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Abstract: The convolutional neural network (CNN) has become a powerful tool in machine learning
(ML) that is used to solve complex problems such as image recognition, natural language processing,
and video analysis. Notably, the idea of exploring convolutional neural network architecture has
gained substantial attention as well as popularity. This study focuses on the intrinsic various CNN
architectures: LeNet, AlexNet, VGG16, ResNet-50, and Inception-V1, which have been scrutinized and
compared with each other for the detection of lung cancer using publicly available LUNA16 datasets.
Furthermore, multiple performance optimizers: root mean square propagation (RMSProp), adaptive
moment estimation (Adam), and stochastic gradient descent (SGD), were applied for this comparative
study. The performances of the three CNN architectures were measured for accuracy, specificity,
sensitivity, positive predictive value, false omission rate, negative predictive value, and F1 score.
The experimental results showed that the CNN AlexNet architecture with the SGD optimizer achieved
the highest validation accuracy for CT lung cancer with an accuracy of 97.42%, misclassification rate
of 2.58%, 97.58% sensitivity, 97.25% specificity, 97.58% positive predictive value, 97.25% negative
predictive value, false omission rate of 2.75%, and F1 score of 97.58%. AlexNet with the SGD optimizer
was the best and outperformed compared to the other state-of-the-art CNN architectures.

Keywords: LeNet; AlexNet; deep learning; LUNA16; machine learning; artificial intelligence; cancer
research; lung cancer; medical image analysis; big data

1. Introduction

Artificial intelligence (AI) has proven to be a significant success in every field of life [1].
Artificial intelligence is the mimic of human intelligence used by computer programs.
It has a subset named the machine learning (ML) technique that helps to train algorithms
in making decisions [2]. Currently, deep learning technology has become a promising
approach for clinical detection systems [3]. A deep learning computer-aided diagnosis
system has been used to analyze medical images, which has proven to be a remarkable ad-
vancement in various medical applications [4]. Deep learning algorithms have the potential
to solve real-world complex problems, especially in image analysis and computer vision [5].
Convolutional neural network (CNN) is a deep learning technique used in image and
text recognition [6]. CNN has proven to have remarkable performance in understanding
image segmentation, image classification problems, and detection [7]. Medical imaging
is a core standard for the early diagnosis, detection, and treatment of several diseases.
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Medical images are kept in Digital Imaging and Communications in Medicine (DICOM)
format, which can be quickly accessed for quantitative and qualitative analysis [8].

Medical imaging modalities comprise multidisciplinary techniques to attain an ac-
curate diagnosis of various diseases. There are various medical image modalities such
as computed tomography, X-ray angiography, mammography, digital radiography, radio
fluoroscopy, and computed radiography that are used to analyze image processing [9].
Computed tomography (CT) images are an easier and more accurate method for the correct
detection of various diseases [10]. However, it is tedious for medical experts to manually
analyze CT scans without any error [11]. In the last few years, a low-dose CT scan has been
used to screen for lung cancer diseases that has led to a decrease in the mortality rate of
lung cancer [12].

The authors of [13] presented a framework based on deep learning to detect lung can-
cer and pneumonia abnormalities. The deep learning technique, named Modified AlexNet
(MAN), was presented to detect two classes, normal and pneumonia class, by using X-ray
images. The MAN technique was applied to classify lung cancer by using a support vector
machine (SVM) model. The MAN method performance was evaluated with other deep
learning approaches such as ResNet50, VGG19, VGG16, and AlexNet and achieved 97.27%
accuracy by using the LIDC-IDRI dataset. Another study [14] presented a network based on
a deep convolutional neural network, named AlexNet. The network consisted of an eight-
layer two-architecture deep CNN to classify malignant and benign nodules. The network
extracted the features automatically from CT scan images. Binary cross-entropy was ap-
plied to improve precision in the training phase as well as validation accuracy. The lung
nodule classification model achieved 99% training precision and 97% validation accuracy.
Similarly, the authors of [15] introduced a lung cancer detection method based on a deep
learning algorithm using the segmentation method. Five-fold cross-validation was applied
to train and validate the deep learning-based model. In another study, the authors of [16]
presented a CAD system for pulmonary pure ground-glass nodules based on the convolu-
tional neural network. In line with the above, various research works have been presented
where diverse optimization algorithms have been applied to achieve an improvement in
performance for the detection of lung cancer diseases. In this research work, we have
investigated and explored an optimization algorithm based on a convolutional neural
network to detect lung cancer. Furthermore, this work exploited the optimizers RMSprop,
Adam, and SGD as well as their implementation with CNN architectures.

The remaining part of the paper has been organized as follows: Section 2 discusses
prior works published in recent years. Section 3 introduces the materials and methods
based on CNN, and Section 4 demonstrates the experimental results. Section 5 discusses
the present, and finally, limitations and future works are discussed in Section 6.

2. Related Work

Convolutional neural networks have been implemented to solve various visual prob-
lems since the late 1980s. LeCun et al. used a first-time backpropagation algorithm in
multilayered CNN, namely ConvNet, to recognize handwritten zip codes in 1989 [14].
Khehrah et al. presented a pulmonary nodule detection system using shape-based and
statistical features in CT images [17]. Another study [18] introduced lung nodule detection
based on an artificial neural network using texture and shape features. The model achieved
an accuracy of 89.62%. Similarly, the authors of [19] proposed a lung cancer detection
model based on ANN that achieved 96.67% accuracy. Miah et al. [20] presented a lung
cancer detection system using a neural network from CT images that obtained 96.67%
accuracy. LeCun et al. [21] suggested another advanced version of ConvNet called LeNet-5
to classify characters in a document in 1998.

In [22], the researchers applied the LeNet-5 model to classify benign and malignant
pulmonary nodules in thoracic CT images. Lung Image Database Consortium and Image
Database Resource Initiative (LIDC-IDRI) datasets were obtained for the experimental
results. The 10-folder cross-validation was implemented to evaluate the model classi-
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fication. The LeNet-5 achieved 97.041% accuracy in classifying benign and malignant
nodules and 96.685% accuracy in classifying mild malignancies and serious malignancies.
Another study [23] presented a hybrid version of a convolutional neural network for the
classification of pulmonary nodules based on LeNet and AlexNet. The hybrid framework
used LeNet’s layers and parameters of AlexNet. A total number of 1018 CT images was
obtained from the LIDC-IDRI dataset to train and evaluate the agile convolutional neural
network. Various parameters such as kernel size, batch size, learning rate, and weight
initialization played an important role in achieving high accuracy. The framework achieved
0.822 accuracy and 0.877 area under the curve, with the kernel size set to 7 × 7, the batch
size at 32, and the learning rate at 0.005. Gaussian and dropout were also applied in
this work.

Krizhevsky et al. [24], introduced the first deep convolutional neural network named
AlexNet in 2012. AlexNet outperformed in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC)-2012 and proved to be a pervasive breakthrough in the performance
of CNN.

Agarwal et al. [25] investigated a framework to detect and classify lung cancer based
on AlexNet CNN. In the first step, the green channel extracted was from the original color
CT image. Multilevel thresholding was used to extract lung regions. The morphological
and thresholding segmentation methods were applied to separate non-affected and affected
regions. After segmentation of the tumor regions, AlexNet-CNN was classified into benign
and malignant with 96% accuracy.

In [26], the researchers recommended two architectures named straight 3D-CNN
and hybrid 3D-CNN for the classification of pulmonary nodules. The features extraction
method was the same in both models, but the classifiers differed. The model 3D-CNN
used a softmax classifier to classify the pulmonary CT images, and the hybrid 3D-CNN
used the radial basis function (RBF)-based support vector machine (SVM) classifier for
classification purposes. The experimental results indicated that the hybrid 3D-CNN and
straight 3D-CNN models achieved better accuracy. Nevertheless, the approach obtained an
accuracy of 91.8%, specificity of 94.23%, sensitivity of 88.53%, and precision of 91.9% as
compared to the 3D-CNN model with a softmax classifier.

Rao et al. [27] exploited the classification of lung tumors by using convolutional neural
networks. The suggested CanNet approach consisted of two convolution layers, a pooling
layer, a dropout layer, and a final fully connected layer. Lung Image Database Consortium
(LIDC) was used to train and evaluate an artificial neural network, LeNet, and CanNet
networks. The dataset comprised 1018 patients’ CT scan data, and each CT scan consisted of
almost 150 to 550 DICOM images. Artificial neural networks, LeNet, and CanNet achieved
accuracies of 72.50%, 56.0%, and 76.00%, respectively. The CanNet model outperformed
compared to the ANN and LeNet networks.

Lin et al. [28] presented a lung nodule classification model comprising a Taguchi-based
convolutional neural network. Useful information obtained with fewer experiments is the
most significant advantage of the Taguchi technique. A total number of 245,931 images
including CT scans and X-ray images were obtained to evaluate the performance of the
AlexNet model. The experimental results demonstrated that AlexNet with the Taguchi-
based model used less training time as compared to other approaches.

The authors of [29] introduced a computer-aided scheme based on a convolutional
neural network with AlexNet architecture to diagnose and classify lung cancer. The lung
cancer CT scan dataset was collected from Iraqi Hospitals that were used to train and test
the system. For training purposes, 70% was used to train and 30% was used for testing.
The dataset was classified into three categories: normal, benign, and malignant, and con-
sisted of 110 CT scans. The system achieved 93.548% accuracy, 97.102% precision, 95%
specificity, 95.714% sensitivity, and 96.403% F1 score. The authors of [30] investigated the
effects of Visual Geometry Group 16 (VGG16) and Visual Geometry Group 19 (VGG19)
on ImageNet Challenge 2014. VGG16 and VGG19 consisted of 16 and 19 weight layers,
respectively. The input size comprised 224 × 224 RGB images, and a convolutional filter
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size of 3 × 3 was used in both networks, providing significant improvements in the image
recognition process. The experimental results exploited that the depth representation is ben-
eficial to classifying problems and increased state-of-the-art accuracy. Both networks were
also tested on other datasets and achieved high accuracy as compared to other techniques.

Another study [31] introduced a technique to detect early lung cancer by using a
deep learning genetic algorithm. In the preprocessing method, three techniques were
applied: the histogram stretching technique was used to enhance the contrast of the raw
image; the Wiener filter was used to remove noise; the image was cropped into 224 × 224
for VGG16 and 227 × 227 for VGG19 for the AlexNet architecture. Low-dose computed
tomography (LDCT) images were used, and three CNN architectures, VGG16, VGG19,
and AlexNet, were applied to extract features. A genetic algorithm was applied to select
the most relevant features. Finally, K-nearest neighbor (KNN), decision tree, and SVM
classifiers were investigated to classify pulmonary lung nodules. The experimental results
indicated that VGG19 with a support vector machine classifier obtained a remarkable 96.3%
accuracy, sensitivity of 97.5%, and specificity of 95% as compared to other CNN models
and classifiers.

The authors of [32] presented an accurate lung segmentation technique based on VGG-
16 and dilated convolution network. Dilated convolution used a dilation rate parameter
and indicated an expansion of the size of the respective field. The hypercolumn features
technique was used to fuse multi-scale convolution features to enhance the robustness
of the lung segmentation technique. The modified VGG16 was used, followed by the
multilayer perceptron (MLP) and ReLU activation function. The method achieved a dice
similarity coefficient of 0.9867.

Another study based on VGG16 [33] introduced VGG16 with a boosting technique
for the identification of the pathological types of lung cancer. The dataset consisted of
125 patients with early-stage lung cancer and was enhanced by using reproducing, shifting,
and revolving operations. VGG16-T comprised five convolution layers with a kernel
size of 3 × 3. It was found that the boosting strategy enhanced the accuracy, and three
weak classifiers can be adequate enough to make a strong classifier. Finally, the softmax
function was applied to identify the pathological type of lung cancer by using CT images.
The experimental results of VGG16-T with boosting achieved 85% accuracy, which was
better than the other techniques, ResNet-34, DenseNet, and AlexNet.

Similarly, the authors of [34] presented a lung cancer detection system by using a trans-
fer learning technique. The suggested method reduced the processing time by using a maxi-
mum dropout ratio, and it decreased overfitting in the learning phase. GoogleNet, AlexNet,
and ResNet50 transfer learning convolutional neural network architectures were applied
to detect lung cancer. LIDC, a publicly available dataset, was used to train and test the
pre-trained model as well as the suggested model and achieved high accuracy as compared
to pre-trained methods.

Another study [35] based on ResNet architecture presented a method for pulmonary
nodule classification. The proposed model was based on 18 layers of ResNet and achieved
89.90% accuracy using LIDC-IDRI. In [36], an inception module CNN classifier achieved
88.67% validation accuracy for the detection of pulmonary nodules on the AIA-INF publicly
available dataset. Similarly, in [37], the Darknet-53 CNN-based architecture was applied
for pulmonary nodule detection and achieved 70.5% to 73.9% accuracy on the LUNA16
dataset. Many other studies covered other cancer types such as thyroid, breast, skin, colon,
and blood cancers. In [38], the Xception neural network was applied to thyroid cancer
for the early detection of malignant nodules. The framework adopted three-level multi-
channel and real-world datasets, which were used to evaluate the proposed approach.
Another cancer type, colon carcinoma [39], was adopted to be used in a convolutional
neural network for classification task. A study [40] conducted on the early detection
of breast cancer was based on fused and deep learning approaches; similarly, another
study [41], empowered with a deep learning technique, exploited breast cancer and its
stages, such as mucinous carcinoma, papillary carcinoma, ductal carcinoma, and lobular
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carcinoma. A comprehensive study [42] was investigated for the automatic detection of skin
lesions based on various CNN architectures. Similarly, another framework [43] based on an
optimal CNN exploited the automatic detection of skin cancer. The proposed framework
comprised an advanced version of the whale optimization algorithm, and the results were
analyzed with 10 different techniques.

A summary of previous related work is mentioned in Table 1. The limitations of
previous studies are mentioned, such as deep knowledge [17–20], which is required to
obtain handcrafted features. The studies [25,29,31] were based on lesser amounts of images
and on imbalanced datasets. The research works [22,23,26] focused on hybrid techniques
that created complexity of the model, while different architectures were used in some
research works [35–37] to improve accuracy.

Table 1. Literature survey on computational intelligence-based lung cancer detection methods.

Publications Method Dataset Accuracy% Weakness

Khehrah et al. [17] ANN LIDC-IDRI 92.0% Requires
handcrafted features

Xie et al. [18] ANN LIDC-IDRI 89.62% Requires
handcrafted features

Naseer et al. [19] ANN Private Lung Dataset 96.67% Requires
handcrafted features

[20] ANN Private Lung Dataset 96.67% Requires
handcrafted features

S. Zhang et al. [22] LeNet-5
10 fold Cross-Validation LIDC-IDRI 97.04% Complexity required

Zhao et al. [23] hybrid CNN of LeNet and
AlexNet is LIDC-IDRI 87.7% Complexity required

Agarwal et al. [25] AlexNet CNN Private Lung Dataset 96.0% Less number images

Polat et al. [26] Hybrid 3D-CNN RBF-based
LUNA16

Lungs Data
Science Bowl

91.81% Complexity required

Al-Yasriy et al. [29] AlexNet CNN (IQ-OTH/NCCD) lung
cancer dataset 93.548% Use of

imbalance dataset

A. Elnakib et al. [31] VGG19 architecture and
SVM classifier

Early Lung Cancer
Action Project

(ELCAP) database
96.25% Less number images

Nibali et al. [35] ResNet-18 architecture LIDC-IDRI 89.90% Needs to
improve accuracy

Zheng et al. [36] Inception CNN classifier AIA-INF 88.67% Needs to
improve accuracy

Haibo et al. [27] DarkNet-53 CNN architecture LUNA16 73.9% Needs to
improve accuracy

The following are this work’s key contributions:

(a) The main contribution of this study is to provide a performance-oriented analysis by
combining deep learning algorithms with different optimizers for the classification of
lung cancer.

(b) We have implemented CNN architectures with Adam, SGD, and RMSprop optimizers
on the LUNA16 publicly available dataset.

(c) It was observed that the AlexNet architecture with the SGD optimizer achieved the
best results on the LUNA16 dataset.

(d) Finally, AlexNet with the SGD optimizer approach achieved the highest accuracy as
compared with other existing techniques for lung cancer classification.
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3. Materials and Methods

Lung cancer has become the main reason for cancer deaths all over the world, as
its symptoms appear late. Consequently, a significant detection system is required to
detect lung cancer in patients at its early stages. In this study, the existing algorithms
LeNet, AlexNet, VGG16, ResNet-50, and Inception-V1, with the Adam, SGD, and RMSprop
optimizers were applied to classify lung cancer, and an example is shown in Figure 1.
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The overall procedure adopted to apply convolutional neural network architectures
is demonstrated in Figure 1. In the first step, the LUng Nodule Analysis 2016 (LUNA-
16) dataset obtains from the publicly available lung cancer nodules [44]. The LIDC-IDRI
database is publicly available from The Cancer Imaging Archive (TCIA). This database
contains a total number of 1018 CT scans. CT scan images are associated with XML files
annotated by four experienced radiologists. Thin-slice CT scans play a significant role in
the detection of pulmonary nodules; therefore, the authors of [45] discarded slices that
were greater than 3 mm thick, missing slices, and those with inconsistent slice spacing.
A total number of 888 scans provided as MetaImage (.mhd) images are accessible from
the LUNA-16 website. Two methods are applied on LUNA16 for training and validation
purposes. In the first method, a dataset is randomly split into 80% and 20%, and the second
method is based on 5-fold cross-validation. After splitting and 5-fold cross-validation, the
dataset is forwarded to the CNN architectures to extract the features.

CNNs have various parameters and hyperparameters such as neurons, number of layers,
weights, biases, stride, filter size, activation function, learning rate, etc. Convolution operation
plays a significant role in image feature extraction [46]. Two types of filters, large size
filters and small size filters, are used to extract various information. Large-sized filters
are used to extract coarse-grained information, and small-sized filters are used to extract
fine-grained information.

LeNet was developed by LeCun in 1998 for zip code recognition. In LeNet, a convolve
filter size of 5 × 5 with a stride of 1 was used, and in the subsampling (pooling) layer, a
filter size of 2 × 2 was applied with a stride of 2. AlexNet was the first CNN-based method
that won the ImageNet Scale Visual Recognition Challenge in 2012. AlexNet comprises
5 convolutions, 3 pooling, and 3 fully connected (FC) layers. The input image size was
227 × 227 × 3, and the rectified linear unit (ReLU) was applied for the first time in AlexNet.
The visual geometric group (VGG) has two versions: VGG16 with 16 layers and VGG19
with 19 layers. In VGG16 and VGG19, the number of layers increases, but the size of
the filters decreases. In this study, we applied LeNet, AlexNet, VGG16, ResNet-50, and
Inception-V1 to classify lung cancer on the LUNA16 dataset.

Optimizers are methods or algorithms applied to minimize a loss function and to
maximize the efficiency of the model. Optimizers are mathematical functions that are based
on the model’s learnable parameters, and they assist to reduce the losses with updated
learning rates and weights of the neural network. The learning rate (LR) is known as a
tuning parameter that works in an optimization algorithm. LR determines the step size in
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an optimization algorithm at each iteration when moving toward finding a minimum of
the loss function.

Root mean square propagation [47] is also an adaptive learning method to resolve
destructive learning rates. RMSprop determines the learning rate after each iteration by
using an exponentially weighted average [41].

qt = qt−1 + (1−Υ)× p2
t (1)

∆wt = −
qt√

qt + ε
× pt (2)

wt+1 = wt + η× ∆wt (3)

where
η: initial learning rate;
qt: exponential average of gradients along wj;
pt: gradient at time t along wj;
xt: exponential average of squares of gradients along wj;
Υ: hyperparameter.
The adaptive moment estimation (Adam) method computes adaptive learning rates for

every parameter at each iteration. It is easy to implement with less memory requirements,
and it is computationally efficient. Adam uses a combination of RMSprop and gradient
descent with momentum to determine the parameter values [41].

qt = Υ1 ∗ qt−1 − (1−Υ1)× pt (4)

st = Υ2 ∗ st−1 − (1−Υ2)× pt (5)

∆wt = −pt
qt√

xt + ε
× pt (6)

wt+1 = wt + η× ∆wt (7)

where
η: initial learning rate;
qt: exponential average of gradients along wj;
pt: gradient at time t along wj;
xt: exponential average of squares of gradients along wj;
Υ1 and Υ2: hyperparameters.
A stochastic gradient descent (SGD) focuses on performing updates to the model

parameters one at a time; therefore, it is much faster. After each iteration, the cost function
minimizes, and SGD performs frequent updates of the model parameter that causes the
cost function to fluctuate heavily, which leads the gradient to jump to the global minimum.
It requires less memory and permits the use of enormous datasets [41].

f (x) =
1
n
×

n

∑
i=0

fi(x) (8)

5 f (x) =
1
n

n

∑
i=0
5 fi(x) (9)

x ← x− η5 fi (x) (10)

Ei5 f (x) =
1
n

n

∑
i=0
5 fi(x) = 5 f (x) (11)

where
η: initial learning rate;
x: parameters;
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n: training dataset;
fi(x) : loss function;
5 fi (x) : stochastic gradient.
In this study, CNN architectures with LeNet, AlexNet, VGG16, ResNet-50, Inception-

V1 with the Adam, RMSprop, and SGD optimizers were applied to extract features from
the LUNA16 dataset. Subsequently, the flattened layer converts the matrix to vector form
and is fed to the fully connected layer for classification purposes. Finally, the classifier
softmax classifies lung cancer into benign and malignant.

4. Results and Discussion

In this study, the comparison between state-of-the-art CNN architectures LeNet,
AlexNet, VGG16, ResNet-50, and Inception-V1 for the detection of lung cancer is explained
in detail by using the different optimizers, Adam, RMSprop, and SGD. The performances of
the LeNet, AlexNet, VGG16, ResNet-50, and Inception-V1 architectures were validated and
evaluated in terms of accuracy. These deep learning networks use binary cross-entropy loss.
In this section, the results presented were achieved by LeNet, AlexNet, VGG16, ResNet-50,
and Inception-V1 detection algorithms.

In this study, the performance analysis was implemented in the Keras tool using
Python 3.8. The Adam, SGD, and RMSprop optimizers were employed with a learning
rate of 0.001, batch size of 20, and 200 epoch values. To measure the performance of LeNet,
AlexNet, VGG16, ResNet-50, and Inception-V1, various optimizers such as RMSprop,
Adam, and SGD were applied, and various statistical parameters were measured to detect
lung cancer.

Various statistical parameters such as accuracy [48], sensitivity [49], specificity [50],
positive predictive value [51], negative predictive value [52], false omission rate [53], and
F1 score were applied to evaluate the performance of the convolutional neural network
architectures with the optimizers.

Accuracy =
(TN + TP)

(TN + FN + FP + TP)
× 100% (12)

Sensitivity =
TP

(TP + FN)
× 100% (13)

Speci f icity =
TN

(TN + FP)
× 100% (14)

Positive predictive value (PPV) =
TP

(TP + FP)
× 100% (15)

Negative predictive value (NPV) =
TP

(TP + FP)
× 100% (16)

The validation confusion matrix of the LeNet architecture is shown in Table 2, and the
validation performance factors of the LeNet model with different optimizers are shown in
Table 3. LeNet with the SGD optimizer achieved a 95.92% accuracy, which is higher than
the RMSprop and Adam optimizers. The other statistical parameters of LeNet with the
SGD optimizer such as accuracy, sensitivity, specificity, PPV, NPV, FOR, and F1-score were
95.92%, 94.76%, 97.25%, 97.51%, 94.22%, 5.78%, and 96.11%, respectively.

Table 2. LeNet confusion matrix (validation).

CNN Architecture Optimizer True Negative False Positive False Negative True Positive

LeNet RMSprop 204 14 9 239

LeNet Adam 211 7 15 233

LeNet SGD 212 6 13 235
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Table 3. Validation statistical analysis of the LeNet model.

CNN Architecture Accuracy Sensitivity Specificity PPV NPV FOR F1-Score

LeNet RMSprop 95.06% 96.37% 93.58% 94.47% 95.77% 4.23% 95.41%

LeNet Adam 95.18% 93.7% 96.79% 96.96% 93.36% 6.63% 95.3%

LeNet SGD 95.92% 94.76% 97.25% 97.51% 94.22% 5.78% 96.11%

The validation confusion matrix of AlexNet is shown in Table 4, and the validation per-
formance of the AlexNet model with different optimizers is shown in Table 5. AlexNet with
the SGD optimizer achieved 97.42% accuracy, which was higher than the RMSprop and
Adam optimizers. The other statistical parameters of AlexNet with the SGD optimizer
such as sensitivity, specificity, PPV, NPV, FOR, and F1-score were 97.58%, 97.25%, 97.58%,
97.25%, 2.75%, and 97.58%, respectively.

Table 4. AlexNet confusion matrix (validation).

CNN Architecture Optimizer True Negative False Positive False Negative True Positive

AlexNet RMSprop 206 12 10 238

AlexNet Adam 205 13 7 241

AlexNet SGD 212 6 6 242

Table 5. Validation statistical analysis of the AlexNet model.

CNN Architecture Accuracy Sensitivity Specificity PPV NPV FOR F1-Score

AlexNet RMSprop 95.28% 95.97% 94.5% 95.20% 95.37% 4.63% 95.58%

AlexNet Adam 95.71% 97.18% 94.04% 94.88% 96.70% 3.30% 96.02%

AlexNet SGD 97.42% 97.58% 97.25% 97.58% 97.25% 2.75% 97.58%

The VGG16 validation confusion matrix is shown in Table 6, and the validation perfor-
mance of the VGG16 model with different optimizers is shown in Table 7. VGG16 with the
SGD optimizer achieved 93.56% accuracy, which was higher than the RMSprop and Adam
optimizers. The other statistical parameters of VGG16 with the SGD optimizer such as
sensitivity, specificity, PPV, NPV, FOR, and F1-score were 91.53%, 95.87%, 96.19%, 90.87%,
9.13%, and 93.80%, respectively.

Table 6. VGG16 confusion matrix (validation).

CNN Architecture Optimizer True Negative False Positive False Negative True Positive

VGG16 RMSprop 204 14 21 227

VGG16 Adam 203 15 19 229

VGG16 SGD 209 9 21 227

Table 7. Validation Statistical Analysis of the VGG16 model.

CNN Architecture Accuracy Sensitivity Specificity PPV NPV FOR F1-Score

VGG16 RMSprop 92.49% 91.53% 93.58% 94.19% 90.67% 9.33% 92.84%

VGG16 Adam 92.70% 92.34% 93.12% 93.85% 91.44% 8.56% 93.09%

VGG16 SGD 93.56% 91.53% 95.87% 96.19% 90.87% 9.13% 93.80%

The ResNet 50 validation confusion matrix is shown in Table 8, and the validation per-
formance of the ResNet 50 model with different optimizers is shown in Table 9. ResNet 50
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with the SGD optimizer achieved 96.35% accuracy, which was higher than the RMSprop
and Adam optimizers. The other statistical parameters of ResNet 50 with the SGD opti-
mizer such as sensitivity, specificity, PPV, NPV, FOR, and F1-score were 91.53%, 95.87%,
96.19%, 90.87%, 9.13%, and 93.80%, respectively.

Table 8. ResNet 50 confusion matrix (validation).

CNN Architecture Optimizer True Negative False Positive False Negative True Positive

ResNet 50 RMSprop 207 11 18 230

ResNet 50 Adam 211 7 16 234

ResNet 50 SGD 212 6 11 237

Table 9. Validation statistical analysis of the ResNet 50 model.

CNN Architecture Accuracy Sensitivity Specificity PPV NPV FOR F1-Score

ResNet 50 RMSprop 93.78% 92.74% 94.95% 95.44% 92.0% 8.0% 94.07%

ResNet 50 Adam 95.09% 93.60% 96.79% 97.10% 92.95% 7.04% 95.32%

ResNet 50 SGD 96.35% 95.56% 97.25% 97.53% 95.07% 4.93% 96.54%

The Inception-V1 validation confusion matrix is shown in Table 10, and the validation
performance of the Inception-V1 model with different optimizers is shown in Table 11.
Inception-V1 with the SGD optimizer achieved 93.56% accuracy, which was higher than the
RMSprop and Adam optimizers. The other statistical parameters of Inception-V1 with the
SGD optimizer such as sensitivity, specificity, PPV, NPV, FOR, and F1-score were 91.53%,
95.87%, 96.19%, 90.87%, 9.13%, and 93.80%, respectively.

Table 10. Inception-V1 confusion matrix (validation).

CNN Architecture Optimizer True Negative False Positive False Negative True Positive

Inception-V1 RMSprop 206 12 28 220

Inception-V1 Adam 210 8 20 228

Inception-V1 SGD 211 7 16 232

Table 11. Validation statistical analysis of the Inception-V1 model.

CNN Architecture Accuracy Sensitivity Specificity PPV NPV FOR F1-Score

Inception-V1 RMSprop 91.42% 88.71% 94.50% 94.83% 88.03% 11.97% 91.67%

Inception-V1 Adam 93.99% 91.94% 96.33% 96.61% 91.30% 8.70% 94.21%

Inception-V1 SGD 95.06% 93.55% 96.79% 97.07% 92.95% 7.05% 95.28%

Table 12 demonstrates the results obtained from AlexNet with the SGD optimizer on
the Luna16 dataset. The original image was benign, and the CNN architecture AlexNet
with the SGD optimizer detected the image as benign. Next, the image was benign and
AlexNet with the SGD detected the image as malignant, which was wrongly predict by
AlexNet. The next image was malignant, and AlexNet with the SGD optimizer detected it
as benign. Finally, the actual image was malignant, and AlexNet with the SGD optimizer
detected it as malignant.
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Table 12. Detection results of AlexNet with the SGD optimizer on the LUNA16 dataset.

Detection Class

Benign Malignant

Actual Class

Benign
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In the training phase, the accuracies of LeNet, AlexNet, VGG16 ResNet-50 and
Inception-V1 with the optimizers are illustrated in Figure 2. LeNet with the SGD optimizer
achieved 97.47% accuracy, whereas AlexNet with the SGD optimizer obtained 99.09% accu-
racy. VGG16 with the SGD optimizer achieved 94.07% accuracy. ResNet-50 with the SGD
optimizer obtained 98.05% accuracy, while Inception-V1 with the SGD optimizer achieved
97.99% accuracy.
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Figure 2. Performance evaluation with statistical parameters for LeNet, AlexNet, VGG16, ResNet-50,
and Inception-V1 (training accuracy).

The next optimizer, Adam, was performed on LeNet, AlexNet, VGG16, ResNet-50, and
Inception-V1. LeNet with the Adam optimizer achieved 97.26% accuracy, whereas AlexNet
with Adam obtained 96.13% accuracy, VGG16 with Adam achieved 93.71% accuracy,
ResNet-50 with Adam achieved 97.24% accuracy, and Inception-V1 with Adam achieved
96.12% accuracy.

The last optimizer, RMSprop, also measured for training purposes. LeNet with RM-
Sprop achieved 95.27%, AlexNet with RMSprop obtained 95.54% accuracy, VGG16 with
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RMSprop achieved 93.01% accuracy, ResNet-50 obtained 95.53% accuracy, and Inception-V1
achieved 94.86% accuracy using the RMSprop optimizer.

Figure 3 demonstrates the validation phase, the LeNet algorithm with the SGD op-
timizer achieved 95.92% validation accuracy. AlexNet with the SGD optimizer obtained
97.42% accuracy, VGG16 with the SGD optimizer obtained 93.56% validated accuracy,
ResNet-50 with the SGD optimizer achieved 96.35% validation accuracy, and Inception-V1
with the SGD optimizer obtained 95.06% accuracy.
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Figure 3. Performance evaluation with statistical parameters for LeNet, AlexNet, VGG16, ResNet-50,
and Inception-V1 (validation accuracy).

The next optimizer, Adam, was performed on LeNet, AlexNet, and VGG16. LeNet
with the Adam optimizer achieved 95.18% accuracy, whereas AlexNet with Adam ob-
tained 95.71% accuracy, VGG16 achieved 92.70% accuracy, ResNet-50 with the Adam
optimizer achieved 95.09% validation accuracy, and Inception-V1 with Adam obtained
93.99% accuracy.

The last optimizer RMSprop also measured for validation purposes. LeNet with
RMSprop achieved 95.06%, AlexNet with RMSprop obtained 95.28% accuracy, VGG16 with
RMSprop achieved 92.49% accuracy, ResNet-50 with the RMSprop optimizer achieved
93.78% accuracy, and Inception-V1 with RMSprop achieved 91.42% validation accuracy on
theLUNA16 dataset.

The second method, five-fold cross-validation, was adopted to train and validate the
CNN architectures with the SGD optimizer. The validation statistical analysis is shown
in Table 13. When the five-fold cross-validation approach was applied, the AlexNet–SGD
optimizer achieved 95.73%, 95.20%, 96.33%, 96.75%, 94.59%, 5.41% and 95.97% accuracy,
sensitivity, specificity, PPV, NPV, FOR, and F1-score, respectively, which were the highest
scores compared with the other CNN architectures.

The CNN-based architectures LeNet, AlexNet, VGG16, ResNet-50, and Inception-V1,
with different optimizers, were evaluated in this study. It was found that AlexNet with the
SGD optimizer achieved the highest accuracy of 97.42%. Table 14 presents the performance
analysis of AlexNet with the SGD technique with different methods. Comparatively, the
accuracy of AlexNet with the SGD was higher than the other state-of-the-art approaches.
Various existing publications used different methods on the different datasets, including
LIDC-IDRI, LUNA16, IQ-OTH/NCCD, ELCAP, and private lung datasets for the detection
of lung cancer. AlexNet with SGD and with the five-fold cross-validation method obtained
95.73% accuracy and a 4.27% misclassification rate. AlexNet with the SGD achieved the
highest accuracy of 97.42% and 2.58% of misclassification rate.
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Table 13. Validation statistical analysis of five CNN architectures with the SGD optimizer confusion
matrix (5-fold cross-validation).

CNN Architecture Accuracy Sensitivity Specificity PPV NPV FOR F1-Score

LeNet SGD 93.56% 92.74% 94.50% 95.04% 91.96% 8.045% 93.88%

AlexNET SGD 95.73% 95.20% 96.33% 96.75% 94.59% 5.41% 95.97%

VGG16 SGD 93.56% 89.92% 97.71% 97.81% 89.50% 10.50% 93.70%

ResNet-50 SGD 95.28% 96.77% 93.58% 94.49% 96.23% 3.77% 95.62%

Inception-V1 SGD 91.85% 87.1% 97.25% 97.30% 86.89% 13.11% 91.91%

Table 14. Comparison of AlexNet with the SGD model with previously published approaches.

Publications Method Dataset Accuracy% Misclassification Rate

Khehrah et al. [17] ANN LIDC-IDRI 92.0% 8.0%

Xie et al. [18] ANN LIDC-IDRI 89.62% 10.38%

Naseer et al. [19] ANN Private Lung Dataset 96.67% 3.33%

[20] ANN Private Lung Dataset 96.67% 3.33%

S. Zhang et al. [22] LeNet-5
10-fold Cross-Validation LIDC-IDRI 97.04% 2.96%

Zhao et al. [23] Hybrid CNN of LeNet
and AlexNet LIDC-IDRI 87.7% 12.3%

Agarwal et al. [25] AlexNet CNN Private Lung Dataset 96.0% 4.0%

Polat et al. [26] Hybrid 3D-CNN RBF-based
LUNA16

Lungs Data
Science Bowl

91.81% 8.19%

Al-Yasriy et al. [29] AlexNet CNN (IQ-OTH/NCCD)
Lung Cancer Dataset 93.548% 6.45%

A. Elnakib et al. [31] VGG19 architecture and
SVM classifier

Early Lung Cancer
Action Project

(ELCAP) Database
96.25% 3.75%

Nibali et al. [35] ResNet-18 architecture LIDC-IDRI 89.90% 10.1%

Zheng et al. [36] Inception CNN classifier AIA-INF 88.67% 11.33%

Haibo et al. [37] DarkNet-53 CNN architecture LUNA16 73.9% 26.1%

Best Model: AlexNet
SGD with 5-fold
Cross-Validation

AlexNet with SGD LUNA16 95.73% 4.27%

Best Model: AlexNet
with SGD AlexNet with SGD LUNA16 97.42% 2.58%

5. Conclusions

In recent years, lung cancer has become a dangerous disease with a low survival rate.
Early diagnosis and proper treatment can increase the survival rate. In this study, various
deep learning-based architectures were presented to classify lung cancer into benign and
malignant. The advanced CNN architectures LeNet, AlexNet, VGG16, ResNet-50, and
Inception-V1 were applied for the detection of lung cancer to analyze the performance.
Various optimizers, including RMSprop, Adam, and SGD, were used to tune the CNN
architectures, which provided different results. The experimental results show that the
AlexNet architecture with the SGD optimizer achieved the highest validation accuracy of
97.42%, with a misclassification rate of 2.58% for the detection of lung cancer as benign or
malignant while applying the five-fold cross-validation method. AlexNet–SGD achieved
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95.73% accuracy, while AlexNet with the SGD optimizer outperformed compared to other
state-of-the-art existing CNN architectures and optimizers.

6. Limitations and Future Work

The performance analysis of the state-of-the-art CNN architectures is presented in
this study to classify lung cancer into benign and malignant. The study comprised five
CNN architectures: LeNet, AlexNet, VGG16, ResNet-50, and Inception-V1, with the Adam,
RMSprop, and SGD optimizers. Future work should include a performance analysis that
can be increased to improve the classification system using other state-of-the-art CNN
architectures, such as Darknet, EfficientNet, VGG19, Xception, Inception-V3, Inception-V4,
Inception-ResNet-V2, and ResNeXt50. Various optimizers and cross-validation techniques
can be adapted to remove the randomness effect to achieve better accuracy.
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