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trap formation
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Background: Aggressive periodontitis is associated with the presence of Aggregatibacter actinomycetemcomitans,

a leukotoxin (Ltx)-producing periodontal pathogen. Ltx has the ability to lyse white blood cells including

neutrophils.

Objectives: This study was aimed at investigating the interactions between neutrophils and Ltx with regard to

the chemotactic properties of Ltx and the release of neutrophil extracellular traps (NETs).

Methods: Neutrophils from healthy blood donors were isolated and incubated for 30 min and 3 h with

increasing concentrations of Ltx (1, 10, and 100 ng/mL) as well as with A. actinomycetemcomitans strains

(NCTC 9710 and HK 1651) producing different levels of Ltx. Formation of NETs and cell lysis were assessed

by microscopy, fluorescence-based assays, and measurement of released lactate dehydrogenase. Neutrophil

migration in response to different Ltx gradients was monitored by real-time video microscopy, and image

analysis was performed using ImageJ software.

Results: Although Ltx (10 and 100 ng/mL) and the leukotoxic A. actinomycetemcomitans strain HK 1651 lysed

some neutrophils, other cells were still capable of performing NETosis in a concentration-dependent manner.

Low doses of Ltx and the weakly leukotoxic strain NCTC 9710 did not lead to neutrophil lysis, but did induce

some NETosis. Furthermore, all three concentrations of Ltx enhanced random neutrophil movement;

however, low directional accuracy was observed compared with the positive control (fMLP).

Conclusions: The results indicate that Ltx acts both as a neutrophil activator and also causes cell death. In

addition, Ltx directly induces NETosis in neutrophils prior to cell lysis. In future studies, the underlying

pathways involved in Ltx-meditated neutrophil activation and NETosis need to be investigated further.
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A
ggressive periodontitis (AgP) is a severe, rapidly

progressing form of periodontitis, which frequently

causes alveolar bone and tooth loss in early adult-

hood (1). Aggregatibacter actinomycetemcomitans, a Gram-

negative facultative anaerobic rod, is known to play a pivotal

role in the development of this disease (2). Deep periodontal

pockets provide a suitable environment for strictly anaerobic

periodontal bacteria; however, A. actinomycetemcomitans is

a facultative anaerobic organism which produces a white

blood cell lysing agent called ‘leukotoxin’ (Ltx), which in

addition to forming pores in leukocytes also activates

neutrophil degranulation and a pro-inflammatory re-

sponse in macrophages (3, 4). A. actinomycetemcomitans

exhibits two leukotoxic phenotypes: a minimally leuko-

toxic (non-JP2 genotype) and a highly leukotoxic (JP2

genotype) (5, 6). However, it has been shown that a

subgroup of serotype b of the non-JP2 genotype also is

highly leukotoxic (7). DNA sequence analysis of the Ltx

promoter regions from these two clones revealed that the

minimally leukotoxic genotype harbours a full-length
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promoter region, while the highly leukotoxic JP2 genotype

is characterised by missing a 530 bp sequence of the Ltx

promoter region (8). A higher prevalence of JP2 carriers

with clinically evident AgP has been found in some

countries, particularly in North- and West-Africa (9).

A. actinomycetemcomitans actively transports Ltx from

the cell, and Ltx has been detected in outer membrane-like

vesicles (10) as well as attached to their cell surfaces (11).

The toxin also features amphipathic helices at the N-

terminus which interact with host cell membranes (12).

In 1997, Lally et al. (13) identified leukocyte function

antigen-1 (LFA-1) as the cellular receptor for Ltx, which is

expressed on neutrophilic polymorphonuclear leukocytes

(neutrophils). Neutrophils, the most abundant white blood

cells, present in the oral cavity are first-line defenders and

their number in oral tissues increases during inflammation

(14). They reach the periodontal tissues by migrating to-

wards the highest concentration of a chemical compound,

for example, bacteria-derived N-formyl-met-leu-phe

(fMLP), a process known as chemotaxis. Neutrophil

dysfunction has been associated with chronic as well as

aggressive forms of periodontitis (15, 16); however, the

underlying mechanisms remain elusive. We hypothesise

that local neutrophil-mediated periodontal tissue damage

may be induced by A. actinomycetemcomitans Ltx.

A recently discovered innate defence strategy of neu-

trophils is the release of DNA to the extracellular

environment, where the web-like DNA threads trap and

kill microorganisms by means of DNA-bound antimi-

crobial proteins and peptides (17). These neutrophil

extracellular traps (NETs) are also known to arise in

periodontal tissues and purulent pockets, which are often

found in AgP (18�20). NETs represent a host defence

mechanism, but may also cause host tissue injury, as NET-

bound proteins and enzymes have the ability to damage

tissues and to further enhance inflammation (21). This

study was aimed at investigating the potential of Ltx to

activate neutrophils, induce migration, and elicit NET

formation in addition to triggering neutrophil lysis.

Methods

Recruitment of volunteers and experimental setup

Healthy blood donors were recruited from the Blood

Donation Center of the University Hospital Bonn as well

as from staff of the Birmingham Dental School and

Hospital. All study participants provided written informed

consent as approved by the ethics committee of the

University Hospital of Bonn and Birmingham (approval

numbers 336/13 and 14/SW/1148). Bacterial cultures, cell

isolation, and NET microscopy as well as lactate dehy-

drogenase (LDH) assays were performed in Bonn. Ltx

extraction was conducted in the Department of Odontol-

ogy at the Umeå University, and the chemotaxis assays and

fluorescence-based NET quantification were performed at

the Birmingham Dental School and Hospital.

Bacteria
The strains of A. actinomycetemcomitans employed in this

study were JP2 genotype serotype b strain HK 1651 and

low-leukotoxicity serotype c strain NCTC 9710 (non-JP2

genotype). The bacteria were maintained on tryptic soy

agar and grown in tryptic soy broth (Becton Dickinson,

Heidelberg, Germany) at 378C in a 5% CO2 atmosphere.

The leukotoxicity of the highly and minimally leukotoxic

strains HK 1651 and NCTC 9710 was determined as

described elsewhere (22). LDH release into the cell cul-

ture supernatants from phorbol-12-myristate-13-acetate

(PMA)-differentiated THP-1 cells was measured in res-

ponse to bacteria, with moieties of infection (MOIs)

ranging from 0 to 300.

Ltx extraction

Purified Ltx was obtained as described elsewhere (23). In

brief, HK 1651 was grown in sterile-filtered peptone yeast

extract glucose broth (3) at 378C in a 5% CO2 atmosphere.

The cells were harvested in the early stationary phase of

growth by centrifugation (10,000� g for 10 min). The cell

pellet was resuspended in 20 mM phosphate buffer and

incubated at 48C for 1 h under rocking to extract outer

membrane proteins other than Ltx. The cells were pelleted

by centrifugation (10,000� g for 20 min), resuspended in

phosphate buffer with 0.3 M NaCl, and incubated for 1 h

under rocking at 48C to extract the Ltx. The suspen-

sion was ultra-centrifuged (100,000� g for 60 min) and the

Ltx-containing supernatant separated by gel filtration.

The Ltx-fraction (300 mg/mL) was aliquoted and stored

at �808C.

Visualisation and quantification of NETs

NET microscopy and fluorescence-based NETosis assays

were conducted as described elsewhere (24, 25). In brief,

neutrophils were isolated by Ficoll/Histopaque gradient

centrifugation. Neutrophils were of high purity (90�95%)

and viability (�95%) as confirmed by H&E and trypan

blue staining. The cells were seeded onto 12-well adhesive

slides (5�103 per spot) for microscopy (Marienfeld,

Lauda-Königshofen, Germany) or into 96-well plates

for NET quantification assays (105 per well) and allowed

to attach for 30 min in serum-free RPMI. Next, bacteria

(MOI 1, 10, and 100) or Ltx (1, 10, and 100 ng/mL) as

well as a negative (RPMI) and a positive (100 ng/mL

PMA) controls were added to the neutrophils, and the

samples were incubated for 30 min or 3 h for microscopy

and for 3 h for NET quantification assays, respectively.

After the incubation period, the microscopy samples were

fixed and stained with propidium iodide and assessed

under a fluorescence microscope (Olympus IX 81). For

NET quantification, micrococcal nuclease (MNase,

Thermo Fisher, Rugby, UK) was pipetted into each well
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and, after an incubation time of 10 min, Sytox Green

nucleic acid fluorescent stain (Thermo Fisher, Rugby,

UK) was added. Measurements of fluorescence intensity

(arbitrary fluorescent units, AFU) were carried out in

triplicate using a fluorescence plate reader (Berthold

Twinkle LB 970, Harpenden, UK). All experiments

were carried out in serum-free RPMI at 378C in a 5%

CO2 atmosphere, as serum nucleases are known to

degrade NETs (26).

Measurement of LDH release

The assays were performed using 96-well plates, into which

107 neutrophils were seeded per well. Cells were allowed to

settle for 30 min, and the bacterial strains were added in

MOIs 1, 10, and 100. After an incubation time of 30 min,

the plates were centrifuged at 2,000� g for 5 min.

Supernatants were collected and directly assessed by

measurement of LDH release into the supernatants using

a commercially available kit (LDH-Cytotoxicity Assay Kit

II, Abcam, Cambridge, UK). The spectrophotometric

reading measurements (OD450) were calculated in percent

change compared with the negative controls (unstimulated

neutrophils). Samples containing bacteria only were

employed as additional negative controls.

Chemotaxis assay

In order to assess the ability of Ltx to recruit neutrophils, a

chemotaxis assay was performed under aerobic conditions

using the Insall chamber as described elsewhere (27, 28).

Briefly, isolated neutrophils were added to BSA-blocked

coverslips, which were then incubated at RT for 20 min to

allow the cells to adhere. The coverslip was inverted and

placed onto the chemotaxis chamber. Ltx (1, 10, and 100

ng/mL), fMLP (10 nM, Sigma Aldrich, Dorset, UK) as a

positive control, or RPMI medium as a negative control

was injected into the chemoattractant channels. The

chemoattractant fMLP was shown to strongly induce

directed neutrophil migration in our previous studies and

is therefore a suitable positive control. Cell movement was

analysed over a period of 20 min after a preincubation

phase with the chemotactic agent for 5 min, using a Zeiss

Primovert microscope (Carl Zeiss Imaging, Thornwood,

NY), and images were captured every 30 s for 40 frames

per condition using a Q Imaging Retiga 2000R camera

(Qimaging, Surrey, Canada). The images generated by

video microscopy were processed as described elsewhere

(27). Briefly, Q pro-imaging software (Surrey, Canada)

and ImageJ 1.45SR software (National Institutes of

Health, Bethesda, MD) and the manual tracking plug-in

(MtrackJ) were used for analysis of cell speed, cell velocity,

and chemotactic index (CI) per experiment with 15 cells

per each frame. Velocity is defined as avector quantity that

refers to the rate at which a cell changes its position in a

particular direction of movement, whereas the CI is the

total dislocation in the direction of the gradient, divided

by the total path length, that is, the directional angle or

accuracy of movement.

Statistical analysis

Two-sample two-tailed t-testing for unpaired data was

performed to calculate significant differences of the means

of two groups, assuming unequal variances (Welch’s t-test).

One-way ANOVA and Tukey’s multiple comparisons

testing were conducted for chemotactic assay data using

GraphPad PRISM software (La Jolla, CA). Statistical

significance was defined as p50.05.

Results

Ltx induces NET release

Fluorescence-based quantification showed that low con-

centrations of Ltx (1 ng/mL) did not cause significant

NETosis after 3 h, whereas a concentration of 10 ng/mL

Ltx led to NET formation comparable with the positive

control (PMA). High Ltx concentrations (100 ng/mL)

strongly induced NETosis, and the highly leukotoxic

strain HK1651 led to similar results as high concentra-

tions of Ltx when applied at an MOI of 100. The low

leukotoxic strain NCTC 9710 at an MOI of 100 caused

moderate NETosis with AFU measurements comparable

with the samples incubated with 10 ng/mL of Ltx. Both

strains applied at an MOI of 10 caused significantly less

NET formation compared with MOI 100 (Fig. 1a).

Ltx-mediated neutrophil lysis

Neutrophil lysis, as assessed by the release of LDH, was

visible after 30 min of incubation with Ltx or bacteria

(Fig. 1b). While 1 ng/mL of Ltx caused only minimal,

non-significant neutrophil lysis, higher Ltx concentra-

tions (10 and 100 ng/mL) as well as the highly leukotoxic

strain HK1651 at an MOI of 100 led to significant

releases of LDH. Strain NCTC 9710 did not cause any

notable lysis after 30 min.

Ltx-dependent neutrophil swelling

The findings regarding NETosis and lysis could be

visualised and confirmed by means of microscopy

(Fig. 1c): an increase in cell size of nearly all neutrophils

could already be observed after 30 min in the samples

containing higher concentrations (10 and 100 ng/mL) of

Ltx and in the HK 1651 (MOI 100) sample. This cell

enlargement indicates osmotic swelling subsequently to

pore formation evoked by Ltx. The fact that NETs were

seen after 3 h of incubation further suggests that cyto-

plasmic swelling is a slow process that allows neutrophils

to perform NETosis and leads to cell death later on,

causing a detachment of neutrophils from the surface,

which was seen after 3 h in samples with higher Ltx

concentrations. Ltx at 1 ng/mL and strain HK 1651 at an

MOI of 10 caused visible cell enlargement of some, but

not all cells after 30 min, whereas an increased amount of
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swollen cells could be seen after 3 h in these samples. The

low leukotoxic strain NCTC 9710 only caused a slight

increase in cell size at an MOI of 100 and after 3 h.

Ltx enhances neutrophil movement

The chemotaxis assay revealed an enhanced random

speed of movement of neutrophils induced by Ltx at 1,

10, and 100 ng/mL (Fig. 2a�e). After 5 min of preincuba-

tion, neutrophils started to crawl, however, with very low

directional accuracy and velocity compared with the

fMLP positive control, indicating that while Ltx activated

neutrophil movement, the lack of directionality of move-

ment indicated that it does not act as a chemoattractant.

Even at very low concentrations of Ltx (1 ng/mL), the cells

migrated with a significantly high speed compared with

the negative controls, however, with a significantly lower

velocity compared with positive controls, and there-

fore exhibited a low CI (Fig. 3a�c). Notably, neutrophil

speed was decreased at higher Ltx concentrations (10 and

100 ng/mL), and cell swelling was observed during the

imaging procedure of 20 min (data not shown), indicating

pore formation and initiation of cell death by Ltx.

Discussion
A. actinomycetemcomitans is a pathogenic facultative

anaerobic bacterium frequently found in patients with
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Fig. 1. Ltx effects on NET formation and neutrophil lysis. (a) NET quantification after 3 h of incubation as assessed by fluorescent

96-well plate-based assays. AFU�arbitrary fluorescent units. ***p=0.001, **p50.01, *p�0.02, asterisks indicate significant

differences to the negative control. (b) Release of lactate dehydrogenase (LDH) from neutrophils as an indicator of cell lysis after

30 min of incubation. **p50.01, *p�0.05, asterisks indicate significant differences in comparison to the negative control. All

experiments were conducted in triplicate and using three different donors, and Welch’s t-test was applied to calculate significant

differences. (c) Fluorescence microscope images of neutrophils after exposure to either controls [RPMI, PMA (100 ng/mL)], Ltx

(1, 10, and 100 ng/mL), or A. actinomycetemcomitans strains (MOI 10 and 100) for 30 min and 3 h (magnification 10�). Arrows

indicate NETs, and white arrowheads indicate swollen cells versus normal cells (blue arrowheads). Swollen cells suggest Ltx-

mediated cell injury with osmotic influx of water. An increased rate of cell detachment can be seen in samples with higher Ltx

concentrations and with HK 1651 in an MOI of 100 after 3 h, indicating cell death.
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AgP, a destructive inflammation that is thought to be

associated with impaired neutrophil function. In this study,

we demonstrate that Ltx acts as a neutrophil activator and

NET inducer. Although Ltx is strongly leukotoxic, some

neutrophils were still capable of eliciting anti-bacterial

immune responses in the form of NETosis against A.

actinomycetemcomitans producing high amounts of Ltx.

Our results confirm those by Aulik et al. (29) and support

the generally accepted finding that only approximately

30% of neutrophils will enter NETosis when stimulated

Fig. 2. Neutrophil migration induced by Ltx (1, 10, and

100 ng/mL). (a�e) Neutrophil motion is depicted in spider

diagrams, where each line represents a cell. Grey arrows

denote the origin of the putative chemotactic agent, and cells

should be migrating towards this arrow (migration rate in mm/

min). All diagrams are represented at the same scale to aid

comparison. Chemotactic assays were conducted in three

independent experiments using three different blood donors,

and 15 cells per donor were tracked.
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Fig. 3. Measures of neutrophil motion. (a) Speed and (b)

velocity, respectively (in mm/min), of neutrophils in response

to each agent. Asterisks indicate significant differences in

comparison to the negative control and hashes represent

significant differences in comparison to the positive control;

**p�0.01, ***p50.001, #p50.05, ###p50.001. (c) The

chemotactic index, which is the total shift in the direction of

the gradient, divided by the total path length. Asterisks

indicate significant differences in comparison to the negative

control, and hashes represent significant differences in

comparison to the positive control; ***p50.001,

**p �0.006, ###p50.001.
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(20). Moreover, we show for the first time that Ltx

induces a non-directional neutrophil migration, which

may be associated with increased tissue transit times of

neutrophils in vivo (27).

NET-associated DNA has a distinct appearance as

strands or web-like morphologies, whereas DNA secreted

during apoptosis as a consequence of lysis (30) is

fragmented and does not present as a visible structure.

Therefore, our microscopy images provide evidence that

NETs form, alongside with lysis. Moreover, NETosis is an

active process that takes several hours to develop (31),

whereas cell lysis occurs within the first 30 min (29). The

fact that most NET structures were seen after 3 h of

incubation and that fluorescence-based measurements of

extracellular DNA only reached distinct differences after

3 h indicates that NETosis took place and that lysis-

associated extracellular DNA was not detectable. This

may be due to early DNA fragmentation and degrada-

tion, which apoptosis is characterised by (32). Moreover,

these findings suggest that cytoplasmic swelling and lysis

are slow processes that allow neutrophils to perform

NETosis and do not lead to cell death immediately. This

supports previous findings by Johansson et al. (33), who

demonstrated that neutrophil degranulation is an active

process taking place independently of and before Ltx-

mediated lysis.

The fact that Ltx caused remarkable NETrelease suggests

that CD11/CD18 (LFA-1), a binding site for Ltx on

neutrophil surfaces, is involved in a downstream signalling

cascade that may also involve the generation of reactive

oxygen species (ROS), since ROS formation is necessary for

NET release (34). LFA-1-dependent NET release and LFA-

1-associated ROS release were demonstrated in previous

studies (35, 36). Importantly, we have formerly demon-

strated that LFA-1 is responsible for Ltx-mediated neu-

trophil lysis (33). Moreover, LFA-1 is strongly involved in

neutrophil migration and chemotaxis (37). Whether the

LFA-1 pathway is responsible for Ltx-triggered NETosis

requires to be further elucidated in future studies employ-

ing LFA-1 antagonists. As expected, the release of LDH

occurred in an Ltx-concentration-dependent manner,

corroborating previous findings from our group and

providing evidence for Ltx-induced neutrophil lysis (33).

Enhanced inflammation, as found in untreated AgP,

could be the result of increased neutrophil recruitment to

sites of bacterial overgrowth. It has been reported that A.

actinomycetemcomitans induces gingival epithelial cells to

rapidly release the neutrophil chemoattractant inter-

leukin 8 (38). The chemotactic properties of Ltx reported

in a study by Totani et al. (39) could be only partially

confirmed by our results, where Ltx induced strong

neutrophil movement, indicating neutrophil activation,

but without detectable directionality. However, the Ltx

used in their experiments had not been isolated from A.

actinomycetemcomitans. We here observed that even at

very low concentrations (1 ng/mL), the cells migrated

significantly. At higher Ltx concentrations (10 and 100 ng/

mL), the cells increased in size and moved at a reduced

speed compared with 1 ng/mL, indicating that Ltx-

mediated osmotic swelling and therefore reduced function-

ality may have occurred within the incubation time

employed. Further studies are needed to extend our

understanding of the exact mechanism, by which Ltx

induces this non-directional movement in neutrophils. In

vivo, it seems plausible that many neutrophils become lysed

even before reaching the site of A. actinomycetemcomitans

colonisation within periodontal pockets, as the Ltx mole-

cule was found to penetrate periodontal tissues (40).

This study was aimed at investigating bacterial factors

influencing neutrophil behaviour under exclusion of host

factors; therefore, neutrophils from healthy donors were

used. Van Dyke et al. (41) showed that neutrophils of

patients with AgP featured a different chemotactic beha-

viour in comparison with healthy subjects, strongly sug-

gesting the neutrophil phenotype as a host-derived influ-

ence factor for the disease. It is not known, however, what

leads to these differential phenotypes. It is possible that

neutrophil dysfunction such as impaired chemotaxis may

be due to very low levels of systemically circulating Ltx,

priming and disturbing these cells. This is also supported

by the findings of Kumar and Prakash (42), who demon-

strated a beneficial effect of periodontal treatment, which

lowers the bacterial burden, on neutrophil chemotaxis.

Previous studies have confirmed a systemic Ltx burden in

A. actinomycetemcomitans-infected individuals, accompa-

nied by anti-Ltx serum antibodies (43, 44). The differences

in the neutrophil function between individuals with and

without AgP could also be due to a variability in anti-Ltx

antibody production and clonality. These antibodies can

inactivate Ltx (45), but interindividual differences have not

been investigated yet. Moreover, it is likely that other host

factors, such as serum components, play a role in enhan-

cing Ltx systemically and, thus, modify the virulence of

this toxin (46, 47). Evidence from the literature exists

that carriers of the highly leukotoxic JP2 clone of A.

actinomycetemcomitans have a significantly increased risk

of attachment loss in the context of AgP, suggesting that

Ltx may play a key role in this inflammatory tissue

destruction (48).

Elevated levels of Ltx, as found in the periodontium of

affected patients, may finally activate and lyse neutrophils

present in the periodontal tissues. Unfavourably, neutro-

phils release cytotoxic agents into their environment upon

membrane damage as well as upon NETosis. Moreover,

remnants of dead cells attract further neutrophils and

macrophages in order to effect neutrophil efferocytosis.

As these newly recruited leukocytes become subject to

lysis (3), this may lead to a vicious pro-inflammatory

cycle within the periodontal tissues. Further studies are

warranted to investigate the ability of Ltx to prime and
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activate neutrophils at different concentrations locally

and systemically as well as to assess the types and

concentrations of systemically circulating anti-Ltx

antibodies in patients carrying highly leukotoxic A.

actinomycetemcomitans strains.

Our observations suggest an altered functional neutro-

phil behaviour in patients challenged with highly leuko-

toxic A. actinomycetemcomitans, in which neutrophils exert

a timely reduced arsenal of defence modalities but show

pronounced NET formation alongside cell death. Our

finding that some neutrophils were capable of performing

NETosis although exhibiting osmotic swelling requires

further attention in future research, but has in part been

investigated by Ting-Beall et al. (49), who reported that

neutrophils can tolerate a certain range of osmolalities

and regulate their volume in response to osmotic stress.

Importantly, it is known that NETosis occurs only under

conditions where oxygen is present and that the enzyme

NADPH-oxidase, which requires oxygen to form ROS, is

required for NET formation (34, 50). Therefore, it can be

concluded that in an oxygenated setting, some neutrophils

mount ROS-mediated defences to A. actinomycetemco-

mitans, while others are lysed by Ltx.

The findings presented here further indicate that highly

leukotoxic strains of A. actinomycetemcomitans are likely

to cause an imbalance of neutrophil-mediated defences,

whereas strains with a lower leukotoxic profile may lead to

an enhanced inflammatory response without causing

excessive neutrophil lysis. The susceptibility of neutrophils

to highly leukotoxic A. actinomycetemcomitans, becoming

lysed within minutes before reaching the site of bacterial

accumulation, may well be a contributing factor in the

progression of AgP. However, a comprehensive study

comparing the reactivity of neutrophils from healthy and

AgP-affected individuals towards the Ltx stimulus is

needed to further understand the importance of Ltx in

dysbalancing neutrophil responses.
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