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Abstract

Human presence on the Yucatán Peninsula reaches back to the Late Pleistocene. Osteo-

logical evidence comes from submerged caves and sinkholes (cenotes) near Tulum in the

Mexican state of Quintana Roo. Here we report on a new skeleton discovered by us in the

Chan Hol underwater cave, dating to a minimum age of 9.9±0.1 ky BP based on 230Th/U-

dating of flowstone overlying and encrusting human phalanges. This is the third Paleoindian

human skeleton with mesocephalic cranial characteristics documented by us in the cave, of

which a male individual named Chan Hol 2 described recently is one of the oldest human

skeletons found on the American continent. The new discovery emphasizes the importance

of the Chan Hol cave and other systems in the Tulum area for understanding the early peo-

pling of the Americas. The new individual, here named Chan Hol 3, is a woman of about 30

years of age with three cranial traumas. There is also evidence for a possible trepanomal

bacterial disease that caused severe alteration of the posterior parietal and occipital bones

of the cranium. This is the first time that the presence of such disease is reported in a

Paleoindian skeleton in the Americas. All ten early skeletons found so far in the submerged

caves from the Yucatán Peninsula have mesocephalic cranial morphology, different to

the dolicocephalic morphology for Paleoindians from Central Mexico with equivalent dates.

This supports the presence of two morphologically different Paleoindian populations for

Mexico, coexisting in different geographical areas during the Late Pleistocene-Early

Holocene.
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1. Introduction

Osteological evidence for early American settlers is scarce and usually fragmentary, with only

a few individuals known from both North and South America securely predating 10 thousand

years (ky) ago ([1] and references therein). Mexico has long played a minor role in the discus-

sion of the early settlement of the continent because researchers interested in the theme were

majorly not aware of the wealth of Paleoindian skeletons found in this large geographical area

of the Americas. Nevertheless, this situation is slowly changing [2]; today scientific interest

particularly focuses on the Yucatán Peninsula (YP) in southern Mexico where a total of nine

well-preserved human skeletons have been discovered during the past decade in submerged

caves of the Tulum area and have been dated to between 13–9 ky BP ([1, 3–6]; S1 Table).

The caves are located within a few kilometers distance from the Caribbean coast and were

dry and accessible during most of the period of interest of this study (13–9 ky BP), as they were

not flooded until the worldwide sea-level rise that happened during the early Holocene (e.g. [4,

7–9]). The discovery of a well-preserved Paleoindian skull of a young girl from the submerged

Hoyo Negro (Black Hole) sinkhole (Fig 1A) has received special interest. The individual was
14C-dated to 10,976±20 y BP (12,910–11,750 cal y BP; 95.4% probability using CalPal) by Chat-

ters et al. [1] based on bioapatite from tooth enamel. Previously, a similar 14C age was already

published for a human skeleton from Naharon cave (Fig 1A), also located close to Tulum, with

an age of 11,570±65 14C y BP (13,571–13,337 cal y BP; 68% probability using CalPal) [3, 6]. It

is, however, difficult to exactly determine the 14C age of these two humans using conventional

radiocarbon dating, because the amount of collagen found in their bones and teeth is

extremely low. This is due to a general lack of collagen preservation in human and faunal

remains found underwater in the Tulum caves (e.g. [4, 5]), which has been interpreted as the

result of exposure of the osteological remains for thousands of years to alternating salt- and

fresh water environments [5]. In addition, bioapatite is highly susceptible to contamination

with fossil carbon resulting in false, mostly older ages [1]. Therefore, Stinnesbeck et al. [5]

dated a stalagmite that had precipitated on top of a human pelvis earlier discovered in the

Chan Hol cave system [3]. The analysis of uranium-thorium isotopes of the stalagmite precipi-

tated on the Chan Hol 2 skeleton resulted in a minimum age of 11.3 ky BP for this human skel-

eton. However, the correlation of oxygen and carbon isotope ratios in the speleothem with

other regional, independently dated paleoclimate records, indicates a much earlier onset of

speleothem growth, suggesting an older age of about 13 ky BP for the Chan Hol 2 individual

[5]. This implies that Chan Hol 2 is one of the oldest known skeletons of the American conti-

nent [5].

We here report on a new skeleton from the Chan Hol cave, named Chan Hol 3, which is the

third human skeleton discovered from the Chan Hol system [3, 5]. The cave also preserves evi-

dence for early to mid-Holocene human usage in the form of numerous charcoal accumula-

tions with radiocarbon dates between 8110 ± 28 14C y BP (9122–8999 cal y BP) to 7177 ± 27
14C y BP (8027–7951 cal y BP) [9].

2. Geological setting

The Tulum submerged cave system on the northeastern YP in the Mexican state of Quintana

Roo, is among the most extensive active underwater cave systems worldwide, with a presumed

total length of 7,000 km, but only 1,500 km have currently been explored [10]. Karst developed

in almost horizontally layered, thick-bedded, shallow-water carbonate bedrock of Neogene

ages and is the result of intensive development during the Pleistocene, caused by a series of

sea-level oscillations and changes in the overall hydrology of the area [11, 12]. Sea-level rise on
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the YP was predominantly controlled by eustasy, as the peninsula has been tectonically stable

in the recent past and glacial isostatic adjustments are negligible in this tropical area [12–14].

During the Last Glacial Maximum (25 to 19 ky BP) sea-level was more than 100 m below

the present day sea-level and large parts of the Tulum cave system were dry and accessible for

animals and humans. During the last deglaciation, between 13 and 7.6 ky BP, sea-level rose

again and modern water levels were reached at approximately 4.5 ky BP [7–9], although oscil-

lations of up to a few meters are known to have occurred during Mayan times, and later [15].

Today, the Tulum cave system contains a coastal, density stratified aquifer, i.e. a freshwater

layer overlying penetrating seawater. The depth of the halocline depends on the global sea-

level as well as on the thickness of the superimposed freshwater layer. It is controlled by the

distance to the coastline as well as the amount of precipitation, with a hydraulic gradient across

the YP of between 0.5 and 100 mm/km. As most of the Tulum caves are hydrologically open-

systems, groundwater flows through the porous limestone karst directly towards the ocean. In

consequence, water level near the coast (e.g. in the Tulum area) is approximately equivalent to

mean sea-level ([15] and references therein).

2.1. The Chan Hol 3 Site and the Human Skeleton

The Chan Hol 3 skeleton was found in September 2016 by cave explorers Vicente Fito and

Ivan Hernández during a systematic survey led by Jeronimo Avilés in Chan Hol cave. The

entrance to the cave is at Chan Hol cenote (sinkhole), located at 20˚9.467’ N, 87˚34.165 W,

about 15 km southwest of Tulum, and about 11.5 km from the coastline (Fig 1). The skeleton

was discovered in a low cave tunnel in fresh water at 8 m water depth, at 1141 m diving dis-

tance from the cenote (Fig 1). During the dive, the sites of the Chan Hol 1 [3] and Chan Hol 2

[5] human skeletons were passed at 541 m (Chan Hol 1) and 1027 m (Chan Hol 2) from the

cenote entrance. The maximum depth of the Chan Hol cave is about 13 m below present day

sea-level and the halocline is located at about 9 m water depth. Due to its shallow position, this

part of the Chan Hol cave must have been accessible until early stages of the middle Holocene

[5, 9]. Anthropogenic charcoal accumulations in the cave have been dated to between 8,110

±28 14C y BP (9,122–8,999 cal y BP) and 7,177±27 14C y BP (8,027–7,951 cal y BP) [9].

3. Material and methods

Underwater registration and documentation of skeletal remains in the Tulum underwater

caves has been described in detail [6]. The underwater documentation has been executed by J.

A.O., Vicente Fito, Eugenio Acévez and Ivan Hernández. After collection, the skeleton was

treated with distilled water for eight months and slowly dried. Underwater photographs were

taken with an Eos rebel Ti4 with a 10–20 mm zoom lens inside an ikelite housing. Laboratory

photography was taken with a Canon D5 Mark III with 50 mm and 100 mm macro lenses.

Fig 1. Geographical location of the Chan Hol 3 anthropological site. (A) Location of submerged caves containing human

skeletal remains dating to>9 ky BP in the Tulum area of Quintana Roo, Mexico. Yellow dots refer to anthropological sites

mentioned in the text with presence of human remains [1, 3–6]. The red dot marks the Chan Hol cave described previously by

González González et al. [3, 6] and Stinnesbeck et al. [5]. (B) Close-up of the black box seen in Fig 1A with location of the three

human skeletons found within the Chan Hol cave. (C) The Chan Hol 3 anthropological site. Note that human bones are

spread over an area of 3 x 1 m. The original anatomical position of the skeleton is thus not preserved. The red arrow points to

distal radius fragment while the blue arrow indicates position of finger bones (metacarpals, phalanges) depicted in Fig 2. A

prominent flat limestone rock 0.3 wide and 0.2 m long and 50 mm in thickness is seen in the upper right quadrant of the

photo, and the mandible immediately in front of this rock slab. (D) Interpretative drawing of the site. (E) The skull rotated

upside down. It is likely this was water-transported and rolled for about 0.5 m to this position. The red arrow points to a

broken stalagmite below the limestone slab seen in Fig 1C and 1D. (F) Flowstone encrusting phalangeal bones used for 230Th/

U-dating of the Chan Hol 3 skeleton (see Fig 2 for details).

https://doi.org/10.1371/journal.pone.0227984.g001
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3.1. Human osteology

The cranium is well preserved allowing for the execution of detailed craniometric measure-

ments of Howells [16] and Buikstra and Ubelaker [17]. Cranial and femoral measurements are

listed in S2 Table. Paleopathological analysis and documentation follow definitions made by

Ortner and Putschar [18] and Aufderheide et al. [19]. Sex, age, and stature assessments were

completed following procedures established by Buikstra and Ubelaker [17], Genovés [20], and

Walker [21]. Stature equation was chosen because the parent sample was from Mexico [20].

Cranial Indices and Upper Facial Indices were calculated to make overall comparisons

between crania across North, Central, and South America. We excluded the Hoyo Negro skull

as there are no data published currently for this individual. For other individuals, a full Princi-

pal Components Analysis (PCA) was calculated using samples from the Howell’s cranial data-

base [16, 21–23] and other open source cranial data [24–28]. A total of 452 human skulls from

ten different samples were included for analysis (S3 Table). Twelve variables were used and

were all collected from peer-reviewed articles and books [16, 21, 22, 24–28]. The 12 variables

were chosen because they were most frequently available from all specimens. For individuals

that were missing these variables, a k Nearest Neighbor analysis was used to compute what the

missing variables would be [29]. Each sample’s missing values were computed separately to

allow for a better portrayal of that sample variation. S3 Table lists the variables used for analy-

sis. From these 12 cranial variables (S3 Table), PCA was computed (S4 Table).

3.2. 230Th/U-dating

Samples for mass spectrometer 230Th/U-dating were taken from a flowstone up to 10 mm

thick overlying and encrusting phalanges of the Chan Hol 3 skeleton (Fig 2). As the carbonate

encrustation of the bone and cave floor itself has a very heterogeneous structure, our sampling

strategy concentrated on this laminar layered flowstone from which a sequence of three subse-

quent samples was cut using a diamond wired band saw (Fig 2). This strategy ensured that

samples were taken to minimize mixing of material of possibly different ages. Individual sam-

ple thickness is typically 2 mm (in growth direction), with an individual sample weight ranging

between 60 and 90 mg. All samples were pre-cleaned through a weak acid leach and dried

prior to dissolution in 7 N HNO3. The chemical preparation for mass spectrometric U and Th

isotope measurements was conducted at the Institute of Environmental Physics at Heidelberg

University using wet-column chemistry (resin: UTEVA1) to purify U and Th from the flow-

stone samples. The chemical protocol follows the one of Wefing et al. [30]. The natural iso-

topes of uranium (238U-235U-234U) and thorium (232Th- and 230Th) and the artificial isotopes

of the triple-spike (233U-236U-229Th) were quasi-simultaneously analyzed using a multi-collec-

tor, inductively coupled, plasma source mass spectrometer (MC-ICP-MS) (Thermo Finnigan

NeptunePlus) coupled to a desolvator (CETAC—ARIDUS) at the Institute of Environmental

Physics, Heidelberg University [30, 31]. The 3 sample measurements of the Chan Hol 3 flow-

stone samples were bracketed with measurements of HU-1 reference material and prior to

each standard a blank sample was analyzed. The detector yield and abundance sensitivity were

independently assessed before and after the sample analysis and the data was corrected for

instrumental biases, abundance sensitivity, detector yield and peak tailing. The raw data treat-

ment is conducted using an in-house Matlab Script [31]. Ages were calculated using the half-

lives of both elements [32]. Using the more recent values of Cheng et al. [33] does not influence

the results.

Due to the complete dissolution of organic matter, specifically collagen, we refrained from

the extraction of collagen and thus 14C age determination of the Chan Hol 3 individual.

Chan Hol 3 woman
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3.3. Strontium Isotope analysis

Due to availability and preservation we selected the third left mandibular molar from Chan

Hol 3 for Sr-isotope analysis. Third molar enamel forms during adolescence, between 7 and 16

years of age (e.g. [34]).

We sampled 2 to 5 mg chips of tooth enamel using a 0.2 mm diamond-coated cutting disc

to minimize material loss of the valuable sample. We carefully avoided dentine components in

the samples, because dentine is known to be sensitive to diagenesis and, unlike enamel, easily

Fig 2. Flowstone encrusting phalangeal bones of the Chan Hol 3 human individual. For the original position of the sample on the cave floor see Fig 1C and 1F. Red

arrows point to the position of distal radius and blue arrows to carpal and metacarpal bones, and blue circles to the position of samples used for 230Th/U-dating. (A)

Sample seen from above. The dotted line indicates the position in which the sample was vertically cut. Note lateral view of distal radius fragment. The covered bone to the

left is a carpal (I) and the one next to it is a metacarpal (II). (B) view of distal radius shown in (A) from above. (C) Vertical cross section of the sample. Note that the blue

arrow points to the spherical aperture which originally represented the metacarpal and is now dissolved. (D) Magnification of the slab shown on the right side of (C), with

the position of the three 230Th/U-dating samples with approximately coeval ages of 9.9±0.1 ky. A contaminating 230Th/232Th activity ratio of 3.96±0.09 is estimated from

the Osmond isochron. Scale used in all figures is 20 mm.

https://doi.org/10.1371/journal.pone.0227984.g002
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takes up mobile geogenic strontium components from the surrounding rocks and sediments

[35].

The enamel pieces were cleaned by repeated washing with ultrapure water. After drying the

enamel grains were digested using nitric acid. Strontium was purified through wet-column

extraction chemistry using an EiChrom SrResin1 column [36]. The protocol applied at the

Institute of Earth Sciences, Heidelberg University was adopted after Kober et al. [37]. A 1 ml

column was filled with SrResin (TRISKEM) and washed with 6 column volumes (CV) H2O.

Next the columns were loaded with 3 ml 7N HNO3. The samples were dried and re-dissolved

in 1 ml nitric acid added onto the columns. The columns were then washed with 6 CV 7 N

HNO3. To elute Sr from the resin the columns were rinsed with 3 CV H2O. The samples were

evaporated on a hot plate until a small barely visible drop remained at the bottom of the bea-

ker. The column chemistry was repeated to further purify Sr from the sample matrix and the

final Sr solution was evaporated to dryness. The sample was re-dissolved in a drop of concen-

trated HNO3 and a drop of H2O2 to ensure dissolution of remains of the resin and it was then

again evaporated to dryness. Finally, samples were dissolved in 10 μl 7N HNO3 and were trans-

ferred onto a preheated rhenium filament. Isotopic measurements (10 sequences of each 10

measurements) were conducted on a thermal ionization mass spectrometer (Finnigan MAT-

262) using a dynamic multi-collection method normalized to the Nier value of 86Sr/88Sr =

0.1194 using an exponential fractionation law. All isotopes were measured on Faraday cups

with minimum 86Sr intensities of 0.5 V. Each measurement was checked for 85Rb. Isotope

ratios were corrected for internal mass fractionation assuming a stable 88Sr/86Sr ratio of

8.375209. The NIST isotope standard SRM-987 was used for routine monitoring and correc-

tion of instrumental bias and to assess reproducibility. Replicate SRM-987 analysis of the
87Sr/86Sr ratio yields 0.710261 ± 0.000006 (2σ, N = 4).

4. Results

4.1. The Chan Hol 3 site and skeleton

At the Chan Hol 3 anthropological site, human bones are spread over an area of 3 x 1 m and

the original anatomical position of the skeleton is thus not preserved (Fig 1C and 1D). The

skull is seen at about 0.5 m north of the rest of the skeleton (Fig 1C–1E), while forearm (radius,

ulna) and finger bones (metacarpals, phalanges) are identified to one side of a rectangular

shaped limestone slab 0.3 x 0.2 m wide and 50 mm in thickness, while a humerus and metacar-

pals are identified on the opposite side, along with the mandible. Both legs are fully extended

and located in the south quadrant (Fig 1C and 1D), but the original position of these bones is

disturbed.

The Chan Hol 3 individual is only about 30% complete which indicates that many bones

may either have been water-transported and carried away, were lost due to decomposition, or

are still in the cave covered by flowstone. Bones collected include the cranium, mandible, both

clavicles, manubrium, the left humerus, both femora, both tibiae, three fragments of the pelvis

(ilium and ischium), two ulnae and one radial shaft fragment, seven fragments of vertebrae

(thoracic and lumbar), seven fragments of ribs, and three phalanges (Fig 3).

The cranium is largely preserved but post-mortem fractures have occurred. Most internal

cranial bones (ethmoid, vomer, and large amounts of the sphenoid etc.) are lost. Portions of

the occipital bone, especially near the foramen magnum, are also missing. A small wormian

bone was located alongside the right lambdoidal suture. The left parietal has been fractured

post-mortem but remains present. The fracture margins remain sharp, suggesting that the

fracture was recent. Zygomatic arches on both sides are no longer present.

Chan Hol 3 woman
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The only teeth that are still present in the maxilla are the left and right 1st molars and the

left 2nd molar (Fig 3G). There is post-mortem breakage on the right canine with the root still

present in the maxilla. The four incisors have complete resorption indicating that they were

lost ante-mortem alongside the right upper canine, left, and right premolars. The 2nd and 3rd

molars on the upper right side have been lost, most likely ante-mortem due to dental abscess

(Fig 3G).

The mandible is mostly complete, apart from the mandibular condyles being broken post-

mortem (Fig 3H–3K). Central and medial incisors are no longer present showing ante-mortem

loss with complete resorption of the alveolar bone alongside the loss of the right lower canine

and 1st premolar. The 2nd and 3rd molars from the left side and the 3rd molar on the right are

not present.

Postcranially, both clavicles are present alongside the manubrium which presents a recent

post-mortem break running superior-inferiorly. The left humerus is presented as two main

fragments, the humeral head and the diaphyses, and the distal portion (trochlea and capitu-

lum). Several pieces of vertebral bodies and arches belong to thoracic and lumbar regions. The

left os coxa has fragments from the ilium and ischium, with the right side only preserves the

ilium. Both femora are present with only the right side preserving the femoral head (Fig 3L

and 3M). The tibial diaphysis has been preserved for both left and right sides but shows more

fragmentation on the left.

4.2. Biological profile

The Chan Hol 3 individual represents an adult female. Sex determination followed morphog-

nostic traits of the skull [38] and of the greater sciatic notch [39]. Using Walker’s method for

the assessment of the Greater Sciatic Notch [39], a score of 2 was given which is more indica-

tive of a female individual. For sex diagnosis using the skull, Walker’s methodology [38] was

used alongside that of Buikstra and Ubelaker [17]. The Glabella was scored to 2, Mastoid Pro-

cess scored 2, Nuchal Crest scored 1, and the Mental Eminence scored 4. Sadly, the Supra-

Orbital Margins could not be scored with confidence due to insufficient preservation. The

femoral head diameter was taken and compared to the sectioning points laid out by Iscan and

Steyn [40]; page 174. Musculoskeletal markings on the long bones are all weakly developed

and overall present as gracile.

Chan Hol 3 is a fully mature adult showing complete fusion of all long bones and the medial

clavicle suggesting an age of 21+ years. Due to fragmentation, the pubic symphysis and the

auricular surface of the pelvis were not present for further age assessment following cranial

suture closure. Due to slight erosion of the external surface of the skull, ectocranial suture clo-

sure techniques could not be fully implemented [41]. From what was available, the mid-lamb-

doidal and lambda sutures show signs of non-closure whilst the rest shows either significant

closure or complete obliteration of the suture. All permanent dentition had erupted resulting

in an age of>18 years. With the addition of using Brothwell’s method for aging using dental

attrition [42], slight wear is identified on the occlusal surfaces of the 1st and 2nd mandibular

molars. This puts Chan Hol 3 at the later phase of the first stage which provides an approxi-

mate age of 25 years. With this information, the Chan Hol 3 woman was a young adult (30±11

years old) at the time of death, but this assessment is to be taken with caution. Stature was

Fig 3. The Chan Hol 3 skeleton. (A) Bone map of the Chan Hol 3 skeleton. (B) Cranium in rostral view. (C) Cranium in dorsal view.

Arrow points to a trauma on the posterior portion of the parietal. (D) Cranium in right lateral view. (E) Cranium in left lateral view. The

red arrow points to trauma on the parietal bone. (F) Cranium in caudal view. Note extensive bone destruction on the occipital bone here

interpreted to result from treponemal bacterial disease. (G) Cranium in ventral view. (H) Mandible in right lateral view. (I) Mandible in

left lateral view. (J) Mandible in caudal view. (K) Mandible in dorsal view. (L) Right femur in frontal and (M) posterior view.

https://doi.org/10.1371/journal.pone.0227984.g003
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calculated using the regression equation by Genovés using maximum femoral length [20].

With this, a stature of 1.635±0.035 m was calculated. Overall, Chan Hol 3 is therefore an adult

female, approximately 30±11 years of age, with a height of 1.64 m.

4.3. Craniomorphology

Cranial Index was calculated to 76.00 and resulted in Chan Hol 3 being classified as mesoce-

phalic. This result fits in with the other three individuals from Yucatan: Hoyo Negro, Muknal

and Las Palmas (Fig 4; S5 Table). However, this cannot be said for the large proportion of

other crania in a similar age range (Late Pleistocene-Early Holocene), most of them being doli-

cocephalic (Fig 4; S5 Table). Chan Hol 3 has an upper/superior facial index of 51 which places

the skull as having a medium face, neither broad nor narrow. This is slightly different to the

other crania from Yucatan which have slightly broader faces (Fig 4; S5 Table). In general

terms, however, our data indicate that two distinct morphologies were present in Mexico as

early as 12 ky BP, with the individuals from Yucatan being the only sample present with meso-

cephalic skulls.

For the PCA study, a total of 452 individuals were analyzed when pooling both males and

females (Males: 241 & Females: 211; S3 Table). This data set included all specimens currently

present from the YP, with the newly discovered Chan Hol 3 plotted separately to highlight its

association with the rest of the Yucatan individuals. Two Principal Components (PCs) were

extracted resulting in 29.95% of the variation being explained by PC1 and 15.83% being

explained by PC2 (Fig 5). The main differences are seen along the second principal component

where the three ‘younger’ samples (Arikara, Peru, and Santa Cruz) occupy space within the

positive Y-axis, whereas older samples all have negative PC2 scores (Fig 5). This difference is

primarily explained by the variation seen in five cranial measurements (S4 Table). The larger

Maximum Cranial Length (GOL) and Basion—Bregma Height (BBH) are more associated

with the older samples (Mexico and South America), whilst Maximum Cranial and Facial

Breadths (XCB and XFB), and Nasio–Occipital Length (NOL) are greater in the younger

samples. Focusing on the negative PC2 space, we see three main clusters among the South

American, Mexican, and Californian samples. This variation is primarily driven by three mea-

surements on the mid-facial skull. The three individuals from the YP differ from the other two

clusters by smaller Bizygomatic Breadths (ZYB), Nasion-Prosthion Heights (NPH) and Nasal

Heights (NHL) (Fig 5; S4 Table). We further identify a cluster containing the other two Mexi-

can samples and the one from California; the three samples exhibit much larger ZYB, NPH,

and NHL, alongside the South Americans, as compared to the sister Yucatan sample (Fig 5).

These differences highlight some of the main differences found between a dolicocephalic skull

from Central Mexico and a mesocephalic skull from Yucatan.

4.4. Pathologies

Caries were identified on the first and second molars on the right side of the mandibular ramus

(Fig 6E). Also, the interproximal spaces between the molars are affected. The third mandibular

molar on the right has been completely resorbed. The third premolar on the right and left sides

and the second molars present plaque. The mandibular ramus on the left side presents a heavy

abscess and a loss of the third molar (Fig 3I). The abscess goes deep into the bone, which must

have caused severe pain. An abscess is seen on the middle and right part of the mandible leading

to a loss of all incisors and canines as well as the first premolar (Fig 3J and 3K).

The Chan Hol 3 presents arthritis on the humeral head and some vertebrae are showing

signs of eburnation (Fig 6C). Schmorl’s nodes are present on two of the vertebral bodies and

can be described as vertical disk hernias due to their position on the vertebral bodies.
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The posterior portion of the cranial vault surface exhibits dents and crater-like deforma-

tions. These deformations appear to be pathological in nature, especially surrounding the

lambdoidal suture (Fig 3F). The affected bone tissue has signs of a potential infection which

may have been caused by the healing trauma to the cranial vault (Fig 3F). The facial skeleton is

not affected. Possible differential diagnoses of the pathological lesions would be Treponema
peritonitis alongside osteitis, or severe periostitis resulting from a trauma to the skull [18, 19,

44]. The lesions observed in Chan Hol 3 show similarities to a pre-Colombian South American

male skull exhibiting Treponema peritonitis from 1650 y BP [22]. Other treponemal diseases

such as Syphilis and Yaws are less likely because they typically manifest in the skeleton differ-

ently (facial skeleton not affected etc.) and there is a lack of caries sicca.

The Chan Hol 3 individual shows signs of three traumas to the posterior and lateral portion

of the skull resulting in bone loss and remodeling. Two traumas are visible on the posterior

portion of the right parietal bone along the sagittal and lambdoidal sutures and are caused by a

potential sharp object (Figs 3C, 3F, 6A and 6B). The injuries resemble an isolated incisive trep-

anation which produces a fusiform groove (a.k.a. Indian canoe), which is normally caused by

scraping [45]. A differential assessment would be a healed sharp force trauma that has signs of

healing, with the perforations and slight irregular borders being caused by post-mortem tapho-

nomic processes. Neither of the possible two sharp force traumas show signs of radiating/con-

centric fractures at the macro level due to the sharpness of the object hitting the skull and there

Fig 4. Cranial index of the Chan Hol 3 woman in comparison with other North and South American skeletons ranging in age to>9 ky BP. For

numerical values of cranial index and for Superior Facies Index see S5 Table. Purple color: skeletons from the YP. Red color: skeletons from Central

Mexico. Green color: skeletons from North America. Blue color: Skeletons from Lagoa Santa (Sumidouro Cave), Brazil. The data indicate that the

Paleoindians from the YP are all in the mesocephalic index range (75–80), contrasting with the individuals from Central Mexico and North America

with dates older than 9 ky BP which are in general dolicocephalic (68–75). Graph modified from Hernández Flores [43].

https://doi.org/10.1371/journal.pone.0227984.g004
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creating an incised wound. As mentioned before, the slight irregular border/margins could

have been caused by healing and post-mortem taphonomic processes. The third potential

trauma is identified on the left parietal bone. This shows a circular perforation surrounded by

a raised area of new bone which could be signs of healing (Figs 3E and 6A). The cause of this

third trauma is unknown due to the new bone formation. Two small cut marks (20 mm) have

also been identified on the right caudal side of the temporal lobe (Fig 6D). To help fully under-

stand the pathologies and trauma seen on the cranium further analysis using medical imaging

(computerized tomography/CT) would help with the diagnoses of such lesions.

4.5. Dating

The preservation of the Chan Hol 3 bone material is good from the outside, but the internal

bone consistency is fragile due to the complete dissolution of collagen. We therefore refrained

from the application of 14C age analysis. Rather, we conducted 230Th/U-analysis of a flowstone

encrusting and embedding phalangeal bones of the Chan Hol 3 skeleton (Fig 2). In a previous

study, open-system behavior of U isotopes has been observed in speleothem calcite within 2

cm distance to the bone material [5]. To avoid similarly affected material, we therefore sam-

pled at sufficient distance of> 2 cm to the bone material (Fig 2). The analysis yielded low U

concentrations of 140 to 157 ng/g and low 232Th concentrations of 0.59 to 1.31 ng/g (Table 1).

Fig 5. Principal Components Analysis based on crania from the Americas with PC1 explaining 29.95% and PC2

explaining 15.83% of the total variation seen within the samples. See S4 Table for PC1 and PC2 loadings for each

variable.

https://doi.org/10.1371/journal.pone.0227984.g005

Chan Hol 3 woman

PLOS ONE | https://doi.org/10.1371/journal.pone.0227984 February 5, 2020 12 / 24

https://doi.org/10.1371/journal.pone.0227984.g005
https://doi.org/10.1371/journal.pone.0227984


Fig 6. Pathologies detected in the Chan Hol 3 female. (A) The red arrow points to trauma on the left parietal bone. (B) The red

arrow points to trauma on the parietal bone in caudal view. (C) Eburnation on the vertebrae. (D) Cut mark on the right temporal

bone. (E) Caries in molars 2 and 3 in the right mandible in buccal view. (F) Plaque and caries in molars of the left maxilla in

occlusal view.

https://doi.org/10.1371/journal.pone.0227984.g006

Table 1. 230Th/U measurements of the flowstone crust embedding a phalange of the Chan Hol skeleton.

N˚ 238U

(ng/g)

232Th

(ng/g)

230Th/238U

(Act. rat.)

230Th/232Th (Act.

rat.)

δ234U corr.

(‰)

Age uncorr.

(ky)

Age� corr.

(ky)

Age�� corr.

(ky)

δ234Uinitial

(‰)

Depth

[mm]

9770 139.862

±0.040

0.8527

±0.0026

0.0969

±0.0013

49.06±0.68 35.23±2.47 10.66±0.15 10.50±0.17 9.83±0.16 36.3±2.5 3.5

9771 157.01±0.11 1.3132

±0.0043

0.1007

±0.0016

37.13±0.59 36.77±2.47 11.08±0.18 10.87±0.22 9.94±0.18 37.9±2.5 4.5

9769 144.952

±0.024

0.5874

±0.0053

0.0952

±0.0016

72.29±1.41 36.14±2.28 10.45±0.21 10.35±0.20 9.90±0.19 37.2±2.3 5.5

https://doi.org/10.1371/journal.pone.0227984.t001
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The U-isotopic composition, i.e. the 234U/238U activity ratio (expressed as ‰-deviation from

secular radioactive equilibrium δ234U), is moderately positive and identical in all three samples

with 37.1±1.1 ‰. To estimate the influence of initial 230Th on the 230Th/U age, e.g. by detrital

contamination, our first order model is based on the conventionally used bulk Earth

(230Th/232Th) activity ratio of 0.76±0.2, which further assumes radioactive equilibrium within

the U-series decay chain. Using this assumption, calculated ages range from 10.35±0.2 ky BP

to 10.87±0.22 ky BP, with uncertainties quoted as 2σ uncertainty of the mean (Table 1). The

reference year for all ages given in the study is 1950 AD.

Given the minor traces of 232Th (< 1.3 ng), the conventional detrital corrections are small

(< 200 years) and lie within the uncertainty of the uncorrected ages. Ages are identical within

2σ uncertainty, except for the central sample which shows a moderate age inversion of 360 to

520 years outside the 2σ uncertainty of individual ages of 220 years. For stratigraphic reasons,

we tested the assumption that this age inversion is related to an elevated 230Th/232Th activity

ratio of the contaminating non-carbonate material, or an additional source of seepage water-

derived 230Th. For this purpose, we presumed the three samples as coeval within an uncer-

tainty of ±200 years; this assumption is based on the short period of carbonate growth (~520

years) and allows us to test the detrital 230Th model using an Osmond isochron [46]. From the

Osmond isochron (S1 Fig) a contaminating 230Th/232Th activity ratio of 3.96±0.2 can be esti-

mated leading to significant age corrections of up to -1100 years for the central-most contami-

nated carbonate. Assuming such a high 230Th contribution from cave seepage water or non-

carbonate contamination leads to an average age of the three samples of 9.9±0.1 ky BP with no

remaining age inversion, thus representing a minimum age of the carbonate. Given the small

number of analyses, it remains difficult to privilege one over the other correction models. Con-

sequently, we suggest that the layered carbonate embedding of the already present skeletal

remains formed between 9.9±0.1 and 10.57±0.11 ky BP, reflecting the weighted mean age of

both 232Th-correction models.

See Fig 2 for the position of samples. Errors are 2σ analytical errors. Corrected 230Th ages

assume (1) an initial (230Th/232Th) activity ratio of 0.76 ± 0.2 (�); and (2) 3.96 ± 0.2 (��) derived

from the Osmond isochrones approach assuming the three sub-samples as coeval.

4.6. Strontium Isotope analysis

The normalized 87Sr/86Sr ratio for the third right molar of Chan Hol 3 is 0.708878±0.000042

(2σ) and is given together with the SRM-987 standard values in S6 Table. Previous studies

have mapped the Sr-isotopic composition of modern local fauna samples (e.g. mice, deer, pec-

cary, rock, water, soils) and show increasing 87Sr/86Sr ratios from 0.704–0.706 in the southern

part, to higher ratios of 0.707–0.709 in the northern part of the YP (e.g. [47–49]). The highest

ratios (0.711–0.712) in Mesoamerica are associated with old plutonic and metamorphic rocks

in the Maya Mountains of Belize [49]. Hodell et al. [49] grouped the strontium baseline values

in five clusters that broadly match major geologic provinces (S2 Fig). Our measurement is well

in the range of values expected for the northern YP and corresponds to cluster 1 defined by

Hodell et al. [49] (S2 Fig).

5. Discussion

5.1. The Chan Hol 3 site

The Chan Hol 3 human skeletal remains were spread around a limestone slab, which neverthe-

less was not covered by bones, neither were bones detected by us below this rock (Fig 1C). The

limestone is inclined by about 15˚ from the horizontal as it is positioned on top of a horizon-

tally lying stalagmite (Fig 1E). We tentatively suggest that the flat limestone was intentionally
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placed by humans, perhaps serving as a “head rest” for the Chan Hol 3 individual. This inter-

pretation is based on the following pieces of circumstantial evidence: the rock shelf is lithologi-

cally identical to other limestone slabs that cover the cave floor forming an in situ broken

layer, but it partially overlies smaller fragments of this rock as well a broken stalagmite which

also appears to be out of place. Transport of the heavy limestone slab and its elevated position

above the cave floor are difficult to explain by water transport, nor does the slab correspond to

limestone from the ceiling that would have fallen to the ground, there knocking down the sta-

lagmite below the slab. As no human bones were detected below the limestone shelf, the skele-

ton must be younger than the placement of the slab.

Some bones were water-transported from their original position. While the mandible and

long bones only moved down gravitationally and were slightly moved by the water, the round

and air-filled skull was water-transported and rolled for about half a meter, where it rotated

upside down (Fig 1E). The original position of the skeleton is therefore difficult to determine,

but we tentatively suggest that it was preserved in a dorsal position.

At the time of decay and skeletonization, the cave was still dry and the Chan Hol 3 individ-

ual completely exposed on the cave floor. Water dripping from the cave ceiling resulted in the

deposition of flowstone encrusting some of the bones, e.g. a solid calcite crust of up to 10 mm

thickness covered the phalanges and fragmentary distal forearm epiphyses (Fig 2). From the

shape of this flowstone it appears that the cave floor was sloping, so that the bones caused the

water to be dammed. The flow around the bones caused those to be encrusted and resulted in

a nearly laminar layered crust. Below these bones, a porous tufa-like flowstone is present.

Millimeter-thin crusts of calcite crystals covered several other bones, e.g. metacarpals, ulna,

radius, maxillae. These crusts on the upward-directed surfaces of the long bones are caused by

humidity and vapor within a dry cave. The lower cave floor-directed portion of these bones

lack the crusts. Desiccation cracks on the cave floor further suggest a dry cave environment

alternating with episodes of precipitation.

5.2. Skeleton age assessment

Based on the 230Th/U analyses of the layered flowstone crust overlying the phalangeal bones

(Figs 2 and 7) the minimum terminus ante quem of the Chan Hol 3 skeleton is 9.9±0.1 ky BP.

Tufa-like flowstone immediately underlying the bone was not dated due to its porous tex-

ture and due to the potential effects of open-system behavior by U diffusion (e.g. [5]). In con-

sequence, no data are available to define the amount of time that elapsed between the death of

the individual and initial growth of the overlying carbonate, nor the time lapse needed for

maceration and decay of this individual. Consequently, the precise age of the Chan Hol 3 skel-

eton within the Pleistocene-Holocene transition remains uncertain.

Clearly, flooding of the Chan Hol 3 site was significantly later, during the final middle

Holocene rise of sea-level. This interpretation is supported by numerous charcoal concentra-

tions of cultural origin located at various sites of the Chan Hol cave system in depth levels

equivalent to those of the Chan Hol 3 site. These charcoal hearths 14C-dated to between 8,110

±28 14C y BP (9,122–8,999 cal y BP) and 7,177±27 14C y BP (8,027–7,951 cal y BP) are therefore

younger than both the Chan Hol 2 and 3 individuals [3, 6]. The Chan Hol 1 skeleton has been

dated to 9,589±49 14C y BP (11,073–10,817 cal y BP) [3, 6].

5.3. Assignation of the Chan Hol 3 individual

We originally expected that the skeleton documented here as Chan Hol 3 would have consti-

tuted the Chan Hol 2 skeleton, discovered in 2012 at only 140 m distance north of the one

described here but stolen by unknown cave divers a few weeks after discovery [5]. However,
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after a closer inspection and comparison of the present osteological material from the Chan

Hol 3 locality with photos taken prior to the looting of the Chan Hol 2 site, we are now positive

that the two must represent different individuals. This interpretation results from the fact that

several bones present in the material documented from Chan Hol 2 by Stinnesbeck et al. [5],

are also present at Chan Hol 3. Among this replicated material is a complete mandible at Chan

Hol 3, but fragmentary mandible at Chan Hol 2, upper lateral incisors, and complete right and

left femora in both skeletons. In addition, two perforations are clearly seen in the right parietal

of the Chan Hol 3 cranium, which are absent in the one documented for Chan Hol 2. Even

though the prominent chin of the Chan Hol 3 mandible is usually considered to be a male fea-

ture, the femur size along with the gracile skull indicates a female individual, whereas Chan

Hol 2 has been interpreted as a male [5].

5.4. Pathologies

Chan Hol 3 represents the fourth early female skeleton from the submerged caves of Tulum,

together with the Naharon, Las Palmas and Hoyo Negro individuals. The right and left femora

show strong anterior convexity (Fig 3L and 3M) which suggests high mobility, a feature often

seen in hunter-gatherer populations [50]. Arthritis has been documented in the Chan Hol 3

skeleton, as in those from Hoyo Negro, Naharon, Muknal, Las Palmas and El Templo [1, 3, 6].

5.4.1. Traumas. The Chan Hol 3 female survived three potential cranial traumas. The one

identified on the left parietal bone was caused by a potential blunt impact, leading to a rounded

opening of 2 mm diameter (Figs 3E and 6A). The cracks spread out in a circular manner

around the impact and are due to a strong swelling. The second and third trauma on the parie-

tal and occipital were caused by a hit, or heavy blow, on the back of the head with a sharp

object (Figs 3C, 3E, 3F, 6A and 6B). The turning angle of 15˚ indicates a lateral impact. How-

ever, these traumas show signs of healing, suggesting that the Chan Hol 3 female survived all

three.

5.4.2. Potential treponemal bacterial disease. In addition to traumas, the skull of the

Chan Hol 3 female exhibits irregular dents and crater-like deformations on the posterior parie-

tal and occipital bones of the cranium. These are here interpreted as evidence for an infection

(Fig 3F). The argument for infection is based on the interaction of these deformations with the

lambdoidal suture. A taphonomical issue of bone preservation can be excluded, as neither the

facial area of the skull, the mandible, nor postcranial elements, are affected by this form of

bone alteration. Furthermore, the osteological remains of Chan Hol 1 and 2 from the same

cave system, as also all other human and megafauna [51] remains from nearby caves in the

area, are extremely well preserved and their bone surfaces are smooth. They allow for a reliable

comparison of bone preservation levels based on the different find localities and from both

fresh- and salt-water (e.g. Chan Hol 1 to 3 skeletons were contained in fresh-water, most other

sites are salt-water). This excludes disintegration of bones by chemical reaction, producing

holes, as seen for example on the dorsal surface of the cranium of the ground sloth Xibalbao-
nyx from the El Zapote cenote [51]. However, even at El Zapote where bones are extremely

fragile due to heavy dissolution, the bone texture and surface are not deformed. Different to

these bones collected from salt-water, the cortex of the Chan Hol 3 cranium is thick, especially

the occipital area, indicating the absence of chemical dissolution. The morphological deforma-

tion on the skull in the Chan Hol 3 skeleton is more than likely to be a pathological pattern

and not a preservation issue.

Pathological skull deformation as seen in the Chan Hol 3 female has not been documented

for other early skeletons in the area and we here propose that it is possibly related to a trepone-

mal bacterial disease (Treponema peritonitis) with subsequent osteitis/periostitis. The
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evolutionary history of treponemal diseases includes the origin of syphilis and is therefore the

subject of on-going debate. As this would be the first evidence for Treponema peritonitis in an

early Holocene skeleton in the New World, the Chan Hol 3 skeleton may potentially help to set-

tle the debate. Today, the only other cases of these lesions in pre-Columbian skeletons are asso-

ciated with the Atacameña culture of Chile, Argentina and southern Bolivia, from a specimen

dating to 1650 BP [44], and a second dating to 2160 BP [52]. At this current stage, it is impossi-

ble to say which came first, the trauma to the skull or the bacterial infection. However, it makes

more sense to say that the bacterial infection is a result of the trauma seen on the skull.

5.4.3. Dental diseases. All pre-Mayan skeletons discovered to date in caves of the Tulum

area present extraordinary light dental attrition for a hunter and gatherer society, but

extremely high percentages of caries, aggressive periodontal diseases and dental abscesses (e.g.

53% of teeth affected in the 16–18 years old Naia female [53], but also see [3, 4, 54]. This patho-

logical pattern is also evident in the Chan Hol 3 female that lost most of her teeth during life,

and the remaining few show occlusal caries extending into the pulp cavity. Dental caries is an

oral infectious bacterial disease, causing demineralization of the enamel and underlying den-

tine [55]. The disease is multifactorial, but usually related to buccal microflora, enamel compo-

sition, dental surface irregularities and fluorine contents of the ground water [56–58], as well

as diet (e.g. carbon hydrate and sugar consumption) and body immunological responses [56–

58]. Dental caries and abscess prevalence in the Yucatan skeletons are thus significantly higher

than observed among other hunter-gatherers, except for a series of early Holocene skeletal

remains from Lagoa Santa, Brazil [59]. The unexpected record of poor oral health, especially

among females in this tropical South American locality, was attributed to a diet based on a

highly cariogenic combination of wild tubers and fruits [59]. Elsewhere, caries is rare in coeval

Paleoamerican skeletons of hunter-gatherer societies. In these latter individuals, e.g. from the

Basin of Mexico, strong crown attrition is attributed to the consumption of hard fibrous foods

([2]; OTHERS), as is also interpreted for coeval groups from Europe [60]. Attrition is surpris-

ingly light in the Chan Hol 3 female, but also in all other pre-Mayan skeletons known to date

from the Tulum area, including Naia [53].

We therefore hypothesize that the paleodiet of the Tulum pre-Mayan humans must have

differed significantly from that of other late Paleolithic hunter-gatherer societies, e.g. from

Europe and the Basin of Mexico. We agree with the interpretation of Cucina et al. [53] that the

Yucatan group depended on a nonabrasive diet that was at least seasonally rich in carbohy-

drates. As there is no evidence for early Holocene cultivation of plants on the YP, the unusually

high amount of caries observed in the Tulum skeletons suggests a high consumption of tuber-

cles and sweet (maltodextrine and sugar-rich) fruits, sweet cactus fruits, or honey from native

stingless bees (Meliposa sp.) as part of the daily diet.

5.5. Provenance of early Yucatan settlers

The isotopic composition of tooth enamel is based on food and liquids consumed during

infancy and does not change chemically during the life of the individual, and rather little dur-

ing death. Therefore, the tooth enamel composition measured here should provide a finger-

print on the provenance (place of birth/youth) of the individual [48, 61, 62]. The value of
87Sr/86Sr of 0.708878 is close to the ones previously determined for areas located within 40 km

distance to Tulum (0.7087 to 0.7091) [49, 63] and is also close to the one of modern seawater.

Nevertheless, this value also fits to localities in the Northwestern part of the peninsula where

identical values of 0.7089 to 0.7087 have repeatedly been observed [47, 49]. Consequently, we

cannot say whether the female studied here continuously lived in the Tulum area, or whether

she spent part of her life (esp. during adolescence) in the northwestern part of the peninsula.
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5.6. Usage of the Chan Hol cave

Interpretation of the Chan Hol 3 site as a burial, as previously documented for Las Palmas,

Muknal and Naharon skeletons [3, 4, 6], is inconclusive, even though the head and torso of the

female individual may have been intentionally placed on a limestone slab moved from its origi-

nal position. As in the Chan Hol 1 and 2 individuals, the legs of the Chan Hol 3 skeleton were

outstretched, suggesting that the individual was lying on its back. However, the anatomical

position is difficult to assess, since the female torso was disintegrated.

The terminus ante quem age of 9.9±0.1 ky of the Chan Hol 3 skeleton provides new support-

ing evidence for an early human use of the caves in the Tulum area. Human visits to caves in

the area, including Chan Hol Cave, started during the Late Pleistocene, as is indicated by 14C

ages of bones and by 230Th/U dating of limestone crusts and stalagmites encrusting bones (e.g.

Hoyo Negro, Naharon, Chan Hol 2) [1, 3, 5, 6]. Although the early human settlers may have

used the cave system as a burial ground or cult place [3, 4, 6], there is no positive evidence yet

to support this scenario for the three human skeletons discovered at Chan Hol Cave. Rather,

the death of the Chan Hol 1 to 3 individuals may have been accidental (e.g. treatment of the

infection by trepanning) [3, 5]. Alternatively, the traumas discovered on the skull of the Chan

Hol 3 female indicate potential personal violence. This interpretation is supported by the sharp

incised (healing) wounds, rather than crushing or blunt force trauma which would have been

caused by more rugged and larger objects (e.g. falling debris). In any case, it appears unlikely

that visits to the Tulum cave system were routine procedures that were executed frequently.

5.7. Cranial morphology studies and the settlement of the Americas

The Chan Hol 3 woman has a mesocranial morphology (Fig 4; S5 Table), characterized by a

flat forehead with wide cheekbones. These morphological traits have been detected in all pre-

Mayan skeletons discovered in the Tulum cave system [1, 3–6] (Fig 1A). Their cranial mor-

phology thus differs significantly from that of coeval Paleoindian skeletons from Central

Mexico, e.g. Peñon III Woman, Tlapacoya Man, Metro Man, Chimalhuacan Man [3],

which have been dated to between 12 to 7 ky BP (S1 Table) and all present dolicocephalic mor-

phologies [3] (Figs 4 and 5; S5 Table). Based on these important morphometric differences

among the skulls from Central Mexico and Tulum we suggest that at least two morphologically

different Paleoindian human groups inhabited Mexico during the late Pleistocene-Early

Holocene.

There are two potential hypotheses to explain the origin of these two different human

groups: (1) They are derived from human populations from different geographical points of

origin, or (2) They are the result of local micro-evolutionary processes such as genetic isola-

tion, habitat preference, survival strategies, or even diet, that may have resulted in an in situ
differentiation of the mesocranial morphologies identified in the skeletons of the Tulum area.

They may thus have been a substantial factor in the evolutionary development of the subse-

quent Mayan populations from Mesoamerica. Clearly, however, the two scenarios are exclu-

sively based on the morphometric aspects of these two populations and does not refer to their

phylogenetic relationships, or genetic data. Full genome data from these populations is

required to decide which hypothesis is correct because there are currently no data available.

6. Conclusions

The pre-Mayan skeleton here described from the Chan Hol cave near Tulum, Mexico, belongs

to a woman of about 30 years with three severe cranial traumas, in addition to evidence for a

possible treponemal bacterial disease. As seen in two other skeletons previously found in the

same cave system, the new Chan Hol 3 woman decayed in situ at times when these shallow
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parts of the cave were still dry. After skeletonization, some of the bones were cemented to the

cave floor by flowstone precipitated from calcite-saturated water (e.g. phalanges), while others

were water-transported and dispersed over a small area of three square meters, either during

heavy precipitation events or during the middle Holocene flooding of the cave. 230Th/U dating

of the calcite crusts overlying a phalange indicate a minimum age of the skeleton of 9.9±0.1 ky

BP.

The ten ate Pleistocene-Early Holocene individuals discovered and described so far in the

submerged caves of Tulum, Yucatán, indicate a mobile group, eating sugary foods as indicated

by the ubiquitous presence of caries. Their mesocranial skull morphologies are different to the

dolicocephalic morphologies found in equivalent Paleoindian age human populations from

Central Mexico that had strong teeth attrition indicating the consumption of hard foods. Our

data thus support the presence of two morphologically different human groups with different

subsistence strategies in Mexico during the Pleistocene-Holocene boundary transition.

Supporting information

S1 Fig. Osmond Isochron, assuming the three samples as coeval. This allows to test the

detrital 230Th model [46]. The slope of the regression line yields a (230Th/232Th) activity ratio

of the contaminating non-carbonate material of 3.96 ±0.2.

(TIF)

S2 Fig. Simplified geologic map of the Maya region showing the age of exposed bedrock

and results of cluster analysis based on 87Sr/86Sr measurements of water, bedrock, soils

and plant [49]. Yellow star shows position of the Chan Hol cave and skeleton. Slightly modi-

fied figure taken from Hodell et al. [49].

(TIF)

S1 Table. Radiometric dating of human bones, speleothem and charcoal associated with

early skeletons from submerged caves in the Tulum area and from other North- and South

America sites.

(PDF)

S2 Table. Osteometric measurements taken according to Buikstra and Ubelaker [17] and

Howells [16]. Abbreviations are explained there.

(PDF)

S3 Table. Breakdown of osteometric variables and cranial samples used for the PCA. Sum-

mary of Chronologies and Location of each Sample used for the PCA.

(PDF)

S4 Table. The PC loadings for the first two Principal Components extracted from the

PCA. For definition of the cranial variables see S3 Table.

(PDF)

S5 Table. Cranial index and Superior Facial Index of skeletons from Mexico, North and

South America presented in Fig 4.

(PDF)

S6 Table. Results of 87Sr/86Sr analyses of tooth enamel of the third left mandibular molar

of the Chan Hol 3 skeleton found in the submerged Chan Hol cave at Tulum, Quintana

Roo, Mexico. The data are normalized to standard SRM987.

(PDF)
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Internacional el Hombre Temprano en América: Instituto Nacional de Antropologia e Historia, México;
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