.), the Foundation for Aalto University
Science and Technology (A.N.); and the Emil Aaltonen Foundation (A.N.).
pA.N. and A.F. contributed equally to this work.
Acknowledgements: We thank Mia Liljeström and Pekka Laitio for providing

customized code for the source parcellation, Ossi Lehtonen for assisting with
the source modeling, Jan Kujala with assistance in sound feature analysis,
Tiina Lindh-Knuutila for assistance with the corpus vectors, and Sasa Kivisaari
for comments on this manuscript.
Correspondence should be addressed to A. Nora at anni.nora@aalto.fi.
https://doi.org/10.1523/ENEURO.0475-19.2020

Copyright © 2020 Nora et al.

This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Research Article: New Research 2 of 18

July/August 2020, 7(4) ENEURO.0475-19.2020 eNeuro.org

mailto:anni.nora@aalto.fi
https://doi.org/10.1523/ENEURO.0475-19.2020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


and the sound of a cat “meow”). This study thus offers es-
sential new insights into cortical mechanisms that are po-
tentially particularly relevant for the encoding of speech,
as compared with other sounds.

Materials and Methods
Participants
The participants were 16 (eight male, eight female)

right-handed Finnish-speaking volunteers aged 19–
35 years (mean 24 years). Exclusion criteria were hearing
disorders and developmental or acquired neurologic or
language disorders. Participants signed a written consent
form before the measurement, in agreement with the prior
approval of the University’s research ethics committee.
The originally planned sample size was 20 participants,
but data from only 16 was collected due to practical rea-
sons. While the sample size could be considered relatively
small according to current neuroimaging standards, the
observed effects were robust in all individuals, with effect
size ranging from moderate to large.

Stimuli and experimental design
The speech stimuli were 44 words from various seman-

tic categories (Extended Data Fig. 1-1 and Table 1-1).
To increase acoustic variability, each word within a cat-
egory was spoken by a different speaker (eight speakers
in total; four females, four males; two children/adoles-
cents). Also, each speaker spoke one word in each se-
mantic category, to enable eliminating the influence of
speaker-specific acoustic features from category-level
decoding. The speaker set was rotated across partici-
pants. Stimulus duration was on average 810ms (SD
180ms) for the spoken words and 920ms (SD 230ms)
for the environmental sounds. The spoken words were
composed of two to five syllables, with a few compound
words included. The uniqueness point (i.e., estimated
time of lexical selection) was on average 500ms (range
300–890ms, from first to fourth syllable). Because of the
transparent nature of Finnish, the uniqueness point of a
spoken word (point of divergence from all other words
with a different word stem) corresponds to its ortho-
graphic uniqueness point, calculated here based on the
same 1.5 billion-token Finnish Internet-derived text cor-
pus that was used to create the semantic features
(Kanerva and Ginter, 2014).
The environmental sounds were high-quality sounds cho-

sen from Internet sound libraries and, using the Adobe
Audition program, modified to readily identifiable mono
sounds of ;1-s duration, with sampling frequency 44.1kHz
and bit rate of 16bits. With careful selection of sounds from
several categories, we sought to include as much acoustic
variability as possible to extensively span the low-level
acoustic feature space. The experimental stimuli were se-
lected from these sounds based on a behavioral test with 12
participants (who did not participate in the MEG study): par-
ticipants wrote down the name of each sound immediately
after recognizing it. Environmental sounds with at least 80%
consistent naming and response time,3 s were chosen as
stimuli. The final 44 environmental sound stimuli belong to
six categories: animals, human sounds, tools, vehicles,

musical instruments and others (six to eight items per cate-
gory, see Extended Data Fig. 1-1 and Table 1-1; the spoken
word stimuli were the noun labels of the final selection of en-
vironmental sounds). The others category included items
that did not belong to any of the other above-mentioned cat-
egories. The same environmental sounds were used as
stimuli across all participants.
All sounds were filtered with an 8-kHz linear low-pass

fast Fourier transform (FFT) filter (Blackman–Harris) and
re-sampled at 16 kHz. Mean amplitudes of the stimuli
were normalized such that the root-mean-square power
of each stimulus was the same. Before the MEGmeasure-
ment, the individual hearing threshold was determined for
each participant, and the stimuli were delivered through
plastic tubes and earpieces at 75dB (sensation level).
To reach a high enough MEG signal-to-noise ratio (SNR)

per stimulus item for the machine learning approach, each
stimulus was presented 20 times in a pseudorandom man-
ner, such that two words spoken by the same speaker, or a
spoken word and an environmental sound referring to the
same meaning were not presented in a row. Event-related
fields were calculated as an average of these 20 repetitions.
To ensure concentration, participants performed a one-
back task: They were instructed to listen carefully to each
sound, think about the concept it refers to, and respond
with a finger lift when two sounds with the same meaning
were presented one after another (4% of trials). Response
hand was alternated between participant pairs. In the task
trials, another exemplar of a word or an environmental
sound was presented as target stimulus (same word spoken
by a different speaker or same environmental sound with a
different acoustic form, e.g., a different kind of dog bark; the
two stimulus types were not mixed, thus, e.g., the word cat
was never followed by a cat sound).
Additional filler items, eight meaningful environmental

sounds and nine spoken words, were included to make
the sequence more variable. In addition, eight meaning-
less environmental sounds and eight pseudowords were
presented 20 times each to increase participants’ atten-
tion. The meaningless environmental sounds were sounds
from the abovementioned categories, which were further
processed by reversing them in the time domain and, for
some words, also scrambling them in 50- to 100-ms seg-
ments, to make them unidentifiable. The resulting sounds
shared properties with the meaningful sounds from the
same categories, but they were not identifiable in the be-
havioral pre-test. The pseudowords were minimal pairs to
real Finnish words, following Finnish phonotactic rules.
The task trials, filler sounds and meaningless sounds
were excluded from the main analysis. However, we sep-
arately investigated pseudoword decoding with the differ-
ent models to explore the possible contribution of lexical
and semantic aspects in spoken word decoding.

Acoustic, semantic, and phoneme features of the
sounds
Acoustic features
We compared four sets of acoustic features that vary

with respect to whether and how they incorporate infor-
mation about the temporal modulations within the spoken
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Figure 1. Different decoding models and their prediction accuracy. A, Stimulus features for a spoken word. The FFT model repre-
sents the frequency spectrum of the sound extracted in 128 frequency bands with logarithmically spaced center frequencies. The
MPS model represents energy in four spectral scales (wide to narrow) and four temporal modulation rates (slow to fast), averaged
over time. The sound spectrogram quantifies the time-evolving frequency content of the sound extracted in 128 frequency bands
and 10-ms time windows by using short-term FFT. The amplitude envelope carries the temporal changes without frequency infor-
mation (shown below the phoneme model). The phoneme sequence is the phoneme annotation of the word for each 10-ms time
window. Semantic features were represented by scores of 99 questions (a few example questions shown) and a 300-dimensional
vector trained with the co-occurrences of context words (words occurring near the stimulus words) in a large text corpus. B, Model
estimation for the regression model (left) and the convolution model (right). A mapping between the cortical MEG responses (here il-
lustrated on one sensor), and each stimulus feature was learned with kernel regression or kernel convolution model. As illustrated
here, the regression model predicts, for example, power at each frequency-rate-scale point of the MPS by multiplying cortical re-
sponses at all (or selected) time points with unknown weights (w). The convolution model predicts the amplitude at each time-fre-
quency point of the spectrogram by convolving the time-sequence of cortical responses with an unknown spatiotemporal response
function (g). Specifically, values at each frequency band of a new spoken word are predicted at each time point t (moving from 0 to
end of the sound) based on MEG responses in the time range from (t – t2) to (t – t1), here illustrated for the lag window –t2 = 100 to
–t1 = 180ms at time points t. C, Model testing aimed to tell apart two left-out sounds by reconstructing the sound features (here,
spectrogram) and correlating them with the original features. The procedure was repeated for all possible pairings of sounds.
Predictive accuracy for the spoken words across all test sound pairs and 16 participants (mean 6 SEM) is shown on the right. The
regression model was used for the decoding of non-time-varying features (FFT frequency bins/MPS rate-scale-frequency points/se-
mantic question scores and corpus statistics), and the convolution model was used for decoding of time-varying features (spectro-
gram time-frequency points/phonemes at each time point/amplitude envelope); for a control analysis, the spectrogram was also
decoded with the regression model. Predictive accuracy improved markedly when spoken words were modeled with the convolu-
tion spectrogram model, formalizing the concept that the neuronal population response follows closely in time the unfolding time-
sequence of the sound acoustics. Even better performance was obtained when the spoken words were modeled using both the
spectrogram and the phoneme sequence descriptions, and the best performance was obtained using the sounds’ amplitude
envelope.
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words (Fig. 1A). The simplest set of features was the fre-
quency spectrum, which is a non-time-varying represen-
tation of the stimulus power per frequency. FFT was
calculated over the entire sound time window by using a
filter bank of 128 frequency bands, with central frequen-
cies of the bands ranging from 180 to 7246Hz, uniformly
distributed along a logarithmic frequency axis.
In addition to displaying an organization by frequency,

the primary and secondary auditory cortices respond to
different rates of temporal modulations at different spec-
tral scales (Pasley et al., 2012; Santoro et al., 2014, 2017).
These intricate multidimensional modulations within
sounds are captured by our second set of features, the
modulation power spectrum (MPS). The MPS [also called
modulation transfer function (MTF), when describing neu-
ronal filter properties; Elliott and Theunissen, 2009] repre-
sents energy in wide to narrow spectral scales and at
slow to fast temporal modulation rates at different fre-
quency bands (same as in FFT) for the entire duration of
the sound (Chi et al., 2005). MPSs were calculated using
the NSL toolbox (Chi et al., 2005) with modulation-selec-
tive filters spanning four spectral scales (0.5, 1, 2, and 4
cycles/octave) and four temporal modulation rates (1, 3,
9, and 27Hz) within the sounds; these have been shown
to capture the essential features of a broad range of natu-
ral sounds (Santoro et al., 2014). We chose a three-di-
mensional frequency-specific MPS where the time
dimension of the MPS was averaged out, and upward-
going and downward-going modulation rates were aver-
aged together. This type of time-averaged modulation
content has been shown to successfully decode environ-
mental sounds from fMRI data (Santoro et al., 2014,
2017); computationally demanding time-varying MPS fea-
tures are decodable from spatially limited intracranial re-
cordings (Pasley et al., 2012).
For a time-evolving representation of the acoustic fea-

tures, a spectrogram was generated from sounds using
an auditory filter bank with 128 overlapping bandpass fil-
ter channels, with their central frequencies corresponding
to the FFT frequency bands (following Pasley et al., 2012;
http://nsl.isr.umd.edu/downloads.html). This filter bank
mimics the representation of sound in the human cochlea
(Chi et al., 2005). The time resolution and other parame-
ters were optimized for retaining the characteristic tempo-
ral modulations of the sounds, while enabling extraction
of the relevant spectral structure of the sounds. The
sounds were divided into frames of 10ms and integrated
over 16-ms time windows.
Finally, we investigated a representation of the sounds

that contains temporal modulation, but lacks fine spectral
structure, by using the amplitude envelope of the sounds.
The amplitude envelope was estimated through averaging
the sound spectrogram across the 128 frequency bins in
10-ms windows, resulting in one feature vector.
The number of acoustic features were on average 87 in

amplitude envelope (1 amplitude envelope � 87 time win-
dows of 10ms), 128 in FFT (128 frequency bands), 2048
in MPS (128 frequency bands � four spectral scales �
four temporal modulation rates), and on average 11,136 in
spectrogram (128 frequency bands � 87 time windows of

10ms); for spectrogram and amplitude envelope, the
length of the feature vectors varied with the sound length.
To control for possible confounding effects of the varying
lengths of feature vectors on the performance of the con-
volution model, the feature vectors for the two held-out
test sounds (see below, Machine learning models and
Performance evaluation, below) were always equalized to
the length of the shorter one.

Phoneme sequence
Phoneme sequence of the words were obtained

through their phonemic annotation, manually time-aligned
to the stimulus wavefile using Praat software (Mesgarani
et al., 2014; Di Liberto et al., 2015). This was a categorical
representation, where each phoneme was set as 1 in
those 10-ms time windows when it was present and oth-
erwise as 0. There was no overlap, i.e., only one phoneme
was marked “active” in each time window; it captures well
the timing of phoneme onsets, but does not take coarticu-
lation into account. Only phonemes with 10 or more in-
stances in the stimulus set were included to reduce
sparsity of the feature set, resulting in a set of 15 pho-
nemes, each occurring 10–40 times. This representation
had on average 1305 features.

Combined spectrogram and phoneme features
For investigating whether the spectrogram and pho-

neme decoding results were based on fully overlapping
information, we combined these into a single feature rep-
resentation of the spoken words, with on average 11,136
spectrogram features plus 1305 phoneme features; the
number of features varied with sound length.

Semantic features
The semantic features were obtained by concatenating

two sets of norms, one acquired through a questionnaire
and the other using word co-occurrences in a large-scale
text corpus. Question norms for the stimulus words were
collected with a web-based survey. The questions in the
survey were partly based on a previous study (Sudre et
al., 2012) but modified to better represent the present se-
lection of stimulus categories. Fifty-nine university stu-
dents (32 female, 27 male, mean age 26 years; none of
them participated in the present MEG study) answered 99
questions, presented in random order, about the seman-
tic properties of each item on a scale from 0 to 5 (from
definitely not to definitely yes); values for each question
were averaged across the participants. Each item was
thus described with a vector with 99 values.
For extracting the corpus statistics, the frequencies of

co-occurrences of words in the immediate neighborhood
(five words before and five words after) of each lemmat-
ized stimulus word (compound markers added, some
words changed from plural to singular) were calculated
from a 1.5 billion-token Finnish Internet-derived text cor-
pus (Kanerva and Ginter, 2014) using a continuous skip-
gram Word2vec-algorithm using default parameters
(Mikolov et al., 2013). The dimensionality of the trained
vectors was 300, i.e., a vector with 300 values was used
to describe each item.
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Similarity measures
To investigate how the different acoustic models (espe-

cially the MPS and spectrogram models) differ in the dis-
similarity among the speech versus non-speech sounds,
we calculated the pairwise distances (1 minus sample
correlation) for all spoken words and environmental
sounds (Extended Data Fig. 3-1B,D). We chose correla-
tion as our similarity measure, as correlation between the
original sound and its reconstructed model was also used
in the evaluation of the classification and reconstruction
performance. Thus, this measure serves as a baseline
measure of discriminability of the items with the different
models, and for the spectrogram model it describes the
cumulative dissimilarity of all time points at each fre-
quency band of the spectrogram. To calculate the distan-
ces (1 minus correlation), the different frequency bands
were concatenated.

Sound complexity measures
For estimating how the spectral distribution fluctuates

across time in environmental sounds and spoken words
we calculated, first, the variance of the spectral structure
(spectral flatness measure SFM, an estimate of the num-
ber of distinct peaks in the frequency spectrum; Jayant
and Noll, 1984) across each 10-ms segment within the
spectrogram and, then, the spectral structure index (SSI;
a measure of spectral variability defined as the SFM
across time and suggested as a measure of sound com-
plexity; Jayant and Noll, 1984). Larger values of SSI de-
note more variable spectral structure across time.

MEG recording
Magnetic fields associated with neural current flow

were recorded with a 306-channel whole-head neuro-
magnetometer (Elekta Oy). The sensor array consists of
102 triple sensor elements, each with one magnetometer
and two planar gradiometers. Planar gradiometers are
most sensitive to neural activity close to the sensors and
give maximum signal directly above a current source;
magnetometers also pick up signals from more far away
sources. The MEG signals were acquired at 1000Hz, with
a hardware bandpass filter set between 0.03 and 330Hz.
Eye movements and blink artifacts were monitored by two
diagonally placed electrodes measuring electro-oculo-
gram signal (EOG). The position of the participant’s head
within the MEG helmet was defined using five head posi-
tion indicator coils. The locations of these coils, attached
to the participant’s scalp, were determined with respect
to three anatomic landmarks (nasion and two preauricular
reference points) with a 3D digitizer, and with respect to
the sensor array by briefly feeding current to the coils dur-
ing the measurement. Head movements were monitored
continuously (Uutela et al., 1999). The MEG measurement
lasted;40min, with breaks every 5min.

Anatomical MRI acquisition
Anatomical MRIs were obtained with a 3T MRI scanner

(Magnetom Skyra, Siemens) for all 16 participants. The
scan included a three-plane localizer and a T1-weighted
anatomic image. To enable attribution of MEG activation

patterns to cortical loci, the MEG data were co-registered in
the same coordinate systemwith the individual MR images.

MEG preprocessing and source modeling
Spatiotemporal signal space separation (tSSS; Taulu

and Simola, 2006) and movement compensation algo-
rithms (Uutela et al., 1999) were applied offline to the raw
data using MaxFilter software (Elekta Neuromag), to re-
move the effects of external interference and to compen-
sate for head movements during the measurement. To
obtain an estimate of the artifact signals caused by blinks
or saccades, the MEG signals were averaged with respect
to transient maxima in the EOG signal, principal compo-
nent analysis (PCA) was performed on this average, and
the corresponding magnetic field component was re-
moved from the raw data (Uusitalo and Ilmoniemi, 1997).
The MEG data analysis focused on planar gradiometer

channels. Single trials were averaged from 300ms before
to 2000ms after the stimulus onset, rejecting trials conta-
minated by any remaining artifacts (signal strength ex-
ceeding 3000 fT/cm). On average 19.760.6 (mean 6 SD)
artifact-free epochs (trials) per participant were gathered
per item (maximum=20). The averaged MEG responses
were baseline-corrected to the 300-ms interval immedi-
ately preceding the stimulus onset. For visualization pur-
poses only, the averaged data were further low-pass
filtered with the Elekta Neuromag Xplotter software, with
a center frequency of 40Hz and filter width of 10Hz.
An estimate of the underlying cortical sources was ob-

tained with minimum norm estimates (MNEs; Hämäläinen
and Ilmoniemi, 1994) using MNE Suite software package
(Gramfort et al., 2014). For MNE analysis, the cortical sur-
face of each participant was reconstructed from their indi-
vidual MR images with Freesurfer software (Dale et al.,
1999; Fischl et al., 1999). Each hemisphere was covered
with ;5000 potential source locations. Currents oriented
normal to the cortical surface were favored by weighting
the transverse currents by a factor of 0.2, and depth-
weighting was used to reduce the bias toward superficial
sources (Lin et al., 2006). Noise-normalized MNEs [dy-
namical statistical parametric maps (dSPMs)] were calcu-
lated over the whole cortical area to estimate the SNR in
each potential source location (Dale et al., 2000). Noise
covariance matrix was estimated from the 300-ms presti-
mulus baseline periods across all trials. The source space
(;10,000 vertices) was divided into 229 parcels of approxi-
mately equal size (101 in the left and 118 in the right hemi-
sphere), using the Destrieux Atlas as a starting point
(Destrieux et al., 2010). Medial and orbitofrontal areas were
excluded, as MEG does not reliably measure activation in
these areas. Before applying the parcellation, the cortical
surface of each participant was morphed onto Freesurfer’s
average cortical surface template (fsaverage).

Machine learning models
Each decoding model was trained and tested sepa-

rately within each individual participant. Before model fit-
ting, MEG sensor level responses were downsampled to
100Hz (i.e., sampled at 10-ms resolution). All decoding
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models were trained and tested separately for the spoken
words and for environmental sounds (training and testing
within spoken words or environmental sounds, not mixed
together). Decoding was performed both on sensor-level
and source-level. In the sensor space, the analysis was
restricted to 28 planar gradiometer pairs over the bilateral
auditory cortices for the acoustic and phoneme decoding,
whereas signals from all 204 planar gradiometers were
used for semantic decoding. For decoding of time-varying
features, i.e., the spectrogram frequencies, amplitude en-
velope and phoneme sequences, we used a convolutional
model. For decoding of non-time-varying features, i.e.,
semantic features, frequency spectrum (FFT), and time-
averaged MPS, we used a regression model.
Before performing machine learning analysis, the stimulus

features and MEG signals were standardized across all
stimuli, such that the mean value was set to zero and stand-
ard deviation to unity. For the acoustic features, the FFT and
spectrogram were normalized within each frequency band,
and the MPS within each rate, scale, and frequency band.
Each semantic feature was similarly standardized across all
stimuli. The phoneme sequences were categorical variables
(with values 0/1), and thus not standardized. TheMEG signal
power per sensor or source location was normalized within
each 10-ms time window. When applied to both stimulus
features and corresponding MEG responses, this procedure
ensures that the absolute power (e.g., per frequency band)
does not affect model estimation. Instead, the models use
variation in the MEG signal power to reconstruct variation in
each stimulus feature, across stimuli. Data standardization
is a normal practice in statistical analysis and ensures that
all the different data features are weighted equally in the
analysis (Friedman et al., 2001).
In the training phase, each model learns a mapping be-

tween a stimulus feature set and the MEG data based on
all but two sounds (Fig. 1A,B). The model is then eval-
uated on the remaining data from the same participant,
i.e., used to tell apart the two held-out words/environmen-
tal sounds based on their decoded features (leave-two-
out cross-validation; Fig. 1C). The training and testing
steps are repeated for all possible sound pairs.
We had two machine-learning models. Time-sensitive

decoding of the acoustic features was approached with
lagged linear regression, which convolves the time-vary-
ing signal with a multivariate response function, and non-
time-sensitive decoding with regular regression. In the
following, for simplicity, we will refer to these models as
convolution and regression, respectively. Both the re-
gression and convolution models decode acoustic fea-
tures from multivariate spatiotemporal neural patterns,
but the regression model does not model the potential
temporal tracking of stimulus features in the neural
responses.
The convolution model searches for a suitable mapping

(stimulus response function) between the time-varying
neural response and the time-varying stimulus features
(Bialek et al., 1991; Mesgarani et al., 2009; Pasley et al.,
2012; Faisal et al., 2015). Here, we use a scalable formula-
tion of the model that allows decoding of time-varying
properties of the sounds (s) by convolving the time-varying

MEG responses (r) at brain location� with the spatiotempo-
ral response function g. The model decodes stimulus fea-
tures [ŝf , where f is a given stimulus feature, here the
amplitude at one spectral frequency band or the value (0/1)
of one phoneme] at time t, based on the MEG activation (r)
integrated from time (t – t2) to (t – t1); –t1 . 0, –t2 � 0 (Fig.
1B, where –t1 = 180 and –t2 = 100). Thus, the convolution
model decodes spectrogram at time t using neural re-
sponses at time (t –t2) and at successive 10-ms time points
until time (t – t1). Thus, the lag values from stimulus to neural
response are always positive (or zero), and the model incor-
porates the assumption that the neural activation follows
(and never precedes) in time each time point of the stimulus
that it is encoding. A short lag window entails that the activa-
tion of neuronal populations reflected in the MEG signal falls
and rises closely following (i.e., time-locked to) the ampli-
tude fluctuations within different frequency bands.
The procedure is repeated independently for all feature

time series (e.g., for each frequency band of the stimulus
spectrogram), resulting in a reconstructed time series of
amplitude changes of sound spectrogram, amplitude en-
velope or the phoneme sequence:

ŝf tð Þ ¼
X

x

Xt¼t2

t¼t1
gf t ; xð Þr t� t ; xð Þ: (1)

To estimate the unknown spatiotemporal response func-
tions gf, we use the dual representation of Equation 1 and
impose an L2 prior on the unknown reconstruction weights,
gf(t ,x), as follows. Using matrix notation, Equation 1 can be
written as Sf = RGf, where we define Sf [ R(NT)�1, Gf [ R
(tx)�1, and the response matrix R [ R(NT)�(tx), such that each
row rn(t) in R represents MEG response to a spoken word or
environment sound n across all sensors� and all time points
sampled from (t – t2) to (t – t1). The unknown Gf are esti-
mated byminimizing the regularized sum of squared error be-
tween the original sf and the reconstructed sound features ŝf ,
e.g., spectrogram:

argminGf

X
n;t

sf n; tð Þ � ŝf n; tð Þ� �2

n;t

1l f

X
x;t
gf t ; xð Þ2:

(2)

Minimizing this loss function leads to the maximum-a-
posteriori (MAP) estimate for Gf:

Ĝf ¼ RTR1l f I
� ��1

RTSf :

This classical MAP estimate is not ideal for MEG studies
where the number of conditions N are typically small com-
pared with the dimensionality of neural responses since
RT R [ R(tx)�(tx) (Mesgarani et al., 2009; Faisal et al., 2015).
Therefore, similar to kernel ridge regression (Bishop,
2006; also known as dual representation of ridge regres-
sion), we obtain the MAP estimate of the convolution
model using its dual representation where the inner prod-
uct RTR is replaced with corresponding Grammatrix RRT:

Ĝf ¼ RT RRT1l f I
� ��1

Sf :

To estimate the regularization parameter l f we use a
grid of predefined values for the hyperparameter and
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choose the optimum value that minimizes leave-one-out
error within training data (Bishop, 2006). Given the lag pa-
rameters t1 and t2 the learned MAP estimates gf(t ,x) are
used to decode the acoustic and phonetic features of a
new, previously unencountered, test sound as follows:

ŝf TESTf g tð Þ ¼
X

x

Xt¼t2

t¼t1
gf

x

t ; xð Þr TESTf g t� t ; xð Þ: (3)

The convolution model thus decodes the spectrogram
at time t using neural responses at time (t – t2),...,(t – t1).
To obtain an overview of the model’s performance, we
used a lag window of 0–420ms (delay from time point in
the spectrogram to a range of time points in the MEG sig-
nal, i.e., from –t2 to –t1, where t1 = –420 and t2 = 0).
Next, we advanced the lag window in non-overlapping
80-ms steps (20–100, 100–180,..., 340–420ms) to investi-
gate the dependence of the decoding accuracy on the lag
timing. A relatively large step size (80ms) was chosen due
to the high computational load of the analysis and also
motivated by previous research showing speech tracking
at latencies of ;100–180ms (Abrams et al., 2008; Aiken
and Picton, 2008; Koskinen et al., 2013). The same con-
volution model was additionally used for categorical
phoneme features to investigate whether spectrogram
decoding reflects the emergence of categorical phoneme
information and whether the time lag differs for decoding
of these two feature sets. Note, however, that the model
is not optimized for categorical variables, which may af-
fect the decoding performance.
The time-averaged frequency/modulation content of

the sounds, estimated with FFT/MPS, respectively, was
decoded using a regression model, in which each feature
of the stimuli is reconstructed based on all time points (or
a selected time window) of the MEG responses (Fig. 1B;
Sudre et al., 2012). In the regression model, the depend-
ent (decoded/reconstructed) variables were the semantic
or non-time-varying acoustic features, while the inde-
pendent variables were the MEG responses r(t,x) at brain
location x and time t from stimulus onset. Unknown
weights wf(t,x) and the L2 regularization parameters were
learned in a similar fashion as for the convolution model
using dual representation of the regression model (Sudre
et al., 2012). Using the same notation as in Equation 1, the
reconstruction value (ŝf ) for one semantic or non-time-
varying acoustic feature f can be written as:

ŝf ¼
X

x

X
t
wf t; xð Þr t; xð Þ: (4)

We first used MEG data at 0–1000ms from stimulus
onset to obtain an overview of model performance and
then analyzed sensitivity of successive 50-ms time win-
dows (0–50, 50–100ms, etc.) in the MEG responses to
see how the decoding of semantic/acoustic features var-
ied with time. This resolution was considered sufficient to
cover the early transient response components which
were expected to be especially important for encoding
the acoustic features (Salmelin, 2007). In the source
space, the models were learned, for each participant,
separately for the vertices within each cortical parcel, and
visualized by averaging the decoding performance within

each cortical parcel across participants. We visualized the
sensitivity of cortical areas in decoding stimulus features
by averaging the decoding performance within each corti-
cal parcel, across all participants.

Performance evaluation
We adopted a two-stage evaluation scheme (Palatucci

et al., 2009; Sudre et al., 2012). In the first stage, the con-
volution or the regression model was trained to learn the
unknown weights using all but two held-out items/
sounds. In the second stage, the learned weights were
used to decode stimulus features (acoustic, phonemic, or
semantic features) for the two held-out test items. The de-
coding was considered correct if the combined similarity
between the true features of sounds (s1 and s2) and the
decoded features of the sound (p1 and p2) were greater
than the reverse labeling, i.e.,

sim s1;p1ð Þ1 sim s2;p2ð Þ. sim s1;p2ð Þ1 sim s2;p1ð Þ;
(5)

where sim(s,p) is the Pearson correlation between original
s and decoded features p. Here, all features were consid-
ered together (e.g., all frequency bands of the spectro-
gram). The evaluation scheme of Equation 5 was
repeated for all possible combinations in a leave-two-out
cross-validation approach as follows. For item-level de-
coding (for all acoustic and phoneme features), the 44
items (spoken words or environmental sounds) were di-
vided into 42 training and two test sounds in all possible
pair-wise combinations, leading to a total of 946 pair-wise
tests. For category-level decoding (for semantic features),
the two held-out test sounds were always chosen from
two different semantic categories, resulting in 66 possible
pair-wise tests. The evaluation was done separately for
spoken words and environmental sounds. For spoken
words, these test sounds were always chosen from the
same speaker (i.e., within-speaker decoding); thus cate-
gory-level decoding is not influenced by speaker-related
acoustic differences. The reported participant-level de-
coding accuracy is an average over all pair-wise combina-
tions of the held-out pairs.

Statistical significance
Statistical significance was established by repeating

each analysis with permuted data, and empirical p values
were obtained for single participants. In each permutation
run, data from one participant were chosen at random,
and the item labels for the averaged evoked responses
were randomly permuted across the different sounds
(within spoken words or environmental sounds). This pro-
cedure was repeated 200 times for each convolution
model and 1000 times for each regression model. For
each permutation, the models were evaluated using all
possible pairwise tests in a leave-two-out cross-validation
scheme. Empirical p values were computed by calculating
the number of times the permutation result was better
than the observed decoding accuracy for each of the 16
participants. The p values across all 16 participants were
combined using Fisher’s method and corrected for
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multiple comparisons (over time in the reported time
courses) using false discovery rate (FDR) at an a level of
0.01. Two-tailed Wilcoxon signed-rank test was used for
comparing the decoding performance between different
models and sound classes across all 16 participants.

Data and code availability
Ethical restrictions imposed by the University’s re-

search ethics committee prevent the authors from making
brain imaging data publicly available without restrictions,
as these data cannot be fully anonymized. Making the
data freely available under the Creative Common license
would not enable us to restrict their use to scientific pur-
poses. However, the relevant pseudonymized data used
in this study are available from the authors on reasonable
request and with permission of the University’s research
ethics committee, for researchers aiming to reproduce
the results. The machine-learning analysis has been per-
formed with our custom-made MATLAB scripts, which
are available in https://aaltoimaginglanguage.github.io/
speechness/.

Results
Acoustic decoding of spoken words relies on neural
responses that closely follow time-varying spectral
features
The FFT features (non-time-varying frequency spec-

trum) were decoded reasonably well based on the MEG
responses for spoken words using the regression model
(average item-level decoding accuracy 65%, p,10�14;
Fig. 1C). Use of MPS and regression model resulted in
similar performance (65%, p, 10�11; FFT vs MPS, two-
tailed Wilcoxon signed-rank test, Z=0.10, p=0.94). In
contrast, the time-sensitive convolution model using
spectrogram was remarkably successful at decoding
spoken words (83%, p, 10�16), with a significant im-
provement in comparison to the regression model that
used time-averaged MPS (Z=3.5, p=0.000031; Fig. 1C);
to obtain an overview of the convolution model’s perform-
ance, we used a lag window of 0–420ms (delay from time
point in the spectrogram to a range of time points in the
MEG signal).
The success of the spectrogram convolution model in

decoding spoken words was not merely due to increased
information content (e.g., number of features) of the time-
varying (spectrogram) compared with the time-averaged
(FFT/MPS) feature sets: when we used a regression
model to predict the spectrogram frequencies of spoken
words by including all time-points of the MEG response to
predict each time point in the spectrogram separately, the
convolution model continued to perform significantly bet-
ter (spectrogram regression 73%, spectrogram convolu-
tion 83%; Z=3.3, p=0.00031; Fig. 1C). Thus, the salient
improvement of decoding accuracy with the spectrogram
convolution model suggests that the neuronal population
activity in the auditory cortices closely follows the speech
signal in time, to accurately encode the minute changes
within spoken words.

We then investigated whether changes in the amplitude
envelope of the spoken words, corresponding to the slow
temporal modulations within the speech rhythm, are im-
portant for the particularly successful decoding of spoken
words, by separately decoding the amplitude envelope
(spectrogram averaged across frequency) with the convo-
lution model. The results reveal remarkably high classifi-
cation performance for the spoken words (91%,
significant difference from spectrogram decoding for
speech, Z=3.5, p,0.001; Fig. 1C) and further highlight
the importance of the temporal aspects of the stimulus for
speech decoding.

Time-locked encoding of spoken words reflects
acoustic-to-phonememapping
Leave-one-out-reconstruction of the spoken word

waveforms with the spectrogram convolution model sug-
gested preservation of acoustic properties characteristic
of different phonemes (Audio 1; Extended Data Fig. 2-1).
To test this hypothesis, phonemic annotation of the
speech sounds was aligned to the stimulus time course
(Mesgarani et al., 2014; Di Liberto et al., 2015), and the
same convolution model was used for decoding these cat-
egorical phoneme features; please note that this model is
not optimized to deal with categorical variables, which may
affect model performance. These phoneme sequences (Fig.
1A) were decoded successfully with the convolution model
(73%; p, 10�16; Fig. 1C). Furthermore, a representation of
the spoken words that combined both the speech spectro-
gram and the sequence of phonemes performed even
above the spectrogram alone (84%; Z=2.5, p=0.01).
To determine at what delay after each time point in a

sound the brain responses reflect encoding of its acoustic
and phoneme information, we investigated different lag
windows between time points of the stimulus and the
MEG response. For this analysis, we chose the spectro-
gram model, which allows for a reconstruction of the spo-
ken words that retains the relevant sound features (in
contrast to the amplitude envelope alone), and additional-
ly analyzed whether phoneme information is represented
at a similar lag. The lag window was advanced in non-
overlapping 80-ms steps (20–100, 100–180, and so on
until 340–420ms). Both spectrogram and phoneme de-
coding with the convolution model performed best when
MEG responses at a lagged window of 100–180ms after
each time point in the sound were used (81% at 100–
180ms vs 73% at 180–260ms lag Z=3.5, p=0.000031;
for phonemes 69% at 100–180ms vs 62% at 180–260ms
lag Z=2.4, p=0.016; Fig. 2A). For a sanity check, we also
calculated the decoding accuracy for speech spectro-
gram using a counterintuitive lagged window of �80–
0ms, i.e., evaluating if “past” neural response could
predict “future” spectrogram. With this lag, decoding per-
formance was at chance level (mean decoding accuracy
across 16 subjects 55%, SEM=1.85). The cortical areas
contributing to successful performance of the acoustic
and phoneme models concentrated in and around the left
and right auditory cortices (Fig. 2B).
To explore the contribution of semantics in the acous-

tic-phonetic decoding of spoken words, we investigated
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how these different models decoded pseudowords, by
training the models with all the meaningful spoken words,
and using all possible pairs of the eight pseudowords (28
combinations) for testing. Pseudoword decoding showed
similar performance as decoding of the meaningful words
(FFT 68%, MPS 66%, spectrogram convolution 86%,
phoneme convolution 75%), with significant improvement
for the spectrogram convolution compared with the MPS
(Z=3.4, p=0.00015). The convolution model was able to
decode the phoneme content of the pseudowords with a
similar accuracy (75%) as for the real words. Thus, time-
locked encoding does not seem to depend on lexical con-
tent, giving further support to the idea that it might reflect
mapping of acoustic content to prelexical linguistic units.

Decoding of environmental sound acoustics does not
benefit from time-lockedmodels
To investigate whether the convolution model performs

better than time-averaged models for other sounds than
speech, we separately applied the different acoustic mod-
els to a variety of environmental sounds (Extended Data
Fig. 1-1 and Table 1-1). They conveyed the same mean-
ings as the spoken words; thus, the conceptual endpoint
of neural processing is presumed to be the same. Also,
their cortical responses were similar to spoken words
(Extended Data Fig. 1-2). However, the processing steps
for accessing the meaning of environmental sounds are
presumably different from for spoken words.
The FFT features were decoded based on the MEG re-

sponses for environmental sounds at a significant level
with the regression model (60%, p,0.0001; Fig. 3A).
Use of MPS together with regression model resulted in
better performance than FFT (70%, p, 10–15; FFT vs
MPS, Z=3.5, p=0.000031); such an improvement in de-
coding was not observed for spoken words (for spoken
words FFT and MPS decoding were both at 65%). In con-
trast, the accuracy with spectrogram convolution (68%,

p, 10�4) did not improve compared with the MPS result
(Z=1.1, p=0.27), as was observed for words (spectro-
gram convolution decoding for words was at 83%, with
significant difference between spoken words and environ-
mental sounds: Z=3.5, p, 0.0001). Using a regression
model to decode the spectrogram frequencies of environ-
mental sounds resulted in similar decoding performance
(68%, Z=0.18, p=0.87) and was also fairly similar to
spoken word decoding (spectrogram regression 73%; no
significant difference between spoken words and environ-
mental sounds: Z=1.9, p=0.058). No time dependence
was observed for environmental sounds using different
lag windows (61% at 100–180ms vs 62% at 180–260ms
lag; Z=0.052, p=0.98; Fig. 3B). The amplitude envelope
decoding showed some improvement for the environ-
mental sounds compared with the spectrogram convolu-
tion decoding (Z=2.3, p=0.021), but was still low (72%)
compared with the remarkably high decoding perform-
ance for speech amplitude envelope (91%; significant
difference between spoken words and environmental
sounds: Z=3.5, p, 0.0001). Similarly to the convolution
spectrogram decoding for speech, the cortical areas con-
tributing to decoding environmental sound acoustics
mainly concentrated in and around the left and right audi-
tory cortices (Fig. 3C).

Enhanced performance with the time-lockedmodel
for spoken words, but not environmental sounds, is
not explained by possible confounds in the
comparison of models
In visual inspection, all sounds showed typical auditory

evoked responses at the sensor level, at good SNR
(Extended Data Fig. 1-2A), with activation around the au-
ditory cortices in the left and right temporal lobes
(Extended Data Fig. 1-2B). Subtle differences in the aver-
aged evoked responses between spoken words and envi-
ronmental sounds were not investigated; only the
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Figure 2 Influence of convolution lag and cortical sources for spectrogram and phoneme decoding. A, Spectrogram and phoneme
decoding accuracy at different lags between a time point in the stimulus and a time window in the MEG response (average across
all 16 participants 6 SEM). Note that the lag window does not correspond to timing relative to the stimulus onset in the MEG evoked
response. The best predictive accuracy for decoding spectrogram and phoneme sequence of spoken words was reached with a lag
of 100–180ms (significant difference to 180- to 260-ms lag, p=0.000031 for spectrogram, p=0.016 for phonemes). B, Cortical
sources contributing to decoding of acoustic and phoneme features in spoken words with the convolution model at 100- to 180-ms
lag (this time window showed best performance). Color scale denotes average decoding accuracy (.50%) across all 16
participants.
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variability among items (within spoken words or environ-
mental sounds) affects the machine learning modeling.
However, as the sounds were a selection of natural

sounds, there were several differences between the spo-
ken words versus environmental sounds (Extended Data
Figs. 3-1A, 3-2). Thus, we sought to rule out potential
confounds arising from these differences that could be
thought to influence the observed striking improvement of
decoding performance with the convolution model for
speech but lack of similar improvement for environmental
sounds.
The benefit for spoken word but not environmental

sound decoding was not due to larger dissimilarity
among the spoken word stimuli with added temporal de-
tail: while the spectrograms of spoken words do show
larger dissimilarity than the MPSs (two-tailed t test:
t(945) = 139.5, p, 0.001), this is also true for the environ-
mental sounds (t(945) = 14.8, p, 0.001; Extended Data
Fig. 3-1B). Notably, the dissimilarity among items, which
typically leads to better decoding performance, is overall
significantly greater for the environmental than speech
stimuli, also with the spectrogram model (t(945) = 22.5,
p, 0.001). This confirms that increased stimulus dissimi-
larity alone cannot explain the significantly better classifi-
cation performance for spoken words than environmental
sounds.
We also verified that the difference for time-locked de-

coding between spoken words and environmental sounds
was present already at the onset of the stimulus: The
spectrograms were cut to 0–100ms in length and de-
coded with the convolution model using a lag window of
100–180ms. This resulted in an average decoding accu-
racy of 69% for spoken words and 58% for environmental
sounds (significantly better for spoken words; Z=3.16,
p=0.002). Thus, although the decoding performance is
overall worse with only the start of the word/sounds, as
we expected, a significant difference remains between

the spoken words and the environmental sounds (for the
whole duration of the words and the same lag the decod-
ing accuracies were 81% for speech and 61% for non-
speech). This additional analysis shows that the enhanced
decoding of words with the time-locked model is not ex-
plained by longer analysis time that would be needed to
extract word meanings; instead, the time-locked model
applies from the start of the word.
Furthermore, the benefits of the convolution model for

modeling the cortical encoding of spoken words are not
restricted to the leave-two-out classification task: direct
leave-one-out reconstruction (correlation of the original
and reconstructed features) demonstrated that spoken
words were better reconstructed with the spectrogram
convolution than MPS regression model (0.19 vs 0.10,
Z=3.5, p,0.001; Extended Data Fig. 3-1C; for examples
of reconstructed sounds, see Extended Data Fig. 2-1,
Audio 1), whereas environmental sounds were better re-
constructed with the MPS regression than spectrogram
convolution (0.14 vs 0.08, Z=3.5, p=0.001; Extended
Data Fig. 3-1C; for examples of reconstructions based on
the spectrogram convolution model, see Extended Data
Fig. 2-1, Audio 2). The amplitude envelope of spoken
words was also remarkably well reconstructed in compar-
ison to the amplitude envelope of environmental sounds
(reconstruction accuracy for spoken words 0.67 and for
environmental sounds 0.32; Z=3.5, p, 0.001; Extended
Data Fig. 3-1C). Moreover, correlating the pair-wise re-
constructed spectrogram distances with the distances be-
tween original sound spectrograms shows that relatively
more information is preserved in the reconstructions of spo-
ken words compared with environmental sounds based on
their respective cortical responses (Spearman correlation
r=0.41, p, 0.001 for spoken words, r=0.22, p,0.001 for
environmental sounds; Extended Data Fig. 3-1D).
The improved performance of the time-locked encoding

model for spoken words was also unlikely to be solely due
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Figure 3. Comparison of different acoustic models for environmental sound decoding. A, Predictive accuracy for environmental
sounds (blue) across all test sound pairs and 16 participants (mean 6 SEM). The regression model was used for the decoding of
non-time-varying features (FFT frequency bins/MPS rate-scale-frequency points/semantic features), and the convolution model was
used for decoding of time-varying features (spectrogram time-frequency points/amplitude envelope); for a control analysis, the
spectrogram was also decoded with the regression model. B, Investigation of convolution lag on spectrogram decoding accuracy
for environmental sounds (average across all 16 participants 6 SEM). C, Cortical sources contributing to decoding of acoustic fea-
tures in environmental sounds with the MPS regression model at 50–100ms after stimulus onset (performance was best with this
model and time window). Color scale denotes average decoding accuracy (.50%) across all 16 participants.

Research Article: New Research 11 of 18

July/August 2020, 7(4) ENEURO.0475-19.2020 eNeuro.org

https://doi.org/10.1523/ENEURO.0475-19.2020.f3-1
https://doi.org/10.1523/ENEURO.0475-19.2020.f3-2
https://doi.org/10.1523/ENEURO.0475-19.2020.f3-1
https://doi.org/10.1523/ENEURO.0475-19.2020.f3-1
https://doi.org/10.1523/ENEURO.0475-19.2020.f2-1
https://doi.org/10.1523/ENEURO.0475-19.2020.audio1
https://doi.org/10.1523/ENEURO.0475-19.2020.f3-1
https://doi.org/10.1523/ENEURO.0475-19.2020.f2-1
https://doi.org/10.1523/ENEURO.0475-19.2020.audio2
https://doi.org/10.1523/ENEURO.0475-19.2020.f3-1
https://doi.org/10.1523/ENEURO.0475-19.2020.f3-1


to different kinds of temporal properties of the words and
other sounds. Specifically, speech has prominent slow
(1–7Hz) temporal modulations (Fig. 4A,B; Extended Data
Figs. 3-1A, 3-2) that are important for its intelligibility
(Elliott and Theunissen, 2009) and have been suggested
to be represented in the auditory cortices through a linear
coding scheme (Pasley et al., 2012). Environmental
sounds produced by the human vocal tract (laughter, cry-
ing, etc.) are very similar to speech in terms of spectro-
temporal characteristics and temporal modulation rates
(with a small difference observed only for the highest rate
(t(50) = 4.5, p=0.004; Bonferroni corrected for multiple
comparisons; Fig. 4C). Spoken words showed a more
variable spectral structure across time (larger values of
SSI) than environmental sounds (t(86) = 3.9, p, 0.001).
However, the SSI did not differ between spoken words
and human nonverbal sounds (t(50) = 0.45, p=0.65), which

were similar to each other also in their co-modulation
properties (correlated temporal modulations between fre-
quency channels; Fig. 4D). Yet, we saw no improvement
in decoding of this subset of environmental sounds with
the convolution model (MPS regression 68% vs spectro-
gram convolution 69%; Z=0.31, p=0.84). The results in-
dicate that particularly spoken words, with their specific
combination of spectrotemporal features, show remark-
ably improved decoding when neuronal population activ-
ity in the auditory cortices is modeled as tightly following
the time-evolving acoustics.

Semantic features are successfully decoded for both
spoken words and environmental sounds, but with
different timing
To ensure that the sounds were processed up to their

meaning, the participants’ task was to identify immediate
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repetitions of the same meaning, i.e., two different exem-
plars of a sound presented one after the other. The
task was easier for the spoken words than for the envi-
ronmental sounds (average percentage of hits for spo-
ken words 94%, for environmental sounds 78%; two-
tailed Wilcoxon signed-rank test, Z= 3.6, p= 0.00003).
Reaction times (RTs) were also longer for the environ-
mental sounds (average RT for hits 1.7 s) than the spo-
ken words (average RT for hits 1.5 s; two-tailed Wilcoxon
signed-rank test, Z= 3.5, p= 0.001). The same set of se-
mantic features (Fig. 1A, right) was used for modeling
the environmental sounds and spoken words. The seman-
tic feature representations captured meanings of individ-
ual items and formed salient clusters of the five semantic
stimulus categories. We focused on telling apart two
sounds from two different categories based on their re-
constructed features (combination of question features
and text corpus features). The regression model was
successful in decoding the semantic category of both
environmental sounds (81%; p, 10�15) and spoken
words (58%; p= 0.0015), with significantly better accu-
racy for environmental sounds (Z= 3.5; p= 0.000031).
Semantic decoding reached significance for envi-

ronmental sounds at 50–100ms and remained signifi-
cant (p, 0.01) from 150ms on until the end of the
analysis window (Fig. 5A); we analyzed sensitivity of
all successive 50-ms time windows in the MEG re-
sponses. In the same analysis for spoken words, best
performance for decoding spoken word semantics
was reached late and was significant only at 650–
700ms (Fig. 5A). In contrast, MPS-based acoustic
decoding of environmental sounds was significant at
50–150 and 200–300ms after stimulus onset for envi-
ronmental sounds and at 250–300ms for spoken
words. Cortical sources contributing to semantic de-
coding are illustrated in Figure 5B (see also Extended
Data Fig. 5-1).

Discussion
Cortical activation faithfully tracks the
spectrotemporal detail of spoken words
The cortical processing of speech as compared with

the processing of other sounds has remained a major
open question in human neuroscience. Here, by com-
bining time-sensitive brain imaging and advanced com-
putational modeling, we discovered that the acoustic-
phonetic content of natural, meaningful spoken words
is encoded in a special manner, where the cortical
evoked responses faithfully track in time the unfolding
spectrotemporal structure and the amplitude envelope
of the spoken words. This time-locked encoding was
observed also for meaningless pseudowords. However,
responses to environmental sounds, even human-made
non-speech sounds with spectral and temporal modu-
lations comparable to speech, did not show improved
decoding with the dynamic time-locked mechanism,
and were better reconstructed using the time-averaged
spectral and temporal modulation content, suggesting
that a time-averaged analysis is sufficient to reach their
meanings.
Phase-locking of oscillatory activation to the amplitude

envelope of sounds has recently gained wide interest as a
potential mechanism for cortical encoding of speech
(Ding and Simon, 2014; Ding et al., 2016). However, it has
remained controversial whether entrainment is directly re-
lated to speech parsing: it might reflect several different
underlying processes (Ding and Simon, 2014), some of
which are not specific to speech nor to the human audi-
tory system (Steinschneider et al., 2013). Based on the
current results, cortical auditory evoked activation tracks
fine-scale spectral detail of single spoken words in a tem-
porally accurate manner, relying heavily on both the spec-
trotemporal and overall amplitude changes within the
sound. We propose that this time-locking of evoked re-
sponses to an unfolding spoken word may partly reflect
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Figure 5. Comparison of semantic decoding for spoken words and environmental sounds. A, Time course of regression-model
based predictive accuracy in semantic features of environmental sounds and spoken words (16 participants, mean 6 SEM).
The values on the x-axis represent the starting time of the 50-ms time windows in the MEG responses. Time 0 indicates the
onset of the sound stimulus. Decoding of the semantic feature set was performed for successive 50-ms time windows for the
whole stimulus duration, for both stimulus types. The time windows with statistically significant decoding (p, 0.01) are indi-
cated by thick horizontal lines above the x-axis. Gray solid line denotes chance level performance (50%). The gray bar repre-
sents the time window used for source level decoding. B, Source areas contributing to decoding of semantic features for
environmental sounds and spoken words at 650–700ms from stimulus onset. This time window had significant decoding per-
formance for both classes of sounds.
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the same phenomenon as the reported entrainment of os-
cillatory activity to continuous speech envelope. It has
been suggested that phase-locking of oscillatory activa-
tion to the stimulus amplitude envelope may be driven by
acoustic edges at syllable onsets (Doelling et al., 2014),
and it can be modeled as a series of transient responses to
changes in the stimulus (Aiken and Picton, 2008).
Furthermore, the spectral content and temporal modula-
tions within speech are non-independent, and envelope
entrainment also depends on fine spectrotemporal detail
(Ding et al., 2014). Thus, phase-locked oscillations can at
least partly be thought of as reflecting the superposition of
transient evoked responses that track the fine-scale spec-
trotemporal evolution of the speech stimulus (Alexandrou
et al., 2018; Obleser and Kayser, 2019); this does not ex-
clude the possible involvement of endogenous oscillatory
activity. Here, for evoked responses to isolated spoken
words the best decoding performance was obtained for
the amplitude envelope of the sound (reconstructed with
67% accuracy), indicating that the cortical responses carry
a lot of the characteristics of the envelope. However, the
particularly high performance for the amplitude envelope
compared with the spectrogram may be partly due to the
reduced dimensionality of the decoded features (1 ampli-
tude envelope vs 128 frequency bands, respectively), re-
ducing the influence of noise. Also, the different acoustic
features within speech are temporally coupled, and the on-
line analysis of features in the spectrotemporal fine struc-
ture is modulated by cues in the envelope (Shamma et al.,
2011). As an average of all the frequency channels, the am-
plitude envelope may carry the most prominent temporal
events in the spoken words, and its decoding may thus
highlight the most salient speech-tracking features of the
MEG signal.
Speech comprehension has been shown to rely

strongly on slow-rate temporal modulations of the speech
envelope (Elliott and Theunissen, 2009). Notably, in our
study, human vocalizations, the environmental sounds
most similar to speech in that they contain prominent
slow temporal modulations as well as similar co-modula-
tions across frequencies, did not show any improvement in
decoding with the time-sensitive spectrogram model. The
dynamic mode of encoding uncovered here thus seems to
take place for the particular combination of spectrotempo-
ral features that are characteristic of speech. The high
performance (83%) of the spectrogram convolution model,
in which each time-frequency-point was reconstructed
based on the MEG signal, showed that the fine spectral
content of speech is tracked alongside the amplitude enve-
lope at a high temporal resolution, and the spoken word
spectrograms can be fairly accurately reconstructed based
on this model. Furthermore, the difference in decoding per-
formance is visible right form the onset of the sound, for
the first 100ms, when the sound is first recognized as
speech. Our results, along with recent findings based on
decoding sounds from fMRI responses (Santoro et al.,
2017), indicate that human auditory cortical processing
might be optimally tuned for encoding the spectrotemporal
structure of speech.
The current results corroborate previous work highlight-

ing the importance of temporal modulations within

speech (Overath et al., 2015), but they should not be inter-
preted to mean that auditory cortical activation would
not be time-locked to non-speech sounds. Non-speech
sounds also elicit prominent cortical auditory evoked re-
sponses time-locked to the acoustic changes within the
sound, and phase-locking of cortical oscillations to the
amplitude envelope is observed also for non-speech
sounds (Doelling and Poeppel, 2015). The current results
further show that the amplitude envelope of environmental
sounds is tracked in cortical evoked responses, as it can
be reconstructed at 32% accuracy with the convolution
model. Thus, a part of the time-locking phenomenon
seems not to be specific to speech. However, overall, the
best reconstruction of the environmental sounds (14%)
was achieved by modeling their time-averaged modulation
content (MPS), suggesting that the time-averaged spectral
and temporal modulation content may be the information
most accurately represented in cortical activation and suffi-
cient for accessing meanings of non-speech sounds.
Indeed, the identification of common sounds in the envi-
ronment may be based on the encoded summary statistics
(McDermott et al., 2013; Santoro et al., 2014). Interestingly,
the overall modulation content was a more accurate model
of environmental sounds encoding than the frequency
spectrum alone, whereas for speech there was no such im-
provement with modulation filters, consistent with a recent
fMRI study (de Heer et al., 2017).
For mapping speech acoustics to linguistic representa-

tions, accurate dynamic encoding of the temporal evolu-
tion within each frequency band at each time point is
needed. An interesting parallel can be found from animal
studies, where single-unit recordings in the auditory cor-
tex suggest frequency-bin-selective synchronization of
neuronal population discharges to the temporal envelope
of species-specific calls, which in many ways resemble
human speech; thus, temporal envelope information with-
in different frequency bands in behaviorally relevant vo-
calizations might be encoded cortically by coherent
discharge patterns in distributed neuronal populations
(Gehr et al., 2000; Nagarajan et al., 2002; Gourévitch and
Eggermont, 2007). The current results suggest that, in hu-
mans, similar encoding mechanisms might have become
especially important for speech, with extensive exposure
to the language environment during development. Future
studies should determine if similar time-locking might be
observed with tasks requiring attention to fine-grained
temporal detail or specialization to categorical perception
in other sounds through experience, e.g., for instrumental
sounds in musicians.

Accurate temporal encoding of the acoustic stream is
necessary for lexical and semantic access of spoken
words
Despite the different acoustic content of spoken words

and corresponding environmental sounds, their process-
ing converged at the endpoint; the same set of semantic
features was successful in decoding both classes of
sounds. Spoken words showed relatively low semantic
decoding performance, in line with previous studies
(Simanova et al., 2010; Correia et al., 2015). One reason
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for the different semantic decoding performance of spo-
ken words and environmental sounds may have been the
fact that environmental sounds are inherently less familiar
and their semantic access may thus require a more active
effort and longer time than for spoken words. This conclu-
sion is also suggested by the performance in the one-
back task (detecting two subsequent sounds with the
same meaning), which was more effortful, with more er-
rors and longer reaction times, for environmental sounds
than spoken words. Nonetheless, our set of environmen-
tal sounds was tested for fast and consistent naming.
Together, results of the behavioral task and the semantic
decoding results indicate that attentional engagement
was equal or even stronger for the environmental sounds
than spoken words, and in fact more effort and time was
needed to decipher the meanings of the environmental
sounds. Thus, increased attention or longer identification
times cannot explain the strikingly more successful
acoustic decoding for spoken words than environmental
sounds. Furthermore, the differential decoding perform-
ance was visible already during the first 100ms of the
sounds.
Semantic decoding of environmental sounds first reached

significance at 50–100ms, at the same time as acoustic de-
coding, and continued to be successful until the end of the
analysis period, whereas semantic decoding of spoken
words reached significance at 650–700ms (this one signifi-
cant time bin likely represents only a part of a wider time
range). The current results are complementary to traditional
experimental paradigms of semantic processing, where the
violation of semantic expectation for spoken words and
sounds shows in cortical responses at around 200–700 ms
(Aramaki et al., 2010; Frey et al., 2014; Hendrickson et al.,
2015). Comparable latencies (200–700ms) were also re-
cently observed in decoding the similarity of spoken word
meanings based on preceding content in continuous
speech, using EEG (Broderick et al., 2018). The current de-
coding results indicate that for environmental sounds the
acoustic featuresmay be informative of the physical sources
(i.e., meaning) of the sound early on, but that the identifica-
tion may be extended in time or its timing and duration may
be variable between sounds, whereas for spoken words
identification seems to occur within a more distinct and nar-
row time window, when the correct word candidate has
been identified in the lexicon. The identification of spoken
words involves the comparison of the incoming input signal
to the lexical representations stored in memory in a continu-
ous manner and selection of the correct lexical candidate
(Marslen-Wilson, 1987). For our stimulus words, which con-
tained compound words, the uniqueness point and selec-
tion of one lexical candidate for semantic access was fairly
late (on average 500ms), which may have contributed to the
late time window for the semantic decoding.
Both phoneme and acoustic information could be de-

coded from the MEG signal best at a latency of 100–
180ms, suggesting that those representations might exist
simultaneously in the cortical activation sequence. It has to
be noted, that our decoding model was not optimally de-
signed for decoding categorical variables such as the pho-
neme labels which probably explains the overall lower

decoding accuracy for phoneme labels (73%). However,
the similarity of the optimal lags in spectrogram and pho-
neme decoding is not affected by this confound. Several
other studies also indicate that the optimal temporal inte-
gration window for parsing speech acoustics into linguistic
units might lie within this range. The amplitude envelope of
continuous speech is tracked by phase-locked cortical os-
cillations at 100- to 180-ms latency (Abrams et al., 2008;
Aiken and Picton, 2008; Koskinen et al., 2013), and this has
also been shown to be approximately the time frame in
which the categorical neural organization for phonemes
transiently emerges (Chang et al., 2010). Also, studies with
isolated speech syllables have demonstrated that the
evoked responses can be seen as a combination of tran-
sient “impulse responses” to the onsets of constituent pho-
nemes, with latencies of ;100–200ms (Ostroff et al., 1998;
Tremblay et al., 2003). However, the performance of the
convolution model for spectrogram and phoneme decoding
was fairly high also at 20- to 100-ms lag, suggesting that
the acoustic-phonetic content of the words might in fact be
tracked over multiple different integration windows. This
may reflect the encoding of phonemes with different tem-
poral characteristics (Khalighinejad et al., 2017), but may
also be related to simultaneous phoneme and syllable level
encoding, similarly to what has been suggested in entrain-
ment of nested cortical oscillations (Ding and Simon, 2014;
Ding et al., 2016). However, obtaining temporally and spa-
tially distinct neural response fields for each phoneme was
not the goal of this study, and forward models would be
more useful for this purpose.
Categorical perception of phonemes is a well-established

phenomenon in behavioral studies, and its development is
the basis of tuning to mother tongue in early infancy.
However, the neural underpinnings of this phenomenon are
still debated. Previous neuroimaging studies have shown
that the superior temporal areas are tuned to phoneme cate-
gories, which rely on integration of several spectral and tem-
poral cues (Formisano et al., 2008; Mesgarani et al., 2014).
In the current results, spoken word decoding improved,
compared with the spectrogram, when we included a com-
bination of the spectrogram and the phoneme sequence of
the word. These results echo those of a recent EEG study,
where articulatory features of phonemes and the spectro-
gram together were the best model for decoding continuous
speech based on phase-locked cortical oscillatory activa-
tion (Di Liberto et al., 2015). These results together might be
interpreted to suggest pre-lexical categorical representa-
tions that are separate from the analysis of acoustic proper-
ties of the speech signal. However, a recent MEG study
(Daube et al., 2019) suggested that the gain in predictive
power of the phonemic/articulatory features may be ex-
plained by acoustic features of the phonemes: When includ-
ing Gabor patterns of the sounds (different spectrotemporal
modulations akin to our MPS model, with a time series) or
even only the phoneme onset timings, performance gain
was similar as when the categorical articulatory features
were combined with the spectrogram. In that study, the best
model was a relatively simple acoustic feature space that fo-
cused on acoustic edges. This might suggest that purely
acoustic models are sufficient in explaining MEG/EEG
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responses to speech. Thus, it remains unclear what the suc-
cessful decoding of categorical phonemes or phonemic fea-
tures across studies tells us about prelexical stages of
speech processing, and further research is needed.
In any case, the current results are compatible with the

idea that linguistic representations emerge directly from
tuning to the complex spectrotemporal acoustic features
characteristic of different phonemes (Mesgarani et al.,
2014; de Heer et al., 2017) and that the quasi-rhythmic
changes in the amplitude envelope at syllable boundaries
might be crucial in guiding this process. As noted above,
the processing step where the continuous acoustic signal
interfaces with phonological representations is only re-
quired for speech, and this is where time-locked encoding
for speech appears to come into play. Decoding perform-
ance was similar for pseudowords and real words, indicat-
ing that this mode of encoding is related to the low-level
parsing of the acoustic signal, and might not be directly af-
fected by the lexical-semantic status of the speech utter-
ance. However, this warrants further examination. Speech
processing is interactive, such that top-down influences
from semantic and syntactic context are expected to influ-
ence low-level acoustic processing, particularly with sen-
tence-level and narrative speech. Indeed, a recent fMRI
study showed that not only the spectral content and pho-
nemic features, but also semantic features within narrative
speech are represented in highly overlapping regions early
in the acoustic processing hierarchy (de Heer et al., 2017),
indicating top-down influences of semantic content on
acoustic and phonological processing. In the current
study, cortical sources contributing to acoustic and pho-
neme decoding were both concentrated around bilateral
auditory cortices and did not show clear lateralization, con-
sistent with previous studies (de Heer et al., 2017;
Brodbeck et al., 2018) and compatible with the view that
acoustic-phonetic processing is bilaterally implemented
(Poeppel, 2003).

Future directions
The present finding of time-locked encoding for speech,

but not other sounds, deepens the understanding of the
computations required for mapping between acoustic and
linguistic representations. The current findings raise the
question of what specific aspects within sounds are crucial
for cueing the brain into using this special mode of encod-
ing. Future work could investigate the contribution of differ-
ent statistical properties within speech acoustics by using
synthetized stimuli, the possible effect of experimental task
to boost the use of time-locked or time-averaged mode in
sound processing, and the role of top-down semantic con-
tributions using real-life like auditory environments. The
rapidly computable convolution model for high-dimension-
al MEG/EEG signals can be further developed for decoding
of a time-varying modulation representation, which might
even better model the time-locked cortical encoding of
speech (Pasley et al., 2012). Finally, the present findings
may in the future help to bridge the gap between investiga-
tions of cortical temporal tracking of continuous speech
and isolated linguistic stimuli.
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