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The latest progresses of experimental biology have generated a large number of data with
different formats and lengths. Deep learning is an ideal tool to deal with complex datasets,
but its inherent “black box” nature needs more interpretability. At the same time, traditional
interpretable machine learning methods, such as linear regression or random forest, could
only deal with numerical features instead of modular features often encountered in the
biological field. Here, we present MultiCapsNet (https://github.com/wanglf19/
MultiCapsNet), a new deep learning model built on CapsNet and scCapsNet, which
possesses the merits such as easy data integration and high model interpretability. To
demonstrate the ability of this model as an interpretable classifier to deal with modular
inputs, we test MultiCapsNet on three datasets with different data type and application
scenarios. Firstly, on the labeled variant call dataset, MultiCapsNet shows a similar
classification performance with neural network model, and provides importance scores
for data sources directly without an extra importance determination step required by the
neural network model. The importance scores generated by these two models are highly
correlated. Secondly, on single cell RNA sequence (scRNA-seq) dataset, MultiCapsNet
integrates information about protein-protein interaction (PPI), and protein-DNA interaction
(PDI). The classification accuracy of MultiCapsNet is comparable to the neural network and
random forest model. Meanwhile, MultiCapsNet reveals how each transcription factor (TF)
or PPI cluster node contributes to classification of cell type. Thirdly, wemade a comparison
between MultiCapsNet and SCENIC. The results show several cell type relevant TFs
identified by both methods, further proving the validity and interpretability of the
MultiCapsNet.
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INTRODUCTION

Recent advances in experimental biology have generated huge amounts of data. More detectable
biological targets and various new measuring methods produce data at an unprecedented speed. For
example, Microwell-Seq, a single cell RNA sequencing technology, has been used to analyze the
transcriptome of more than 4,00,000 mouse single cells, covering all major mouse organs (Han et al.,
2018); Single cell bisulfite sequencing (scBS-seq) has been designed to measure genome-wide DNA
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methylation at the single-cell level (Smallwood et al., 2014); and
mass-spectrometry based technologies could explore the
composition, structure, function, and control of the proteome
(Aebersold andMann, 2016). In addition, large and complex data
sets are produced by large-scale projects, such as “The Cancer
Genome Atlas” (TCGA) (Tomczak et al., 2015), and
“Encyclopedia of DNA Elements” (ENCODE) (Consortium,
2004), which were established through community
cooperation. There is an urgent need for next generation
methods to deal with large, heterogeneous and complex data
sets (Camacho et al., 2018).

As a promising data processing method, deep learning
methods have been employed in biological data processing
(Alipanahi et al., 2015; Camacho et al., 2018; Zhou et al.,
2018; Eraslan et al., 2019). Various deep learning models
could deal with various input data with different types and
formats. For example, RNA sequence data as real-value vectors

could be processed by simple feed forward neural network, which
is a component of more complex models, such as auto-encoder
(AE) (Lin et al., 2017; Chen et al., 2018), variational auto-encoder
(VAE) (Ding et al., 2018), and Generative adversarial network
(GAN) (Lopez et al., 2018). Sequence information, which is coded
by ATCG, could be converted into real valued vectors by deep
learning model using convolution neural networks (CNN) after
model training (Alipanahi et al., 2015). Furthermore, deep
learning models could integrate data with different types and
formats. For example, DeepCpG utilizes both DNA sequence
patterns and neighboring methylation states for predicting single-
cell methylation state and modeling the sources of DNA
methylation variability (Angermueller et al., 2017). However,
the deep learning methods usually run as a “black box”, which
is hard to interpret (Almas Jabeen and Raza, 2017). Great efforts
have been made to improve the interpretability of deep learning
models. The prior biological information, such as regulation

FIGURE 1 |MultiCapsNet is an interpretable classifier and data integrator withmodular inputs. (A) The traditional interpretable machine learningmethods. The input
of this model is numerical. After training, the model will reveal the inputs (features) importance for classification (or regression). The size and color depth of the circle
indicate the importance of the features, while the larger and darker circle indicates that the feature is more important. (B) The MultiCapsNet is an interpretable classifier
with modular input. The inputs (features) with different format (real-valued vector, one-hot encoding vector, or sequence data) and different lengths are first
converted into real-valued vectors with equal length through trainable networks. Then, classification was based on those real-valued vectors of the same length. After
training, themodel will reveal the inputs (features) importance to classification. The size and color depth of the circle indicate the importance of the feature, while larger and
darker circle indicates that the feature is more important. (C) The MultiCapsNet could integrate data from different sources. (D) The MultiCapsNet could integrate prior
knowledge, such as gene regulatory information. Left: Gene regulatory networks, transcription factor and its targets are marked with same color. Right: expression of
genes that are regulated by the same transcription factor could be regarded as a data source.
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between transcription factors (TF) and target genes or priori
defined gene sets that retain the crucial biological features, could
specify connections between neurons in the neural networks in
order to associate the internal node (neuron) in the neural
networks with TFs and thereby ease the difficulty of
interpreting models (Lin et al., 2017; Chen et al., 2018). New
probabilistic generative models with more interpretability, such
as variational inference neural networks, are applied to scRNA-
seq data for dimension reduction (Ding et al., 2018).

Traditional interpretable machine learning methods, such as
linear regression (logistic regression) or decision tree (random
forest), could only deal with numerical or categorical feature
(Molnar, 2019) (Figure 1A). However, in the field of biology,
especially in the field of network biology, the data is highly
modular in nature. For example, in drug discovery, many
independent features with multiple labels (e.g., response to
drug, and disease state) across a multitude of data types (e.g.,
expression profiles, chemical structures) are needed; and in
synthetic biology, the input may include sequence data,
composition data and functional data (Camacho et al., 2018).
An interpretable machine learning method adapted with modular
input is demanded.

The capsule network (CapsNet) is a newly developed deep
learning model for digital recognition tasks (Sabour et al., 2017).
In the realm of biology, the CapsNet model has been directly
applied for protein structure classification and prediction (Dan
Rosa de Jesus et al., 2018; Fang et al., 2018) and is ripe for
application in network biology and disease biology with data from
multi-omics dataset (Camacho et al., 2018). In our previous work,
we proposed a modified CapsNet model, called single cell capsule
network (scCapsNet), which is suitable for single-cell RNA
sequencing (scRNA-seq) data (Wang et al., 2020). The
scCapsNet is a highly interpretable cell type classifier, with the
capability of revealing cell type associated genes by model internal
parameters.

Here, we introduce MultiCapsNet, a deep learning classifier
and data integrator built on CapsNet and scCapsNet. As a general
framework, the MultiCapsNet model should be able to deal with
modular data from multiple sources with different formats and
lengths, and give the importance scores of each data source for
prediction after training (Figures 1B–D). In order to demonstrate
its wide biological application, the MultiCapsNet model was
tested on three data sets. In the first example, we applied the
MultiCapsNet model to the labeled variant call data set, which
was originally used to test the models for automating somatic
variant refinement (Ainscough et al., 2018). According to data
source and data attributes, the 71 features listed in the data set
were divided into eight groups. Then the features in one group
were viewed as a whole to train the MultiCapsNet model. After
training, the performance of our MultiCapsNet matches well with
the previous feed forward neural network model and random
forest model. As an advantage our MultiCapsNet model directly
provides the importance score for each data source, while the
previous feed forward neutral network model needs an extra
importance determination step through shuffling individual
features to do so. Despite that our MultiCapsNet model is
substantially different from the previous feed forward neural

network model and the source importance measuring methods
are also different, the correlation between the importance scores
generated by those two models is highly correlated. In the second
example, we demonstrate how to integrate prior knowledge and
scRNA-seq data through MultiCapsNet model. The protein-
protein interactions (PPI) information stored in BIOGRID
(Stark et al., 2006) and HPRD (Keshava Prasad et al., 2009),
and protein-DNA interactions (PDI) from DREM 2.0 (Schulz
et al., 2012), are used as prior knowledge to specify network
connections, as in previous work (Lin et al., 2017). In this
example, the structures of the first part of the MultiCapsNet
model, i.e., the connections between inputs and primary capsules,
are determined by the PPI and PDI information. As a result of
these specified structures, each primary capsule is labeled either as
TF or PPI subnetwork (PPI), and inputs of each primary capsule
could be regarded as a data source. We use data from mouse
scRNA-seq dataset (Han et al., 2018) to train this MultiCapsNet
model and the classification accuracy of MultiCapsNet is
comparable to neural network and random forest model. After
training, the MultiCapsNet model reveals how each primary
capsule, which is labeled either as TF or PPI subnetwork
(PPI), contributes to cell type classification. The top
contributors of a particular cell type are usually related to that
cell type. In the third example, we make a comparison between
our MultiCapsNet and the established single-cell regulatory
network inference method: SCENIC (Single-cell regulatory
network inference and clustering) (Aibar et al., 2017). The
results show that many cell types relevant TFs are identified
by both methods, which further proves the validity and
interpretability of MultiCapsNet.

METHODS

Datasets and Data Preprocessing
Labeled variant call dataset from previous work was used to test
the MultiCapsNet model (Ainscough et al., 2018). This dataset
contains more than 41,000 samples, which are assembled to train
models for automating somatic variant refinement. Each sample
in the dataset is manually labeled as one of four tags by the
reviewer: “somatic”, “ambiguous’, “germline”, and “fail”, which
represent the confidence of a variant call by upstream somatic
variant caller. As in previous work, we merged the variant calls
labeled as “germline” and “fail” into a class named “fail”. The
number of instances in each class are around 10,000, 13,000,
18,000 for “ambiguous”, “fail”, and “somatic”. There are 71
features that are associated with each sample, including cancer
types, reviewers, tumor read depth, normal read depth, and so on.
According to the data sources and data attributes, we divided
these 71 features into eight groups (Supplementary Table S1).
Group 1 contains nine cancer types, and is encoded as one-hot
encoding vector. We call group 1 as “Disease” because it indicates
the disease to which each variant call belongs. Group 2 contains
four reviewers, and is encoded as one-hot encoding vector. We
call group 2 as “Reviewer”. Group 3 contains information of
“normal VAF”, “normal depth”, “normal other bases count”, and
is called as “Normal_pro”, short for “Normal properties”. Group
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4 contains 13 features that describe reference reads in normal,
including base quality, mapping quality, numbers of mismatches,
numbers of minus and plus strand, and so on. We call group 4 as
“Normal_ref”. Group 5 contains 13 features extracted from
variant reads in normal, also including base quality, mapping
quality, numbers of mismatches, numbers of minus and plus
strand, and so on. We call group 5 as “Normal_var”. The last
three groups contain features drawn from tumor instead of
normal in previous three groups. As same as Group 3, 4, and
5, we label group 6, 7, and 8 as “Tumor_pro”, “Tumor_ref”, and
“Tumor_var” respectively.

The mouse scRNA-seq is measured by Microwell-Seq (Han
et al., 2018). We downloaded scRNA-seq data and the annotation
information through the link provided by the authors (https://
figshare.com/s/865e694ad06d5857db4b). Then we use the
annotation information to select parts of data from whole
dataset. The cell types we chose include “Cartilage cell”,
“Secretory alveoli cell”, “ Epithelial cell ”, “Kupffer cell”,
“Muscle cell”, “Dendritic cell”, “ Spermatocyte”, and the
number of instances in each cell type are 527, 1,195, 1,219,
356, 626, 717, 353. Moreover, we only use the genes contained
in prior knowledge (Lin et al., 2017) to fit the model structure, and
set the default value to zero when the downloaded scRNA-seq
data does not contain this gene (Han et al., 2018).

A SCENIC example dataset was used to compare the
performances of MultiCapsNet and SCENIC (https://scenic.
aertslab.org/examples/). The dataset (sceMouseBrain.RData)
contains seven cell types of mouse cortex and hippocampus
(Zeisel et al., 2015) [“astrocytes_ependymal” (224),
“endothelial_mural” (235), “interneurons” (290), “microglia”
(98), “oligodendrocytes” (820), “pyramidal_CA1” (939), and
“pyramidal_SS” (399)].

The Architecture and Parameters of the
MultiCapsNet Model
In the architecture of our multiCapsNet model, there are l
neural networks corresponding to l input modular data.

ui � tanh(Wi
pxi) i ∈ [1, 2 . . . , l] (1)

xi represents i’s input modular data. Wi
p represents weight

matrices of neural networks with dimension (n, ri), where the
ri is the length of the input modular data xi. The output ui of each
neural network i (i ∈ [1, 2 . . . , l]) is a vector with length n, viewed
as “primary capsule” in the model. The inputs standardization
part converts the modular data with different type and length into
real valued vectors with equal length n (n � 8 by default).

The standardized information is subsequently delivered
through primary capsule to the capsule in the final layer by
“dynamic routing” (Supplementary Figure S1). Each capsule in
the final layer, named “type capsule”, corresponds to each cell
type. They are denoted as vectors vj, where j ∈ [1, 2 . . . , k], k is
the number of cell types and m is the length of vectors. The
capsule network module is implemented in Keras (https://github.
com/bojone/Capsule).

Prior to the “dynamic routing” process, the primary capsules
are multiplied by weight matrices Wij to produce “prediction
vectors” ûj|i.

ûj|i � Wijui (2)

Then the iterative dynamic routing begins. Firstly, the
“coupling coefficients” cijis calculated by formula:

cij � exp(bij)∑k exp(bik)
(3)

Where bij is an intermediate parameter with initial value of zero,
representing the inner product of the prediction vector and type
capsule vector.

In order to compute the bij for next round iteration, the
weighted sum sj over all k prediction vectors ûj|i is calculated by
formula:

sj � normalize⎛⎝∑
i

cijûj|i⎞⎠ (4)

Secondly bij is computed by the dot product of ûj|i and sj as
the last step of one round dynamic routing process.

bij � ûj|i.sj (5)

After several rounds of dynamic routing, the type capsule vj is
calculated by a non-linear “squashing” function:

vj �




sj



2

0.5 + 



sj



2
sj



sj



 (6)

The following pseudocode illustrates the implementation of
MultiCapsNet.

1) for all primary capsule i: ui � Activation Function(Wi
pxi)

2) for all primary capsule i and type capsule j: ûj|i � Wijui
3) procedure ROUTING(ûj|i, r)
4) for all primary capsule I and type capsule j: bij ← 0.
5) For r iterations do
6) for all primary capsule i: ci ← softmax (bi)
7) for all type capsule j: sj ← normalize(∑

i
cijûj|i)

8) for all primary capsule i and type capsule j: bij ← ûj|i.sj
return vj ← squash (sj)

The implementation of MultiCapsNet can be found in https://
github.com/wanglf19/MultiCapsNet.

MultiCapsNet Model in Somatic Variant
Refinement Task
In the somatic variant refinement task, the eight groups mentioned
above in the section of “Datasets and data preprocessing” correspond
to eight input sources. Therefore, there are eight neural networks
corresponding to eight groups of input modular data (l � 8).

ui � tanh(Wi
pxi) i ∈ [1, 2 . . . , 8] (7)
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After the input standardization part, the input data xi is converted
into a primary capsule ui having the same length. Next, the
standardized information stored in the primary capsules would
be delivered to the final layer capsules by “dynamic routing”. The
capsules in the final layer, which corresponds to labels of variant
calls, is called “label capsule”. In capsnet, the non-linear “squashing”
function ensure that short vectors get shrunk to almost zero length
and long vectors get shrunk to a length slightly below 1 (Sabour et al.,
2017). The length of the label capsule represents the probability that
a variant call is either “ambiguous”,“fail”, or “somatic” (Figure 2). To
evaluate the performance of the model, we use the “area under the
curve” (AUC) score as previous (Ainscough et al., 2018) and
prediction accuracy.

MultiCapsNet Model That Integrates Prior
Knowledge
TheMultiCapsNet could integrate prior knowledge into its structure.
In brief, PPI information store in BIOGRID (Stark et al., 2006) and
HPRD (Keshava Prasad et al., 2009), and PDI coming from DREM
2.0 (Schulz et al., 2012), are used as prior knowledge for specifying
network connections between the inputs and the primary capsules
(Figure 4A), just as previous work used this prior knowledge to
specify network connections between the inputs and neurons (Lin
et al., 2017). For example, the prior knowledge indicates that
Gene1,. . ., Genen are regulated by a TF (colored with green), so
there are connections between Gene1,. . ., Genen and primary capsule
representing corresponding TF (green connection); the prior
knowledge indicate that Gene2,. . ., Genen are regulated by a TF
(colored with blue), then there are connections between Gene2,. . .,

Genen and primary capsule representing corresponding TF (blue
connection); and the prior knowledge indicates thatGene2, Gene3,. . .,
are in a subnetwork of PPI network (colored with red), then there are
connections between Gene2, Gene3,. . ., and primary capsule
representing corresponding PPI subnetwork (red connection).
Although there is only one input source, namely scRNA-seq data,
the input source can be decomposed into several parts by integrating
prior knowledge, and each part is connected to a primary capsule.
Therefore, we also took a single input source integrated with prior
knowledge as an input from multiple sources, each of which is
associated with a TF or a PPI subnetwork (Figure 4B).

In total there are 696 input modular data, with 348 TF-targets
relationships extracted from PDI information and 348 PPI
subnetworks. Therefore, there are 696 neural networks
corresponding to 696 modular data (l � 696).

ui � tanh(Wi
pxi) i ∈ [1, 2 . . . , 696] (8)

After the input standardization part, the input data xi is converted
into primary capsule uiwith the same length. Next, the standardized
information stored in the primary capsules would be delivered to the
final layer capsules by “dynamic routing”. The capsules in the final
layer, which correspond to cell types, is called “type capsule”.

MultiCapsNet Model Compared with
SCENIC
The SCENIC is a workflow for simultaneous reconstruction of
gene regulatory networks and identification of cell states using
scRNA-seq data (Aibar et al., 2017). The workflow consists of three

FIGURE 2 | Architecture of MultiCapsNet with two layers. The first layer consists of eight parallel neural networks, corresponding to eight data sources (groups).
The outputs of neural networks are the primary capsules (real valued vectors) with equal length. The second layer is the Keras implementation of CapsNet for
classification. The length of each label capsule represents the probability that the input data belongs to the corresponding classification category.
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modules (R/bioconductor packages): GENIE3 (GRNboost),
RcisTarget, AUCell. The first two modules were responsible to
find potential TF-targets relationships based on co-expression
and subsequently select the highly confident TF-target regulation
according to TF-motif enrichment analysis. After that, several
potential TF-target relationships across all cell types, called
regulons, were identified in the dataset. The AUCell would score
the activity of these regulons in each single cell. Finally, the
unsupervised method is used to cluster cell, identify cell types
and states based on the scores of the regulongs, which are used
as features for each cell. In our model, we utilized the regulon
information identified by the first two modules of SCENIC as the
prior knowledge to specify the connections between input and
primary capsules (Supplementary Figure S2A). The dataset,
intermediate results and the output of SCENIC for a mouse
brain example were downloaded from the website (https://scenic.
aertslab.org/examples/). The regulon information was extracted
from the intermediate result file (regulons_asGeneSet.Rds).

In total there are 253 regulons, which specify TFs and their
target genes. Therefore, there are 253 neural networks
corresponding to 253 modular data (l � 253).

ui � tanh(Wi
pxi) i ∈ [1, 2 . . . , 253] (9)

After the input standardization part, the input data xi is converted
into primary capsule ui with same length. Next, the standardized
information stored in the primary capsules would be delivered to the

final layer capsules by “dynamic routing”. The capsules in the final
layer, which correspond to cell types, is called “type capsule”.

Average Coupling Coefficients and Data
Source Importance
In scCapsNet, we showed that the average coupling coefficients
represent the contribution of the primary capsules to the final
layer type capsules for each cell type (Wang et al., 2020).
Similarly, in the multiCapsNet model, the type (label) capsule
vj derives from a weighted sum of prediction vectors ûj|i. The
weights are the coupling coefficients cij and the magnitude of
these coefficients could roughly be regarded as the contribution of
the primary capsules ui to the type capsules vj. Each sample
(single cell, somatic variant) generates its own coupling
coefficients. The average coupling coefficients for samples with
same type (label) are calculated by the formular:

ctype averageij � ∑typec
type
ij∑type1

(10)

Therefore, each classification category (cell type/variant call
label) corresponds to an average coupling coefficients matrix
(ctype averageij ), called type average coupling coefficients, with rows
representing type capsules and columns representing primary
capsules. The type average coupling coefficients matrix could be
plotted as heatmap for visualization of data. For each classification

FIGURE 3 | Architecture of MultiCapsNet integrated with prior knowledge. (A) The model has two layers. The first layer consists of 696 parallel neural networks
corresponding to 696 primary capsules labeled with either transcription factor (348) or protein-protein interaction cluster node (348). The inputs of each primary capsule
include genes regulated by a transcription factor or in a protein-protein interactions sub-network. The second layer is the Keras implementation of CapsNet for
classification. The length of each final layer type capsule represents the probability of input data belonging to the corresponding classification category. (B)
Alternative representation of MultiCapsNet integrated with prior knowledge. Genes that are regulated by a transcription factor or in a protein-protein interactions sub-
network, are groups together as a data source for MultiCapsNet. Figures 3A,B are equivalent with different representation.
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category (cell type/variant call label), the corresponding type average
coupling coefficients matrix contain an effective type capsule row,
which is the row whose type is consistent with this classification
category. For example, the effective type capsule row in the type
average coupling coefficients matrix (ctype 2 average

ij ) is the row
ctype 2 average
i2 . In this row, the magnitude of each element could
be regarded as the importance score of the corresponding
primary capsule to this classification category. The effective
type capsule rows of all classification categories
(ctype 1 average

i1 , ctype 2 average
i2 , ctype 3 average

i3 . . .) could be organized
into a new matrix, visually represented as an overall heatmap.

Algorithm Implementation for Comparisons
A neural network with sigmoid activation function was
implemented in Keras. The random forest and nearest-neighbour
are implemented with the Python package “scikit-learn”. The
comparison transformers model was originally used for
IMDB movie review sentiment classification dataset.
This transformer model contains the embedding layer for
embedding the words into vectors and the Multi-head
attention layer (https://github.com/bojone/attention/). We
replace the embedding layer with our data standardization
layer, and retain theMulti-head attention layer for classification.

RESULTS

MultiCapsNet Achieves High Classification
Accuracy and High Interpretability for
Modular Data From Variant Call Dataset
The variant call dataset (Please refer to Datasets and data
preprocessing in METHODS section for the details) was
randomly divided into training set and validation set with a

ratio of 9:1. Our MultiCapsNet model performs well in the
classification of variant call (Figure 4). The results show that
the AUC of the MultiCapsNet model is 0.94, 0.99, and 0.97,
respectively, in the classification categories of “ambiguous”, “fail”,
and “somatic” (Figure 4A). These AUC scores are similar with
those obtained by the Multi-head Attention model (0.93, 0.98,
0.96), feed forward neural network (0.93, 0.99, 0.96), and random
forest (0.96, 0.99, 0.98) (Ainscough et al., 2018). Meanwhile, the
average prediction accuracy of theMultiCapsNet model is around
0.873, similar to those obtained by the Multi-head Attention
model (0.866), and slightly lower than that of feed forward neural
network (0.887), and random forest (0.895).

In MultiCapsNet, the coupling coefficient cij is viewed as
important scores, which is the weight that measure the
contribution of each primary capsule to the final layer type
capsule. Each input would generate its own coupling coefficient,
and the type average coupling coefficient is the average over all the
inputs with same classification category. After MultiCapsNet model
training, the type average coupling coefficients for each variant label
(“ambiguous”, “fail”, and “somatic”) were calculated and visualized
as heatmaps (Supplementary Figure S3A) (Please refer to
“METHODS” section for the detailed calculation formula of type
average coupling coefficients). In each type average coupling
coefficient, the most important row, named as “effective type
capsule row”, is the row whose type is consistent with this
classification category. The overall heatmap is assembled with the
“effective type capsule row”which describes the importance scores of
all the data sources for distinct category classification
(Supplementary Figure S3B). Therefore, the overall heatmap
also shows the contribution of each data source to the
recognition of each variant labels (“ambiguous”, “fail”, and
“somatic”). For example, the data source of “Disease” has the
contribution to the classification of “somatic” category and the
“Reviewer” source contributes to the classification of “ambiguous”

FIGURE 4 | The comparison between MultiCapsNet and feed forward neural network shows the high performance and interpretability of MultiCapsNet. (A) The
AUC scores demonstrate that the MultiCapsNet model achieves very high classification performances in all three classification categories. (B) The normalized group
(data source) importance scores generated by MultiCapsNet and feed forward neural network are highly correlated.
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category. The “Tumor_var” source is the most important one for the
classification of all the three categories (Supplementary Figure
S3B). Over 9 repetitions, the values of each row in 9 overall
heatmap are averaged to determine the importance scores of each
data sources for the classification of all the categories in
MultiCapsNet model (Figure 3B). In feed forward neural
network model, the feature importance is measured by average
change of AUC after randomly shuffling individual features. Based
on the step of features grouping, we added the feature importance
scores belonging to the same group together, and take these values as
importance of data sources (each group) in feed forward neural
networks model (Figure 3B). Then, we calculated the correlation
between the data source importance scores obtained by our
MultiCapsNet model and those provided by feed forward neural
network model. Although our MultiCapsNet model is substantially
different from the previous feed forward neural network, and the
source importance measuring methods are also different, there is
very high correlation between them (PearsonCorrelation Coefficient
� 0.876) (Figure 4B). Bothmodels indicate that tumor variant group
is very important for variant call classification.

MultiCapsNet Integrated with Prior
Knowledge Could Function as Classifier
and Identify Cell Type Relevant TF
The dataset is a portion of mouse scRNA-seq data measured by
Microwell-Seq, which consists of nearly 5,000 cells of seven types
and 9,437 genes (Please refer to METHODS section for the details).
The MultiCapsNet model that integrates prior knowledge
(Figure 4) was trained and tested by using this dataset. The
average validation accuracy and F1 score are around 97%,
comparable with those generated by the feed forward neural
network, Multi-head Attention model and random forest
(Supplementary Figures S4A, B). After training, the average
coupling coefficients, which represent the contribution of the
primary capsules (TF/PPI) to the type capsules (Cell type), were
calculated and visualized as heatmaps for each cell type (Figure 5A).
In each heatmaps, we should clearly observe that the high value
elements in the average coupling coefficients (dark line in the plot)
are exclusively located in the effective type capsule row. Then, the
corresponding type capsule row was selected from each heat map in
Figure 5A, and organized into an overall heatmap (Figure 5B).

We repeat the training process 9 times and generate nine overall
heatmaps accordingly. Based on the average value of the nine
overall heatmaps, the top 10 relevant TFs/PPI subnetwork was
generated (Supplementary Table S2). Most of the top 10 relevant
TFs/PPI subnetwork were specific to one cell type, and many of
them have been reported to be associated with corresponding cell
types previously (Figure 5C). For example, Gata1 and Gata2 are
top contributors for dendritic cell recognition. Previous work
indicated that Gata1 regulates dendritic cell development and
survival (Gutiérrez et al., 2007), Gata2 regulates dendritic cell
differentiation (Onodera et al., 2016). Srf and Yy1 are ranked as
the top contributors for muscle cell recognition by the model.
However, Srf is required for skeletal muscle growth andmaturation
(Li et al., 2005), Yy1 is associated with increased smooth muscle
specific gene expression (Favot et al., 2005). FoxA2 and FoxA3 are

ranked as top contributors for Cartilage cell recognition, and FoxA2
and FoxA3 are necessary to promote high-level expression of
several hypertrophic chondrocyte markers (Ionescu et al., 2012).
The model reports Rxrg, Rara, Rarg, Rarb, Rxra, and Rxrb as top
contributors for Kupffer cell recognition. Previous research report
RA receptor (RAR) and retinoid X receptor (RXR) were expressed
by Kupffer cells (Ulven et al., 1998; Ohata et al., 2000). Pgr is ranked
as a top contributor for secretory alveoli cell recognition, and the
progesterone receptor (Pgr) knockout mouse demonstrated that Pg
is required for alveolar morphogenesis (Oakes et al., 2006). Topors
is ranked as a top contributor for spermatocyte recognition.
Previous work indicates dtopors, the Drosophila homolog of the
mammalian Topors, plays a structural role in spermatocyte lamina
that is critical for multiple aspects of meiotic chromosome
transmission (Matsui et al., 2011).

The Comparison of MultiCapsNet Model
with SCENIC Shows That Several Cell Type
Relevant TFs Are Identified by Both
Methods
To further demonstrate the effectiveness of ourMultiCapsNetmodel
to reveal cell type related TFs from scRNA-seq data, we compare it
with established single-cell regulatory network inference methods:
SCENIC (Single-cell regulatory network inference and clustering)
(Supplementary Figure S2A). The scRNA-seq data from mouse
cortex and hippocampus were used to evaluate these two methods
(Please refer to METHODS section for the details).

After MultiCapsNet training, the average coupling coefficients
in the overall heatmap would indicate the most relevant TFs
associated with each cell type (Supplementary Figure S5). We
repeated the experiment 9 times, the average validation accuracy
was 97%, and the average F1 score was around 95%, which were
comparable to the results generated by feed forward neural
network, Multi-head Attention model and random forest
(Supplementary Figures S4C, D). According to the average
value of nine overall heatmaps, the top 30 relevant TFs could
be generated (Figure 6A left; Supplementary Table S3 top). The
original regulon may contain TFs that label the 253 regulons. In
order to eliminate the influence caused by the expression of those
labeling TF, the potential TF-target relationships that exclude the
labeling TF in the set of target genes are alsomade (Supplementary
Figure S2B). We also repeated the training process of
MultiCapsNet that integrated with those new potential TF-
target relationships. After training, the top 30 relevant TFs
could also be generated according to the average value of the
nine overall heatmaps (Figure 6A right; Supplementary Table S3
bottom). The results show that the inclusion or exclusion of
labeling TF has little influence on prediction accuracy and
interpretability of the model. The overlap rates of top 30 most
relevant TF of each cell type (around top 10% of total TFs)
between model including labeling TF and that excluding
labeling TF are very high, around 90% for every cell type
(Figure 6B).

Many high score TFs predicted by MultiCapsNet are
consistent with that reported by SCENIC (Aibar et al., 2017).
For example, in both methods, Rorb is identified as a relevant TF
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for astrocytes; Ets1, Elk3, and Gata2 are identified as relevant TFs
for endothelial-mural cells; Zmat4, Dlx5, Dlx2, and Dlx1 are
identified as relevant TFs for interneurons; Maf, Rel, Cebpa,
Cebpb, Nfatc2, Prdm1, Nfkb1, and Stat6 are identified as
relevant TFs for microglia; Sox10 and Sox8 are identified as

relevant TFs for oligodendrocytes. Besides the TFs listed
above, MultiCapsNet also detected several high confidence cell
type relevant TFs that are also found by SCENIC. For example,
Rfx3 shows a high association with both pyramidal SS and CA1
cells. Previous studies reported that downstream target of Rfx3

FIGURE 5 |MultiCapsNet integrated with prior knowledge could identify cell type associated transcription factor. (A) heatmaps of the matrices of average coupling
coefficients for each cell type. In each heatmap, there are 696 columns for 696 primary capsules (TF/PPI) and seven row for seven type capsules (cell types), and each
element in the average coupling coefficients is represented by a thin line. The brightness of these thin lines (elements in the average coupling coefficients) indicate the
contribution of the primary capsules (TF/PPI) to the specific cell type recognition. The dark lines (high score elements in average coupling coefficients) exclusively
reside in the corresponding effective type capsule row in each heatmap. (B) Overall heatmap of the combined matrix of average coupling coefficients. The combined
matrix contains the effective type capsule rows in Figure 5A where its recognition type is in accordance with the type of single cells input. (C) The table list several top
ranked contributors for specific cell type recognition, given by the MuiltCapsNet model, are associated with corresponding cell types which have been reported before.
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displayed cytosolic expression in pyramidal neurons
(Remnestål, 2015) and Rfx3 expresses in cortical pyramidal
neurons (Benadiba et al., 2012). Neurod2 is also identified as a
relevant TF for both pyramidal SS and CA1 cells. Previous
studies reported that Neurod2 coordinates synaptic
innervation and cell intrinsic properties to control
excitability of cortical pyramidal neurons (Chen et al.,
2016). Cux1 has been identified as a relevant TF for
pyramidal SS cells, and Cux1 has been reported as a
restricted molecular marker for the upper layer (II-IV)
pyramidal neurons in murine cerebral cortex (Li et al.,
2010). smarca4 has been identified as relevant TF for
pyramidal CA1 cells, and Brg1/smarca4 deficiency leads to
mouse pyramidal neuron degeneration (Deng et al., 2015).
Ezh2 has been suggested as a relevant TF for oligodendrocytes,
and the expression of Ezh2 in OPCs (oligodendrocytes
precursor cells), even up to the stage of pre-myelinating
immature oligodendrocytes, remains high (Copray et al.,
2009) (Figure 6C). Furthermore, the MultiCapsNet found
that Rpp25 is strongly associated with interneurons which

SCENIC did not, and Rpp25 has been reported up-regulated
in GABAergic interneuron (Fukumoto et al., 2018).

DISCUSSION

In the first example, we demonstrated that the proposed
MultiCapsNet model performed well in the variant call
classification. Data sources with different data types, such as one-
hot encoding vector and real valued vectors, could be standardized
into equal length vectors as primary capsules, and then pass the
information into final layer capsules by dynamic routing. The
importance of the data sources was measured by the sum of the
overall average coupling coefficients as the co-product of the model
training. These importance scores are highly correlated with the
importance scores calculated by feed forward neural network,
which are measured by average change in the AUC after
randomly shuffling individual features.

In the second example, we incorporated PPI and PDI information
into the structure of the MultiCapsNet model. This specified structure

FIGURE 6 | The comparison of MultiCapsNet and SCENIC shows the robustness and interpretability of MultiCapsNet. (A) Averaged overall heatmaps for mouse
cortex and hippocampus dataset show that MultiCapsNet perform consistently whether including(left) or excluding (right) the labelling TF from regulon. (B) The top
ranked contributors for specific cell type classification identified from dataset either including (left) or excluding (right) the labelling TF are highly overlapped. (C) The table
list several top ranked contributors for specific cell type recognition, given by both the MuiltCapsNet model and SCENIC.
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decomposed the input scRNA-seq data into several parts, each part
corresponding to a group of genes regulated by a TF or from a protein
interaction sub-network. Therefore, each part of the decomposition
inputwas regarded as a data source, and the associated primary capsule
could be marked as corresponding TF or PPI subnetwork. Although
the number of the primary capsules was one order of magnitude more
than that of previous CapsNet model, the model performed well, and
its classification accuracy was comparable with those generated by feed
forward neural network and random forest. After training, the
contributions of each primary capsule and its corresponding data
source to the cell type recognition were revealed by the MultiCapsNet
model as co-product of classification. The TF or the PPI subnetwork
that labeled the top ranked contributors were often relevant to the cell
type they contributed. The comparison of our MultiCapsNet model
with SCENIC showed several cell type relevant TFs identified by both
methods, which further proves the validity and interpretability of the
MultiCapsNet model.

To sum up, our MultiCapsNet model could integrate multiple
input sources and standardize the inputs, then use the standardized
information for classification through capsule network. In the
variant call classification example, the data types are limited to
one-hot encoding vectors or real valued vectors. With appropriate
dataset, the MultiCapsNet could integrate and standardize more
data types, such as sequence data, which can be integrated through
convolutional neural network. In addition, our MultiCapsNet
model could also incorporate the prior knowledge through
adjusting the connection between layers according to the
specification of the prior knowledge. In the example of scRNA-
seq, we include only PPI and PDI information. In the future, the
complex and hierarchical information of biological network will be
introduced into the MultiCapsNet model to better understand the
intricacies of disease biology (Camacho et al., 2018). Compared
with other interpretable machine learning methods, MultiCapsNet
could obtain similar classification accuracy under the condition of
modular inputs, making it more suitable for the modular
biological data.

MultiCapsNet model provides a framework for data integration,
especially for multi-omics datasets, which have data from different

sources and with different types and formats, or require prior
knowledge. Once the data could be transformed into real valued
vectors through trainable parameters, the data and transformation
process could be integrated into the MultiCapsNet model as a
building block. In this sense, the MultiCapsNet model possesses
enormous flexibility, and is applicable in many scenes, let alone that
it can measure the importance of data sources accompanying the
training step without any extra calculation step.
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