
diagnostics

Review

A Comprehensive Review on Radiomics and Deep Learning
for Nasopharyngeal Carcinoma Imaging

Song Li 1, Yu-Qin Deng 1, Zhi-Ling Zhu 2, Hong-Li Hua 1 and Ze-Zhang Tao 1,*

����������
�������

Citation: Li, S.; Deng, Y.-Q.; Zhu,

Z.-L.; Hua, H.-L.; Tao, Z.-Z. A

Comprehensive Review on

Radiomics and Deep Learning for

Nasopharyngeal Carcinoma Imaging.

Diagnostics 2021, 11, 1523. https://

doi.org/10.3390/diagnostics11091523

Academic Editor: Damiano Caruso

Received: 13 May 2021

Accepted: 19 August 2021

Published: 24 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University,
238 Jie-Fang Road, Wuhan 430060, China; 2019183020073@whu.edu.cn (S.L.);
RM001651@whu.edu.cn (Y.-Q.D.); 2019283020238@whu.edu.cn (H.-L.H.)

2 Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China; zhuzhiling1993@hotmail.com

* Correspondence: taozezhang@hotmail.com

Abstract: Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the
head and neck, and improving the efficiency of its diagnosis and treatment strategies is an important
goal. With the development of the combination of artificial intelligence (AI) technology and medical
imaging in recent years, an increasing number of studies have been conducted on image analysis of
NPC using AI tools, especially radiomics and artificial neural network methods. In this review, we
present a comprehensive overview of NPC imaging research based on radiomics and deep learning.
These studies depict a promising prospect for the diagnosis and treatment of NPC. The deficiencies of
the current studies and the potential of radiomics and deep learning for NPC imaging are discussed.
We conclude that future research should establish a large-scale labelled dataset of NPC images and
that studies focused on screening for NPC using AI are necessary.

Keywords: nasopharyngeal carcinoma; deep learning; radiomics; imaging

1. Introduction

Nasopharyngeal carcinoma (NPC) is an epithelial carcinoma arising from the nasopha-
ryngeal mucosal lining [1]. According to data from the International Agency for Research
on Cancer, the number of new cases of NPC in 2020 was 133,354, of which 46.9% were
diagnosed in China, showing an extremely uneven geographical distribution [2] (Figure 1).
Although NPC accounts for only 0.7% of all malignant tumours and is relatively rare
compared with other cancers, it is one of the most common malignant tumours in head
and neck cancer [2,3]. NPC occurs more often in males, and the incidence of NPC in males
is 2.5 times higher than in females [4]. Heredity and genes play important roles in the de-
velopment of NPC [5–7], and the Epstein–Barr virus infection is perhaps the most common
causal agent [1,8]. According to the differentiation of tumour cells, the WHO classified NPC
into three types in 2003: keratinizing squamous cell carcinoma, non-keratinizing carcinoma,
and basaloid squamous cell carcinoma [9]. The prognosis of NPC is generally better than
that of most other cancers, with the reported overall 5-year survival rate reaching 80% [10].
Radiotherapy for early NPC and concurrent chemoradiotherapy for advanced NPC are
recommended by the National Comprehensive Cancer Network [11]. Optimum imaging
is crucial for staging and radiotherapy planning for NPC [12]. There are various general
image inspections for NPC, including computed tomography (CT), magnetic resonance
imaging (MRI), and electronic endoscopy. Compared with CT, MRI is the preferred method
for primary tumour delineation because of its high resolution on soft tissue [13,14].

In recent years, artificial intelligence (AI) has been rapidly integrated into the field
of medicine, especially into medical imaging. Research on the application of AI in NPCs
has also gradually become a hot topic. Lancet has published a series of reviews titled ‘Na-
sopharyngeal carcinoma’ every few years [1,12,15,16]. In the most recent review published
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in 2019, 18 research questions on NPC that remain to be answered were proposed, and
two of them were about AI and NPC: ‘How can reliable radiomics models for improving
decision support in NPC be developed?’ and ‘How can artificial intelligence automation
for NPC treatment decisions (radiotherapy planning, chemotherapy timing, and regimens)
be applied?’. Subsequently, many articles in this area have emerged, and a large number of
studies have reported on tumour detection, image segmentation, prognosis prediction, and
chemotherapy efficacy prediction in NPC. In these studies, radiomics and deep learning
(DL) have gradually become the most important AI tools.
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Figure 1. Estimated age-standardised incidence rates (World) in 2020, nasopharynx, both sexes, all 
ages. ARS: age-standardised rates. Data source: GLOBOCAN 2020. Graph production: IARC 
(http://gco.iarc.fr/today, accessed on 31 March 2021.) World Health [2]. 
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grams, shape- and size-based features, texture-based features, and wavelet features [24]. 
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In this work, we focus on the studies of radiomics and DL in the image analysis of
NPC and aim to spread the implementation pipeline of radiomics and DL and discover the
future potential of radiomics and DL in this field. Because each model in these studies is
trained based on a different database which has a huge impact on the model, and because
there are no indicators or validation protocols of consensus for the evaluation of each
model’s performance, a comprehensive overview is presented to provide a holistic profile
instead of a meta-analysis.

This paper will be presented in the following sections:

1. The pipeline of radiomics and the principle of DL are briefly described;
2. The studies of radiomics and DL for NPC imaging in recent years are summarized;
3. The deficiencies of current studies and the potential of radiomics and DL for NPC

imaging are discussed.

2. Pipeline of Radiomics

The suffix-omics has initially arisen from ‘genomics’, which is generally defined as the
study of whole genomes [17]. Radiomics, which was first proposed by Lambin in 2012 [18],
is a relatively ‘young’ concept and is considered a natural extension of computer-aided diag-
nosis and detection systems [19]. It converts imaging data into a high-dimensional mineable
feature space using a large number of automatically extracted data-characterization al-
gorithms to reveal tumour features that may not be recognized by the naked eye and to
quantitatively describe the tumour phenotype [20–23]. These extracted features are called
radiomic features and include first-order statistics features, intensity histograms, shape-
and size-based features, texture-based features, and wavelet features [24]. Conceptually
speaking, radiomics belongs to the field of machine learning, although human participation
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is needed. The basic hypothesis of radiomics is that the constructed descriptive model
(based on medical imaging data, sometimes supplemented by biological and/or medical
data) can provide predictions of prognosis or diagnosis [25]. A radiomics study can be
structured in five steps: data acquisition and pre-processing, tumour segmentation, feature
extraction, feature selection, and modelling [26,27] (Figure 2). In some other reviews, the
radiomics pipeline is described in four steps [25,28], in which feature selection and model
building are grouped into one step, considering that the two steps are completed in a
sequence in the program.
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The collection and pre-processing of medical images is the first step in the implemen-
tation of radiomics. Radiomics relies on well-annotated medical images and clinical data to
build target models. CT was first used when radiomics was proposed [18]. Subsequently,
MRI [29], positron emission tomography (PET/CT) [30], and ultrasound [31,32] have been
widely used for image analysis of different tumours using radiomics. Image pre-processing
(filtering and intensity discretization) is essential as these images often come from different
hospitals or medical centres, which results in differences in image parameters, and such
differences may have unexpected effects on the model.

Image segmentation is a distinctive feature of radiomics. The methods of image seg-
mentation generally include manual segmentation and semi-automatic segmentation [33].
The region of image segmentation determines which voxels will be included in the analysis,
so image segmentation is a basic step of radiomics. However, there is no gold standard for
image segmentation. The operation of different personnel will inevitably lead to differences
of segmentation regions, which results in the heterogeneity of extracted image features
and affects the performance of the model. The process of image segmentation is a very
cumbersome step that depends on professionals, which leads to difficulties in obtaining
high-quality data and increases the difficulty of clinical translation [34,35].

Feature extraction is a technical step in the pipeline of radiomics, which is im-
plemented in software such as MATLAB. The essence of radiomics is to extract high-
throughput features that connect medical images and clinical endpoints from images.
These details must be included in the article as the process of feature extraction is affected
by the algorithm, methodology, and software parameter setting [36,37]. The current ra-
diomics pipeline typically incorporates approximately 50–5000 quantitative features, and
this number is expected to increase [28].

The purpose of feature screening is to reduce the dimensionality of features and
screen out the features most relevant to clinical endpoints to avoid overfitting of the
model. When the feature dimension exceeds a limit, the performance of the classifier
decreases with an increase in the feature dimension, and the time cost of training the model
increases. Therefore, the selection of more effective feature subsets through feature selection
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algorithms is very important for establishing the model. According to the form of feature
selection, the current feature screening methods are divided into three categories: filter,
wrapper, and embedding [38]. Among them, the least absolute shrinkage and selection
operator (LASSO), which is an embedding method, is the most commonly used [39,40].

The process of modelling entails finding the best algorithm to link the selected image
features with the clinical endpoints. Supervised and unsupervised learning are common
strategies [25,41]. The modelling strategy has been proven to affect the performance of the
model [42]. Therefore, it is necessary to select the most appropriate algorithm according
to the type of data and target. In addition, building multiple models simultaneously is
a worthy, but not a necessary method. Model verification is an indispensable step in
establishing the model. The best strategy is to use independent, external data to verify the
performance of the model; this has not been implemented in many studies.

To date, radiomics has made impressive performances in tumour differentiation [43–45],
prognosis evaluation [46–48], therapeutic effect evaluation [49–52], and tumour metastasis
evaluation [53–55]. Compared with the performance of traditional predictive models based
on clinical data and imaging anatomy, better performance of radiomics has been widely
reported [24,56,57].

3. The Principle of DL

For a better understanding of DL, it is necessary to clarify the two terms of AI and
machine learning, which are often accompanied by and confused with DL [58] (Figure 3).
The concept of AI was first proposed by John McCarthy, who defined it as the science
and engineering of intelligent machines [59]. In 1956, the AI field was first formed in a
Dartmouth College seminar [60]. Currently, the content of AI has become much richer to in-
clude knowledge representation, natural language processing, visual perception, automatic
reasoning, machine learning, intelligent robots, automatic programming, etc. The term AI
has become an umbrella term [61]. Machine learning is a technology used to realize AI.
Its core idea is to use algorithms to parse and learn from data, then make decisions and
predictions about events in the real world [62], which is different from traditional software
programs that are hard-coded to solve specific tasks [63]. The algorithm categories include
supervised learning algorithms, such as classification and regression methods [64], unsu-
pervised learning algorithms, such as cluster analysis [65], and semi-supervised learning
algorithms [66]. DL is an algorithm tool for machine learning [67]. It is derived from an
artificial neural network (ANN), which simulates the mode of human brain processing
information [68], and uses the gradient descent method and back-propagation algorithm
to automatically correct its own parameters, making the network fit the data better [69,70].
Compared with the traditional ANN, DL has more powerful fitting capabilities owing to
more neuron levels [71]. According to different scenarios, DL includes a variety of neural
network models, such as convolutional neural networks (CNNs) with powerful image
processing capabilities [72], recurrent neural networks (RNNs), which primarily process
time-series samples [73,74], and deep belief networks (DBNs), which can deeply express
the training data [75]. In recent years, CNN-based methods have gained popularity in the
medical image analysis domain [67,76,77]. In the studies of NPC imaging using DL models,
CNN was adopted in almost all studies.

There are four key ideas behind CNNs that take advantage of the properties of natural
signals: local connections, shared weights, pooling, and the use of many layers [68]. The
structure of a CNN, which is mainly composed of an input layer, hidden layer, and output
layer, is shown in Figure 4. The hidden layers consist of a convolutional layer, pooling layer,
and a fully connected layer. After inputting an image, a greyscale image is converted into a
single-channel matrix according to the grey value of each pixel, whereas a colour image is
converted into a three-channel matrix. Fixed-size convolution kernels (usually 3 × 3) are
used to sequentially scan the matrix area of the same size on the image, and the values of
the convolution kernels are multiplied by the values of the corresponding position on the
image matrix and finally summed. Each time the convolution kernel moves to the right
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according to a fixed step (after reaching the right edge of the image, it moves down one step
and returns to the left edge of the image) to obtain a summed value. When the convolution
kernels finish scanning the entire image, a new matrix, called a convoluted feature, is
developed. The pooling layer is a process of downsampling the spatial dimension, with
the aim of feature reduction, compressing the parameter number to reduce overfitting [78].
There are generally three methods of pooling: stochastic pooling, average pooling, and the
most commonly used, max pooling. The most common size of a pooling filter is 2 × 2, and
the most common step size is 2. Generally, the convolution and pooling processes of a CNN
model are repeated many times, and the ‘depth’ of a DL model is embodied in the number
of convolutions. Common CNN models are endowed with high depth and a large number
of parameters. For example, the VGG-16 model, which won the runner-up in the 2014
ILSVRC competition, has a total of 16 layers with 138 million parameters. Usually, there
are several fully connected layers at the bottom of a CNN. The fully connected layer maps
the learned distributed feature representation to the sample label space and transforms
the quantitative value into a nonlinear value through an activation function, which plays
the role of a classifier in the model [72]. Owing to its principle, CNN has an advantage in
processing image-related tasks and is widely used in medical imaging-related research [79].
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Because of the differences in the principles behind deep learning and radiomics, there
are differences in the specific tasks and advantages of their implementation processes.
Because implementations of radiomics require manual segmentation of lesion areas to
capture the radiomics features, this approach is more often used to perform the tasks of
diagnosis prediction, assessment of tumour metastasis, and prediction of therapeutic effect.
Deep learning models are often based on the whole image, which contains information
on the relationship between the tumour and the surrounding tissues. Therefore, image
synthesis, lesion detection, prognosis prediction, and image segmentation are regarded
more commonly as tasks suitable for deep learning methods. Because the input image
of most deep learning tasks is often a full image, which contains the noise information
around the lesion, the performance of deep learning models is thus far not as good as
that of radiomics for the same dataset due to the embedded noise information. However,
because radiomics retains the fundamental disadvantage that manually defining the area
of interest is strictly required, which necessitates the performance of considerable human
labour and this is not required by deep learning methods, the datasets available for deep
learning tasks could be much larger than those of the radiomics task. In addition, with the
rapid development of deep neural network algorithms, the performance of deep learning
is gradually improving and its performance in many tasks now exceeds the performance
of radiomics. For example, Google’s EfficientNet series of networks, published in ICML
2019 [80], demonstrated an extremely impressive performance in terms of efficiency and
accuracy of ImageNet tasks.

Although radiomics arose in 2012, and DL has captured the researchers’ vision since
2015, there have been few studies on NPC imaging before 2017. Therefore, most of the
studies included in this paper are from January 2017 to March 2021. From the perspective
of technology, radiomics and DL tasks in medical images include detection, segmentation,
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and most commonly, classification. However, these concepts are abstract for most clinicians
who do not grasp the idea of AI. Therefore, we summarize the published studies in this
area from the perspective of specific clinical issues to be solved.

After screening and systematically summarizing the retrieved literature, we sum-
marized the specific issues that have been considered and divided the studies into three
sections according to whether the studies adopted radiomics, DL, or both. Specific tasks
using radiomics are divided into the following categories: prognosis prediction, assessment
of tumour metastasis, tumour diagnosis, prediction of therapeutic effect, and prediction
of complications. Specific tasks using DL are divided into prognosis prediction, image
synthesis, detection and/or diagnosis, and image segmentation. We summarize the contri-
butions, methods, and results of each paper in accordance with the chronological order
of publication. To evaluate the model, we selected representative outcome indicators
for concise presentation (external validation, best model, evaluation indicators of area
under the curve (AUC), C-index, or Dice similarity coefficient (DSC) were preferred). A
consolidated description of similar studies has been adopted.

4. Screening of Studies

Because there are no indicators or validation protocols of consensus for the evaluation
of each model’s performance, and we firmly believe that comparison of models is tenuous
for the heterogeneity of a database, a holistic profile of this field was provided instead
of a meta-analysis. From this perspective, loose inclusion and exclusion criteria were set
(Table 1). Finally, a total of 80 studies were included after following the inclusion and
exclusion criteria (Figure 5).

Table 1. Inclusion and exclusion criteria of the study.

Criterias Detailed Rules and Regulations

Inclusion Criteria

• Journal articles published in the English language;
• Studies published from 2012 to date;
• Original researches;
• Full-text papers that are accessible;
• Radiomics was used to analyze the images of NPC;
• Deep learning was used to analyze the images of NPC;
• The samples, the image data used, the modeling method and

evaluation method are described in detail.

Exclusion Criteria

• Papers that are written in other languages;
• Full-text of the document is not accessible on the internet;
• Relevant studies, but other machine learning algorithms that are

not based on deep learning or radiomics were used for modeling;
• Relevant studies, but not based on NPC images;
• The information of samples, the image data used, the modeling

method or evaluation method are not described;
• Conferences papers, literature reviews, and editorial materials

that do not belong to original researches.
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5. Studies Based on Radiomics
5.1. Prognosis Prediction

Prognosis prediction includes tumour risk stratification and recurrence/progression
prediction. Among the 31 radiomics-based studies retrieved, 17 were on this topic (Table 2).

5.1.1. 2017

Zhang was one of the first researchers to apply radiomics to NPC imaging. In 2017, he
published three studies in this area, all of which were based on MRI images. In [24], a risk
stratification prediction model with a C-index of 0.776 was established using a nomogram.
In [81], four risk stratification prediction models were established based on random forest,
random forest and adaptive boosting, sure independence screening, and linear support
vector machine. The AUC was used to evaluate the performance of the model. The best
AUC for the validation cohort was 0.846. In [82], a prediction model for predicting the
progression of an advanced NPC was established. The dataset included 113 patients. The
tumour progression and outcome of patients were predicted according to the radiomics
score of the model, and the AUC value reached 0.886.
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In the study by Ouyang [83], 100 patients with advanced NPC were included. Ra-
diomic features were extracted, and a Cox proportional hazards regression model was
established based on MRI images. The model successfully stratified patients into low- or
high-risk groups in the validation set (hazard ratio [HR] = 7.28, p = 0.015).

5.1.2. 2018

Retrieved none.

5.1.3. 2019

The study of Lv [84] is the only positron emission tomography (PET)/CT-based study,
which was different from other studies in 2019. A total of 128 patients with NPC were
included and 3276 radiomic features were extracted. Then, 13 clinical characteristics were
selected in the study to establish seven predictive models using the Cox proportional
hazard regression. The C-index was used to evaluate the performance of the models, and
the best C-index value in the validation cohort was 0.77.

Several other MRI-based studies were conducted in 2019 [85–91], among which [85,91]
used a support vector machine (SVM) to establish a prediction model after feature extraction
and selection; the best C-index in the validation cohort of [85] was 0.814, while the AUC
in [91] was 0.80. The Cox proportional hazard regression and nomogram were used to
build predictive models in [86,87,89]; 737 patients were included in [86], and the C-index
of the external validation cohort was 0.73, which was better than that of clinical prognostic
variables (0.577, 0.605). In [87], 260 radiomic features were extracted from the primary
tumour and lymph nodes on axial MRI, and LASSO was applied for feature selection and
data dimension reduction. Finally, a C-index of 0.811 was obtained. In [89], univariate
and multivariate analyses were used for feature selection from the 970 features that were
extracted from 140 patients with NPC, and a radiomic nomogram was built by multivariate
analyses, which finally reached a C-index of 0.74. In [90], clinical features of tumour volume,
T stage, N stage, overall stage, age, and gender were added after extracting the imaging
features. Then, the Cox proportional hazard regression analysis was used to determine the
independent predictors of progression-free survival and establish a prediction model. The
optimal AUC for the model was 0.825. In the study of [88], conventional imaging methods
were used, and disease-free survival and overall survival were used as clinical endpoints.
Finally, C-indices of 0.751 and 0.845, respectively, were obtained.

5.1.4. 2020

In [92], a total of 128 patients were included, and PET/CT was used to build the dataset.
The tumour of each patient was partitioned into several phenotypically consistent sub-
regions based on individual- and population-level clustering. Subsequently, 202 features
were extracted in each sub-region, and the imaging biomarkers and clinicopathological
factors were evaluated using multiple Cox regression analyses and Spearman correlation
analysis. It was concluded that the predictive performance of the biomarkers in the sub-
regions with three PET/CT imaging characteristics is better than the predictive performance
of the entire tumour (C-index, 0.69 vs. 0.58).

In [93,94], MRI images were used to build datasets that included 327 and 136 patients
with NPC, respectively. LASSO and recursive feature elimination were used to select fea-
tures in [93]. The author constructed five models to predict progression-free survival using
the univariate Cox proportional hazard model, and the best C-index in the validation set
was 0.874. A total of 530 stable features were extracted, and 67 non-redundant features were
selected in [94]. Four predictive models were constructed based on the Cox proportional
hazard model, and the C-index of the best model was 0.72.

In [95], 100 consecutive cases of NPC were recruited, and nine of the most relevant
radiomic features were selected from features extracted from PET and MRI using LASSO.
A predictive model of NPC staging was established based on logistic regression, and the
total AUC in PET and MR were 0.84 and 0.85, respectively.
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5.1.5. 2021

In [96], a multiple model combined with SVM based on the PET/CT of 85 patients
with stage III-IVB NPC was established. The model predicted local recurrence and distant
metastasis of tumours with sequential floating forward selection and achieved an AUC
of 0.829.

Table 2. Studies of predicting the prognosis of nasopharyngeal carcinoma (NPC) using radiomics.

Author, Year,
Reference Image Sample Size

(Patient) Feature Selection Modeling Model Evaluation

Zhang, B. (2017) [24] MRI 108 LASSO CR, nomograms, calibration
curves C-index 0.776

Zhang, B. (2017) [81] MRI 110 L1-LOG, L1-SVM, RF, DC,
EN-LOG, SIS

L2-LOG, KSVM, AdaBoost,
LSVM, RF, Nnet, KNN, LDA,

NB
AUC 0.846

Zhang, B. (2017) [82] MRI 113 LASSO RS AUC 0.886

Ouyang, F.S. (2017) [83] MRI 100 LASSO RS HR 7.28

Lv, W. (2019) [84] PET/CT 128 Univariate analysis with FDR,
SC > 0.8 CR C-index 0.77

Zhuo, E.H. (2019) [85] MRI 658 Entropy-based consensus
clustering method SVM C-index 0.814

Zhang, L.L. (2019) [86] MRI 737 RFE CR and nomogram C-index 0.73

Yang, K. (2019) [87] MRI 224 LASSO CR and nomogram C-index 0.811

Ming, X. (2019) [88] MRI 303 Non-negative matrix
factorization Chi-squared test, nomogram C-index 0.845

Zhang, L. (2019) [89] MRI 140 LR-RFE CR and nomogram C-index 0.74

Mao, J. (2019) [90] MRI 79 Univariate analyses CR AUC 0.825

Du, R. (2019) [91] MRI 277 Hierarchal clustering analysis,
PR SVM AUC 0.8

Xu, H. (2020) [92] PET/CT 128 Univariate CR, PR > 0.8 CR C-index 0.69

Shen, H. (2020) [93] MRI 327 LASSO, RFE CR, RS C-index 0.874

Bologna, M. (2020) [94] MRI 136 Intra-class correlation
coefficient, SCC > 0.85 CR C-index 0.72

Feng, Q. (2020) [95] PET/MR 100 LASSO CR AUC 0.85

Peng, L. (2021) [96] PET/CT 85 W-test, Chi-square test, PR, RA SFFS coupled with SVM AUC 0.829

Least absolute shrinkage and selection operator (LASSO), L1-logistic regression (L1-LOG), L1-support vector machine (L1-SVM), random
forest (RF), distance correlation (DC), elastic net logistic regression (EN-LOG), sure independence screening (SIS), L2-logistic regression
(L2-LOG), kernel support vector machine (KSVM), linear-SVM (LSVM), adaptive boosting (AdaBoost), neural network (Nnet), K-nearest
neighbour (KNN), linear discriminant analysis (LDA), and naive Bayes (NB).

5.2. Assessment of Tumour Metastasis
5.2.1. 2017–2018

Retrieved none.

5.2.2. 2019

A classic radiomics approach was implemented in [97]. After extracting 2780 features
from the MRI of 176 patients with NPC, LASSO was used for feature screening, and
a radiomics model for predicting the distant metastasis of tumours based on logistic
regression was established. The AUC for the validation set was 0.792.

5.2.3. 2020

The authors in [98] developed an MRI-based radiomics nomogram for the differential
diagnosis of cervical spine lesions and metastasis after radiotherapy. A total of 279 radiomic
features were extracted from the enhanced T1-weighted MRI, and eight radiomic features
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were selected using LASSO to establish a classifier model that obtained an AUC of 0.72
with the validation set.

In [99], the authors explored the issue of whether there was a difference between
radiomic features derived from recurrent and non-recurrent regions within the tumour.
Seven histogram features and 40 texture features were extracted from the MRI images of
14 patients with T4NxM0 NPC. The author proposed that there were seven features that
were significantly different between the recurrent and non-recurrent regions.

Manual delineation of the region of interest (ROI), which is widely used in current
radiomics-related studies, has a high degree of variability. However, the tolerance of
delineation differences and the possible influence of each step of radiomic analysis are not
clear. In [100], based on 238 cases of NPC and 146 cases of breast cancer images, the author
established a model for assessing sentinel lymph node metastasis by using a random forest
algorithm and implementing erosion, smoothing, and dilation on the ROI. It was proposed
that differences from smooth delineation or expansion with 3 pixels width around the
tumours or lesions was acceptable.

5.2.4. 2021

In 2021, the study of [96], which was introduced in the section on prognosis prediction,
established a model for the assessment of tumour metastasis simultaneously. The best
AUC for predicting tumour metastasis was 0.829 (Table 3).

Table 3. Studies for assessing tumour metastasis using radiomics.

Author, Year,
Reference Image Sample

Size Feature Selection Modeling Model
Evaluation

Zhang, L. (2019) [97] MRI 176 LASSO LR AUC 0.792

Zhong, X. (2020) [98] MRI 46 LASSO Nomogram AUC 0.72

Akram, F. (2020) [99] MRI 14 Paired t-test and
W-test

Shapiro-Wilk
normality tests p < 0.001

Zhang, X. (2020) [100] MRI 238

MRMR combined
with

0.632 + bootstrap
algorithms

RF AUC 0.845

Peng, L. (2021) [96] PET/CT 85 W-test, PR, RA,
Chi-square test

SFFS coupled
with SVM AUC 0.829

Maximum relevance minimum redundancy (MRMR).

5.3. Tumour Diagnosis
5.3.1. 2017

Retrieved none.

5.3.2. 2018

Lv [101] established a diagnostic model to distinguish NPC from chronic nasopharyn-
gitis using the logistic regression of leave-one-out cross-validation method. A total of
57 radiological features were extracted from the PET/CT of 106 patients, and AUCs be-
tween 0.81 and 0.89 were reported.

5.3.3. 2019

Retrieved none.

5.3.4. 2020

In [102], 76 patients were enrolled, including 41 with local recurrence and 35 with
inflammation, as confirmed by pathology. A total of 487 radiomic features were extracted
from the PET images. The performance was investigated for 42 cross-combinations derived
from six feature selection methods and seven classifiers. The authors concluded that
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diagnostic models based on radiomic features showed higher AUCs (0.867–0.892) than
traditional clinical indicators (AUC = 0.817) (Table 4).

Table 4. Studies of nasopharyngeal carcinoma (NPC) diagnosis using radiomics.

Author, Year,
Reference Image Sample

Size Feature Selection Modeling Model Evaluation

Lv, W. (2018) [101] PET/CT 106 Intra-class coefficient LR with LOOCV AUC 0.89

Du, D. (2020) [102] PET/CT 76 MIM, FSCR, RELF-F, MRMR,
CMIM, JMI, SC > 0.7

DT, KNN, LDA, LR, NB,
RF, and SVM with radial

basis function kernel
AUC 0.892

Logistic regression with leave-one-out cross-validation (LOOCV), mutual information maximization (MIM), Relief-F (RELF-F), conditional
mutual information maximization (CMIM), Fisher score (FSCR), joint mutual information (JMI), Spearman’s correlation (SC).

5.4. Prediction of Therapeutic Effect
5.4.1. 2017

Retrieved none.

5.4.2. 2018

Wang [103] established an MRI-based imaging omics model for the pre-treatment
prediction of early response to induction chemotherapy. A total of 120 patients with stage
II-IV NPC were enrolled, and the best AUC of the model was 0.822.

5.4.3. 2019

Yu [104] established a radiomics model based on MR images to predict adaptive
radiotherapy eligibility of patients with NPC before the start of the treatment in their study.
After feature extraction, a double cross-validation approach of 100 resampled iterations
with 3-fold nested cross-validation was employed in the LASSO logistic region for feature
selection. Then, a prediction model was established, in which the method of modelling
was not declared. An average AUC of 0.852 was reached with the testing set.

5.4.4. 2020

In [105], 108 patients with advanced NPC were included to establish the dataset.
The ANOVA/Mann–Whitney U test, correlation analysis, and LASSO were used to select
texture features, and multivariate logistic regression was used to establish a predictive
model for the early response to neoadjuvant chemotherapy. Finally, an AUC of 0.905 was
obtained for the validation cohort.

In [106], logistic regression was used to establish a prediction model based on MRI
images to predict the response of advanced NPC to the induction chemotherapy of a
gemcitabine plus cisplatin (GP) regimen and docetaxel plus cisplatin (TP) regimen. In
the validation cohort, the predictive ability of the established model for the GP regimen
reached an AUC of 0.886, while the AUC in the TP regimen was 0.863.

In [107], 19 radiomic features were screened out by using t-test, LASSO regression,
and leave-one-out cross-validation after feature extraction from 123 patients with NPC.
These 19 radiomic features were combined with clinical features to establish a prediction
model of induction chemotherapy based on SVM, which reached an AUC of 0.863 (Table 5).
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Table 5. Studies for the prediction of therapeutic effect of nasopharyngeal carcinoma (NPC)
using radiomics.

Author, Year, Reference Image Sample
Size Feature Selection Modeling Model

Evaluation

Wang, G. (2018) [103] MRI 120 LASSO LR AUC 0.822

Yu, T.T. (2019) [104] MRI 70 LASSO Univariate LR AUC 0.852

Yongfeng, P. (2020) [105] MRI 108
ANOVA/MW test,
correlation analysis

and LASSO

Multivariate
LR AUC 0.905

Zhang, L. (2020) [106] MRI 265 LASSO LR AUC 0.886,
0.863

Zhao, L. (2020) [107] MRI 123 t-test and LASSO
based on LOOCV

SVM,
nomogram,
backward

stepwise LR

C-index 0.863

5.5. Predicting Complications
5.5.1. 2017–2018

Retrieved none.

5.5.2. 2019

In [108], a radiomics model for predicting early acute xerostomia during radiation
therapy was established based on CT images. Ridge CV and recursive feature elimination
were used for feature selection, whereas linear regression was used for modelling. However,
the study’s test cohort included only four patients with NPC and lacked sufficient evidence,
despite the study reaching a precision of 0.922.

5.5.3. 2020

The authors in [109] established three radiomics models for the early diagnosis of
radiation-induced temporal lobe injury based on the MRIs of 242 patients with NPC. The
feature selection in the study was achieved by the Relief algorithm, which is different from
other studies. The random forest algorithm was used to establish three early diagnosis
models. The AUCs of the models in the test cohort were 0.830, 0.773, and 0.716, respectively
(Table 6).

Table 6. Studies for predicting the complications of radiation therapy using radiomics.

Author, Year,
Reference Image Sample

Size
Feature

Selection Modeling Model
Evaluation

Liu, Y. (2019) [108] CT 35 RFE LR Precision
0.922

Zhang, B. (2020) [109] MRI 242 The relief
algorithm RF AUC 0.830

Recursive feature elimination (RFE).

6. Studies Based on DL
6.1. Prognosis Prediction
6.1.1. 2017–2018

Retrieved none.

6.1.2. 2019

In [110], a prognostic model based on 3D DenseNet, which is a convolutional neural
network, to predict disease-free survival in 1636 patients with non-metastatic NPC was
established. The model classified patients into low- and high-risk groups based on the
cut-off value of risk scores, and the author claimed that the model could distinguish the two
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groups of patients correctly (HR = 0.62, p < 0.0001). Similarly, Du [111] established a deep
convolutional neural network model for the risk assessment of patients with non-metastatic
NPC. This study included 596 patients with NPC. The model achieved an AUC of 0.828 in
the validation set for 3-year disease progression. However, it did not generalize well for
the test set (AUC = 0.69), which consisted of 146 patients from a different centre.

6.1.3. 2020

Yang [112] established a weakly-supervised, deep-learning network using an im-
proved residual network (ResNet) with three input channels to achieve automated T
staging of NPC. The images of multiple tumour layers of patients were labelled uniformly.
The model output a predicted T-score for each slice and then selected the highest T-score
slice for each patient to retrain the model to update the network weights. The accuracy of
the model in the validation set was 75.59%, and the AUC was 0.943.

In [113], an end-to-end, multi-modality deep survival network was proposed to predict
the risk of tumour progression and was compared with the traditional four popular state-
of-the-art survival methods. Finally, the established multi-modality deep survival network
showed the best performance, with a C-index of 0.651. Similarly, Cui [114] established
several prognostic models of NPC based on DL and several other conventional algorithms,
such as the generalized linear model, extreme random tree, gradient boosting machine,
and random forest. The average AUCs for overall survival, distant metastasis-free survival,
and local-region relapse-free survival results obtained from the image data-based model
were 0.796, 0.752, and 0.721, respectively.

Qiang [34] established a 3-D convolutional neural network-based prognosis prediction
system for locally advanced NPC using MR images and clinical data. The study included
3444 cases, which was one of only two studies that included a sample size of more than
2000. The C-index of the established network in the internal validation cohort and the three
external validation cohorts reached 0.776, 0.757, 0.719, and 0.746, respectively.

In contrast to the previous study, Liu’s [115] model for predicting the prognostic value
of individual induction chemotherapy based on the DeepSurv neural network used patho-
logical images from 1055 patients. The established DL model (C-index: 0.723) performed
better than the EBV DNA (C-index: 0.612) copies and the N stage (C-index: 0.593).

6.1.4. 2021

In [116], a DL model based on ResNet was established to predict the distant metastasis-
free survival of locally advanced NPC. In contrast to the studies published in 2020, the
authors of this study removed the background noise and segmented the tumour region
as the input image of the DL network. Finally, the optimal AUC of the multiple models
combined with the clinical features was 0.808 (Table 7).

6.2. Image Synthesis
6.2.1. 2017–2018

Retrieved none.

6.2.2. 2019

In [117], Li used a deep convolutional neural network (DCNN) to generate a com-
posite CT image based on cone-beam CT. The 1%/1 mm gamma pass rate of synthetic CT
was 95.5% ± 1.6%. The author proposed that the DCNN model can generate high-quality
synthetic CT images from cone-beam CT images and can be used to calculate radiotherapy
doses for patients with NPC. Similarly, Wang [118] used a DCNN to generate CT images
based on T2-weighted MRI. Compared with real CT, synthetic CT could accurately recon-
struct most soft tissue and bone areas, except for the interface between soft tissue and bone
and the interface between fragile structures in the nasal cavity.
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Table 7. Studies for the prognosis prediction of nasopharyngeal carcinoma (NPC) based on deep
learning (DL).

Author, Year,
Reference Image Sample Size Modeling Model

Evaluation

Qiang, M.Y. (2019) [110] MRI 1636 3D DenseNet HR 0.62

Du, R. (2019) [111] MRI 596 DCNN AUC 0.69

Yang, Q. (2020) [112] MRI 1138 Resnet network AUC 0.943

Jing, B. (2020) [113] MRI 1417
Multi-modality
deep survival

network
C-index 0.651

Qiang, M. (2020) [34] MRI 3444 3D-CNN C-index 0.776

Cui, C. (2020) [114] MRI 792

Automatic
machine
learning

(AutoML)
including DL

AUC 0.796

Liu, K. (2020) [115] Pathology 1055 Neural network
DeepSurv C-index 0.723

Zhang, L. (2021) [116] MRI 233 Resnet network AUC 0.808

6.2.3. 2020

Tie [119] used a multichannel multipath conditional generative adversarial network to
generate CT images from an MRI. The network was developed based on a 5-level residual
U-Net with an independent feature extraction network. The highest structural similarity
index of the network was 0.92.

In [120], a generative adversarial network was used to generate CT images based on
MRIs to guide the planning of radiotherapy for NPC. The 2%/2 mm gamma passing rates
of the generated CT images reached 98.68% (Table 8).

Table 8. Studies for image synthesis of nasopharyngeal carcinoma (NPC) based on deep
learning (DL).

Author, Year,
Reference Image Sample Size Modeling Model Evaluation

Li, Y. (2019) [117] CBCT 70 U-Net neural
network (DCNN) 1%/1 mm GPR 95.5%

Wang, Y. (2019) [118] MRI 33 U-Net neural
network (DCNN)

MAE: 97 ± 13 HU in soft tissue,
131 ± 24 HU in all region,

357 ± 44 HU in bone

Tie, X. (2020) [119] MRI 32 ResU-Net Structural similarity index 0.92

Peng, Y. (2020) [120] MRI 173 GANs 2%/2mm GPR 98.52~98.68%
Generative adversarial networks (GANs).

6.3. Detection and/or Diagnosis
6.3.1. 2017

Retrieved none.

6.3.2. 2018

There were three studies that focused on using neural networks based on nasal
endoscopic images to detect and/or diagnose NPC in 2018, and two of them were the work
of Mohammed [121,122]: an artificial neural network based on the Haar feature fear and
genetic algorithm were used to establish an endoscopic diagnosis model for NPC. The
authors included a total of 381 NPC endoscopic images, including 159 tumours (abnormal
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cases) and 222 normal tissues. The established network had a high precision of 96.22%,
sensitivity of 95.35%, and specificity of 94.55%. Mohammed also established three different
neural network models in another article [122]. The accuracies of the models reached
95.66%, 93.87%, and 94.82%. SVM, the k-nearest neighbour algorithm, and ANN were used
in another study to identify NPC that seemed to be based on a coincident dataset with the
other two articles [123]. Li’s study included 28,966 eligible images, which included NPC
and other pathologically confirmed non-nasopharyngeal tumours, such as lymphoma,
rhabdomyosarcoma, olfactory neuroblastoma, malignant melanoma, and plasmacytoma.
A fully convolutional network based on the initial architecture was established to detect
nasopharyngeal malignancies. The overall accuracy of the network in the test set reached
88.7%, which was better than that of the experts [124].

6.3.3. 2019

Retrieved none.

6.3.4. 2020

Two similar studies, [125,126], based on pathological images were conducted. The
authors in [125] used 1970 whole slide pathological images of 731 cases: 316 cases of
inflammation, 138 cases of lymphoid hyperplasia, and 277 cases of NPC. The second
study used 726 nasopharyngeal biopsies consisting of 363 images of NPC and 363 of
benign nasopharyngeal tissue [126]. In [125], Inception-v3 was used to build the classifier,
while ResNeXt, a deep neural network with a residual and inception architecture, was
used to build the classifier in [126]. The AUCs obtained in [125,126] were 0.936 and
0.985, respectively.

A study based on 203 NPC and 209 benign nasopharyngeal hyperplasia MRI images
to distinguish early NPC from nasopharyngeal benign hyperplasia was conducted [127]. A
CNN-based classifier was established, and an AUC of 0.96 and an accuracy of 91.5% were
reached, which showed no significant difference for NPC detection when compared to the
radiologist (accuracy = 87%).

In [128], 3142 NPC and 958 benign hyperplasia images were used. Of the studies
that concentrated on AI tools for NPC imaging, this study was conducted with the largest
sample size. A self-constrained 3D DenseNet architecture was developed for tumour
detection and segmentation. In the differentiation of NPC and benign hyperplasia, the
model showed encouraging performance and obtained higher overall accuracy than that
of experienced radiologists (97.77% vs. 95.87%) (Table 9).

6.4. Segmentation

Radiotherapy is the most important treatment for NPC. However, it is necessary to
accurately delimit the nasopharyngeal tumour volume and the organs at risk in images of
the auxiliary damage caused by radiotherapy itself. Therefore, segmentation is particularly
relevant to DL in NPC imaging.

6.4.1. 2017

Men [129] developed an end-to-end deep deconvolution neural network (DDNN) to
segment tumours, lymph nodes, and risky organs around tumours. A total of 230 patients
diagnosed with NPC stages I and II were included. The performance of the DDNN
was compared with that of the VGG-16 model. The average DSC value of the DDNN
was 80.9% for the total nasopharyngeal tumour volume and 62.3% for the total tumour
volume of metastatic lymph nodes, while the DSC values of the VGG-16 were 72.3% and
33.7%, respectively.
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Table 9. Studies of nasopharyngeal carcinoma (NPC) detection and/or diagnosis based on deep learning (DL).

Author, Year, Reference Image Sample Size Modeling Model Evaluation

Mohammed, M.A. (2018)
[121–123] Endoscopic images 381 images ANN Accuracy 96.22%

Li, C. (2018) [124] Endoscopic images 28,966 images Fully convolutional
network (FCNN) Accuracy 88.7%

Diao, S. (2020) [125] Pathology 731 patients Inception-v3 AUC 0.936

Chuang, W.Y. (2020) [126] Pathology 726 patients ResNeXt AUC 0.985

Wong, L.M. (2020) [127] MRI 412 patients Residual Attention
Network (RAN) AUC 0.96

Ke, L. (2020) [128] MRI 4100 patients 3D DenseNet Accuracy 97.77%

6.4.2. 2018

A CNN was used to build an automatic segmentation model for NPC based on
enhanced MRIs in Li’s study [130], and case-by-case leave-one-out cross-validation was
used to train the network. Their research obtained a DSC value of 0.89. Wang [131] applied
a similar method, but only 15 MRI images of patients with NPC were included, and the
DSC obtained was 0.79.

Ma’s [132] paper proposed a discriminative learning-based approach for automated
NPC segmentation using CT and MRI. The CNN integrated two normal classification
sub-networks into a Siamese-like sub-network that could use each other’s multimodal
information. The authors concluded that the multimodal method achieves higher segmen-
tation performance (DSC = 0.712) when compared with the segmentation method without
multimodal similarity metric learning and the method that only uses CT (DSC = 0.636).

6.4.3. 2019

Daoud [133] proposed a two-stage NPC segmentation method based on CNN using
CT images of axial, coronal, and sagittal sections. In the first stage, areas of non-target
organs were identified and eliminated from the CT images. The task of the second stage
was to identify the NPC from the remaining area of the CT image. The authors concluded
that their proposed two-stage segmentation of NPC by integrating three-phase CT images
has a satisfactory performance with DSCs of 0.87, 0.85, and 0.91 in axial, coronal, and
sagittal sections, respectively.

In [134], a 3D CNN architecture based on VoxResNet was established to automate
primary gross tumour volume contouring. It is worth mentioning that this study included
a larger sample size (1021 NPCs) than most other studies on this issue. VoxResNet and
eight radiation oncologists from multiple centres were evaluated. The DSC of VoxResNet
was 0.79, and the accuracies of the oncologists significantly improved with the assistance
of VoxResNet (p < 0.001).

In the study by Liang [135], a fully automated deep learning method was developed for
organs-at-risk detection and segmentation of CT images, and the DSCs for the segmentation
of the brain stem, eye lens, larynx, mandible, oral cavity, mastoid, spinal cord, parotid gland,
temporomandibular joint, and optic nerve were between 0.689 and 0.934. Zhong [136]
conducted a similar study that combined the DL and boosting algorithm to segment the
organs at risk, including the parotid gland, thyroid, and optic nerve, and the corresponding
DSCs were 0.92, 0.92, and 0.89, respectively.

Ma published another article in 2019 [137] on NPC image segmentation, similar to the
study in 2018 [132]. Based on the developed multimodal convolutional neural network
(M-CNN), the authors combined the high-level features extracted by the single-mode
CNN and M-CNN to form a combined CNN. The study concluded that the model with
multi-mode information fusion performs better than the model without the multi-mode
information fusion.
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Li [138] proposed and trained a U-Net to automatically segment and delineate tumour
targets in patients with NPC. A total of 502 patients from a single medical centre were
included, and CT images were collected and pre-processed as a dataset. The trained U-
Net finally obtained DSCs of 0.659 for lymph nodes and 0.74 for primary tumours in the
testing set.

6.4.4. 2020

Xue [139] proposed a sequential and iterative U-Net (SI-Net) to automatically segment
the target volume of the primary tumour and compared it with a conventional U-Net. It
was considered that the performance of the SI-Net was better than that of the U-Net (DSCs
were 0.84 and 0.80, respectively).

Chen [140] proposed a novel multimodal MRI fusion network to segment NPCs
accurately using T1, T2, and contrast-enhanced T1 MRI. The network model was composed
of a 3D convolutional block attention module and a residual fusion block and adopted a
self-transfer training strategy. A total of 149 patients with NPC were included. The network
model obtained a DSC value of 0.724.

In [141], a 3D CNN with a long-range skip connection and multi-scale feature pyramid
was developed for NPC segmentation. The network was trained and tested on the 3D
MRI images of 120 patients with NPC using five-fold cross-validation, and the 3D CNN
achieved a DSC of 0.737.

Ye [142] developed a CNN model based on dense connectivity embedding U-Net
to automatically segment primary tumours of NPC on a dual-sequence MRI. A total of
44 MRI images of patients with NPC were included in this study. The average DSC of the
external subjects, which consisted of seven patients with NPC, was 0.87.

Considering that NPC is a malignant tumour with a tendency to invade the sur-
rounding tissues, in a complex MRI background, it is difficult to distinguish the signs of
invasion on the edge from the closely connected normal tissues. To address the background
dominant problem in improving the segmentation accuracy of NPC, Li [143] proposed a
coarse-to-fine deep neural network, which started by predicting a coarse mask based on a
well-designed segmentation module, followed by a boundary rendering module, which
exploited semantic information from different layers of feature maps to refine the boundary
of the coarse mask. The dataset contained 2000 MRI slices from 596 patients, and the DSC
of the model was 0.703.

Jin [144] proposed a ResSE-UNet network with a ternary cross-entropy loss function
to segment the total volume of the primary tumour and compared it with the tumour
segmentation model based on the original U-Net, U-Net-NN. The data set of the study
consisted of 1757 CT slices from 90 patients with NPC, and ResSE-UNet obtained the best
DSC (0.84).

In [145], Wang proposed a modified version of the 3D U-Net model with Res-blocks
and SE-blocks to segment the gross tumour volume of the nasopharynx. The novelty of the
research is that an automatic pre-processing method was proposed to crop the 3D region
of interest of the nasopharynx gross tumour volume, which improved the efficiency of
image pre-processing. Automatic delineation models based on 3D U-Net, 3DCNN, and
2D DDNN were developed. The DSCs of the three models were 82.70%, 80.54%, and
77.97%, respectively.

Ke [128] developed a self-constrained 3D DenseNet architecture for tumour detection
and segmentation, which was described in the NPC detection and/or diagnosis section.
In terms of automatic segmentation of the tumour area, the architecture obtained a good
performance with a DSC of 0.77 in the test cohort.

6.4.5. 2021

CNN shows promise for segmenting malignant tumours on contrast-enhanced MRIs,
but there are situations where contrast agents are not suitable for specific patients. Can
CNN accurately segment tumours based on MRI images without enhancement? To clarify
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this issue, Wong [146] developed a U-Net to segment primary NPC on a non-contrast-
enhanced MRI and compared it with a contrast-enhanced MRI. The U-Net suggested a
similar performance (DSC = 0.71) between fat suppression (fs)-T2W and enhanced-T1W,
and the enhanced-fs-T1W images showed the highest DSC (0.73).

Bai [147] fine-tuned a pre-trained ResNeXt-50 U-Net, which uses the recall preserved
loss to produce a rough segmentation of the gross tumour volume of NPC. Then, the
well-trained ResNeXt-50 U-Net was applied to the fine-grained gross tumour volume
boundary minute. The study obtained a DSC of 0.618 for online testing (Table 10).

Table 10. Studies for nasopharyngeal carcinoma (NPC) segmentation based on deep learning (DL).

Author, Year, Reference Image Sample Size Modeling Model Evaluation

Men, K. (2017) [129] CT 230 DDNN and VGG-16
DSC GTVnx 80.9%

GTVnd 62.3%
CTV 82.6%

Li, Q. (2018) [130] MRI 29 CNN DSC 0.89

Wang, Y. (2018) [131] MRI 15 DCNN DSC 0.79

Ma, Z. (2018) [132] CT, MRI 50 Multi-modality CNN DSC 0.636 (CT),
0.712 (MRI)

Daoud, B. (2019) [133] CT 70 CNN DSC 0.91

Lin, L. (2019) [134] MRI 1021 3D-CNN DSC 0.79

Liang, S. (2019) [135] CT 185 CNN DSC 0.689–0.937

Zhong, T. (2019) [136] CT 140 CNN
DSC Parotids 0.92

Thyroids 0.92
Optic nerves 0.89

Ma, Z. (2019) [137] CT, MRI 90 Single-modality CNN
multi-modality CNN

DSC 0.746 (CT),
0.752 (MRI)

Li, S. (2019) [138] CT 502 U-Net (CNN) DSC Lymph nodes 0.659
Tumor 0.74

Xue, X. (2020) [139] CT 150 SI-Net and U-Net DSC 0.84

Chen, H. (2020) [140] MRI 149 3D-CNN DSC 0.724

Guo, F. (2020) [141] MRI 120 3D-CNN DSC 0.737

Ye, Y. (2020) [142] MRI 44 Dense connectivity
embedding U-net DSC 0.87

Li, Y. (2020) [143] MRI 596 ResNet-101 DSC 0.703

Jin, Z. (2020) [144] CT 90 ResSE-UNet DSC 0.84

Wang, X. (2020) [145] CT 205 3D U-Net DSC 0.827

Ke, L. (2020) [128] MRI 4100 3D DenseNet DSC 0.77

Wong, L.M. (2021) [146] MRI 195 CNN DSC 0.73

Bai, X. (2021) [147] MRI 60 ResNeXt-50 and U-Net DSC 0.618

7. Deep Learning-Based Radiomics

DL has shown great potential to dominate the field of image analysis. In ROI [148] and
feature extraction tasks [149,150], which lay in the implementation pipeline of radiomics,
DL has achieved good results. After completing the model training, DL can automatically
analyse images, which is one of the greatest strengths compared to radiomics. Many
researchers have introduced DL into radiomics (termed deep learning-based radiomics,
DLR) and achieved encouraging results [151]. This may be a trend for the application
of AI tools in medical imaging in the future. Therefore, we list these studies on NPC
imaging separately.
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7.1. Studies Based on Deep Learning-Based Radiomics (DLR)
7.1.1. 2017

Retrieved none.

7.1.2. 2018

To investigate the feasibility of radiomics for the analysis of radioresistance, Li [152]
trained and validated an artificial neural network, a k-nearest neighbour, and an SVM
model using stratified ten-fold cross-validation. Pre-processed MRI images were used for
feature extraction, and principal component analysis was performed for feature reduction.
The author concluded that radiomic analysis can be served as imaging biomarkers to
facilitate early salvage for patients with NPC who are at risk of in-field recurrence. However,
only 20 patients with recurrent NPC were recruited for this study.

7.1.3. 2019

Peng [30] developed a model based on DLR to predict the effect of induction chemother-
apy on patients with advanced NPC. The research constructed and trained four deep CNN
models to extract the features in the ROI, which alternated the feature extraction step of
radiomics. LASSO was used to screen the features, and a nomogram that integrated clinical
indicators was developed. Finally, the study reported a C-index of 0.722 in the test set.

7.1.4. 2020

Similar to the study of Peng [30], Zhong [153] established a radiomic nomogram based
on MRI images and clinical features and adopted a DCNN (SE-ResNeXt) to quantify the
tumour phenotype end-to-end in the process of image feature extraction. The established
radiomic nomogram obtained a C-index of 0.788 in the test cohort.

In [154], Zhang innovatively combined the clinical features of patients with nasopha-
ryngeal cancer, the radiomic features based on MRIs, and the DCNN model based on
pathological images to construct a multi-scale nomogram to predict the failure-free sur-
vival of patients with NPC. The nomogram showed a consistent significant improvement
for predicting treatment failure compared with the clinical model in the internal test (C-
index: 0.828 vs. 0.602, p < 0.050) and external test (C-index: 0.834 vs. 0.679, p < 0.050)
cohorts. (Table 11)

Table 11. Studies of nasopharyngeal carcinoma (NPC) imaging based on deep learning-based radiomics (DLR).

Author, Year, Reference Image Sample Size Feature Selection Modeling Model Evaluation

Li, S. (2018) [152] CT 306 ICC, PCC, and
PCA ANN, KNN, SVM

AUC
ANN: 0.812
KNN: 0.775
SVM: 0.732

Peng, H. (2019) [30] PET/CT 707 LASSO DCNNs and
nomogram C-index 0.722

Zhong, L.Z. (2020) [153] MRI 638 Not described SE-ResNeXt, CR
and nomogram C-index 0.788

Zhang, F. (2020) [154] MRI, Pathology 220

ICC > 0.75,
Univariate

analysis, MRMR,
RF

ResNet-18,
Nomogram C-index 0.834

Intraclass correlation coefficients (ICC), Pearson correlation coefficient (PCC), and principal component analysis (PCA).

8. Discussion

The widespread application of AI tools in the medical field is a promising trend in the
future of medicine. Radiomics and artificial neural networks could be the main approaches
to achieve this and also be valuable tools to completely change the strategy of clinical diag-
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nosis and treatment of tumours [28,155]. Particularly in brain [156,157], breast [158,159],
lung [160,161], and prostate tumours [162,163], the application of radiomics and DL is at
the forefront and shows great potential [164]. Although radiomics has been applied to
medical imaging since 2012 and DL has started to be applied to medical imaging around
2015, their application in NPC has only gradually begun in 2017. Many attempts have been
made to apply AI tools for NPC imaging in clinical settings. However, there are still some
limitations in this field.

First, the current high-quality research in these areas is insufficient. For example,
the current research is based on cross-sectional images, such as the most common use of
pre-treatment images for prediction. Research based on time-varying images has not yet
been conducted. The treatment of most tumours, especially NPC, is a long and multi-cycle
combined process. It is unrealistic to guide the entire treatment process based only on the
tumour images before treatment. Therefore, it is of great value to evaluate the real-time
response of tumours to drugs and the radiation injury risk of important organs around
the tumour based on the dynamic changes of image features during treatment. This can
provide clinicians with key information to optimize treatment strategies. Furthermore, the
quality and size of the dataset used for model training are extremely critical and are the
limit of the accuracy and generalization ability of the established model. However, the
number of cases included in most studies is limited, and many studies have not performed
external testing of the model. In a recent systematic review [165], studies on MRI-based
radiology in NPC published in recent years were evaluated using their radiomics quality
scores. It was found that only 8% of the included studies included external validation, and
the author concluded that radiomics articles in NPC were mostly of low methodological
quality. This reflects the current, frustrating situation in this field. Moreover, owing to
the lack of massive amounts of structured data, it is difficult for most algorithms to be
implemented in clinical practice [166], which is one of the most urgent problems to be
solved in the future development of AI tools for NPC.

Second, there are still some aspects that have not been covered in NPC imaging using
radiomics and DL. For example, the newly proposed radiogenomic approach combines
radiology and genomics [167,168]. Radiogenomics hypothesizes that the texture hetero-
geneity of tumours could reflect the difference in quantitative imaging features between
genome and molecular phenotype, which could indicate the subtype, prognosis, drug re-
sponse, and other information of the tumour [169]. It has experienced tremendous growth
in studies of gliomas [170], breast cancer [171,172], colorectal cancer [173], lung cancer [174],
and ovarian cancer [175] over the past years. Radiogenomics has demonstrated significant
potential for developing non-invasive prognostic and diagnostic methods, identifying
biomarkers for treatment, tumour phenotyping, and genomic signatures [176]. Precision
medicine is a disease treatment and prevention approach that considers individual differ-
ences in genes, environment, and lifestyle and integrates multiple sources of information
to achieve the ultimate goal of personalized management [177]. Radiogenomics, which
bridges imaging and genomics [178], could provide a new, non-invasive, fast, and low-cost
approach for the implementation of precision medicine [179]. However, to the best of our
knowledge, studies on radiogenomics for NPC are currently lacking.

Radiomics is based on feature engineering and retains an inherent defect that manually
delineating the area of interest is strictly required, which is labour-consuming. DL could
provide a solution for this problem [25]; in addition, it can provide an efficient method for
feature extraction in the radiomics pipeline [180]. Therefore, DLR, which combines the
advantages of DL and radiomics, has been proposed and widely researched [25,181,182].
Although there are four studies that use DLR in NPC [30,152–154], the method is far from
being fully developed.

The purpose of AI tools in NPC imaging is to be used in clinical practice. However,
there are still many limitations and gaps between research and clinical applications. The
lack of massive structured data is the most urgent problem to be solved. Considering
that one of the biggest challenges for oncology is to develop accurate and cost-effective
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screening procedures [28], fast and minimal manual work will be a common clinical need
in the future. Therefore, excessive human intervention in the use of developed AI tools
is a block that must be handled. For example, the time-consuming step of segmentation
and manual selection of image layers based on experience to construct a dataset with the
most obvious tumour images that were expected to perform better. From this point, we
can perceive the signs of deep learning by replacing traditional radiomics. However, it is
difficult for the huge-data-based DL, which is capable of fully automated analysis, to obtain
sufficient labelled data to develop state-of-the-art models and eliminate radiomics in the
near future, considering that the research field of radiomics is mostly composed of topics
such as prognosis of tumours and the efficacy of tumours on treatments, which are costly
and time-consuming for data collection. Introducing DL into the pipeline of radiomics to
improve the accuracy and stability of the established model may be a promising method in
the short term.

After summarizing the relevant studies on deep learning and radiomics for NPC
imaging, it was found that MRI was adopted by most studies as established datasets to carry
out tasks, such as segmentation of lesions and tissues at risk, generation of synthetic high-
quality CT images, and radiotherapy planning. This may be due to the better resolution
of soft tissue by MRI than CT. However, different types of medical image have different
advantages in machine learning. Therefore, which images are used to establish the dataset
should be determined according to the specific task at hand. For example, CT has a higher
definition than MRI in showing the damage of NPC to the skull base bone. Therefore,
when conducting skull base bone-related research, CT-based models may have better
performance. The endoscopic image is a special feature of nasopharyngeal carcinomas
which is different from most tumours. The endoscopic image of the nasopharynx is of
great significance for the early screening of nasopharyngeal carcinoma, which is difficult
to achieve by MRI and CT. However, there are only a few studies in this area based on
endoscopic images. Pathological slices are used in many studies related to deep learning
and tumours, but there are only a few studies related to NPC. In fact, considerable work
remains to be done in this area, such as automatic reporting of specific pathological types
of nasopharyngeal cancer and immunohistochemical results, automated predictions, slice-
based prognostic analysis of patients, etc. Therefore, it is necessary to adopt datasets
containing corresponding medical images according to the specific task.

It is worth mentioning that, from the clinician’s perspective, we hope that all rele-
vant studies have the potential to promote the application of AI tools in clinical practice.
However, the clinical significance of studies based on AI tools for predicting T staging of
tumours is discounted. The TNM staging system, which is essentially a prediction system
for tumour prognosis, represents a body of knowledge combining evidence-based findings
from clinical studies with empirical knowledge from site-specific experts [183,184]. The
TNM staging system is composed of the relationship between the tumour and the normal
anatomical structure around it, which only presents a small amount of information on
the image that could be recognized by the naked eye. More importantly, using AI tools
to predict tumour prognosis will challenge the core of the TNM staging system in the
future, because they have a parallel relationship (Figure 6) and most of the prognostic
prediction models based on radiomics or DL are already better than the TNM staging
system [24,34,56,57]. Therefore, there are limitations to using AI to predict T staging to
solve clinical problems.
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9. Conclusions and Future Work

In this review, the studies of NPC image analysis based on radiomics and DL after
2017 are comprehensively summarized (Figure 7). Before summarizing these studies,
we provide a brief description of radiomics and DL. We then divided the studies into
three categories: radiomics-, DL-, and DLR-based, according to the methods adopted in
the studies. The radiomics-based studies were divided into five categories: prognosis
prediction, assessment of tumour metastasis, diagnosis, prediction of therapeutic effect,
and predicting complications and were summarized in chronological order. The DL-based
studies were divided into four categories: prognosis prediction, image synthesis, detection
and/or diagnosis, and segmentation and were summarized in chronological order. Due
to the limited number of studies, we summarize the DLR-based research in chronological
order. According to this method, we present a full picture of the application of radiomics
and DL in NPC imaging.
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Research on radiomics and DL in NPC imaging has only started in recent years.
Therefore, there are still many issues that need further research in the future: linking NPC
imaging features with tumour genes/molecules to promote the development of precision
medicine for non-invasive, rapid, and low-cost approaches; using multi-stage dynamic
imaging to assess tumour response to drugs/radiotherapy and predict the risk of radiation
therapy in surrounding vital organs to guide treatment decisions; and bridging the gap
from the AI tools established in studies to clinical applications. In addition, current studies
based on nasal endoscopic images and pathological images are lacking. In particular,
accurate and rapid screening of NPC is of great significance, considering that endoscopic
images are usually the primary screening images for most patients. Further high-quality
research in this regard is needed. Finally, there is still a lack of large-scale, comprehensive,
and fully labelled datasets for NPC; datasets similar to those that are available for lung
and brain tumours. The establishment of large-scale public datasets is an important task in
the future.

Author Contributions: Conceptualization, Z.-Z.T. and Y.-Q.D.; methodology, S.L., Z.-Z.T. and
Y.-Q.D.; studies retrieval, H.-L.H. and Z.-L.Z.; data curation, S.L., H.-L.H. and Z.-L.Z.; writing—
original draft preparation, S.L.; figures, S.L.; writing—review and editing, Z.-Z.T. and Y.-Q.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: The author would like to thank all colleagues for their help in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, Y.; Chan, A.T.C.; Le, Q.-T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet 2019, 394, 64–80. [CrossRef]
2. Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory:

Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020; Available online: https://gco.iarc.fr/today
(accessed on 31 March 2021).

3. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]

4. Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA
Cancer J. Clin. 2016, 66, 115–132. [CrossRef]

5. Yu, W.M.; Hussain, S.S.M. Incidence of nasopharyngeal carcinoma in Chinese immigrants, compared with Chinese in China and
South East Asia: Review. J. Laryngol. Otol. 2009, 123, 1067–1074. [CrossRef] [PubMed]

6. Bei, J.X.; Su, W.H.; Ng, C.C.; Yu, K.; Chin, Y.M.; Lou, P.J.; Hsu, W.L.; McKay, J.D.; Chen, C.J.; Chang, Y.S.; et al. A GWAS
meta-analysis and replication study identifies a novel locus within CLPTM1L/TERT associated with Nasopharyngeal carcinoma
in individuals of Chinese ancestry. Cancer Epidemiol. Prev. Biomark. 2016, 25, 188–192. [CrossRef]

7. Cui, Q.; Feng, Q.-S.; Mo, H.-Y.; Sun, J.; Xia, Y.-F.; Zhang, H.; Foo, J.N.; Guo, Y.-M.; Chen, L.-Z.; Li, M.; et al. An extended
genome-wide association study identifies novel susceptibility loci for nasopharyngeal carcinoma. Hum. Mol. Genet. 2016, 25,
3626–3634. [CrossRef]

8. Chan, K.A.; Woo, J.K.; King, A.; Zee, B.C.-Y.; Lam, W.K.J.; Chan, S.; Chu, S.W.; Mak, C.; Tse, I.O.; Leung, S.Y.; et al. Analysis of
Plasma Epstein–Barr Virus DNA to Screen for Nasopharyngeal Cancer. N. Engl. J. Med. 2017, 377, 513–522. [CrossRef]

9. Eveson, J.W.; Auclair, P.; Gnepp, D.R.; El-Naggar, A.K.; Barnes, L. World Health Organization Classification of Tumours: Pathology and
Genetics of Head and Neck Tumours; Barnes, L., Eveson, J.W., Reichart, P., Sidransky, D., Eds.; IARC Press: Lyon, France, 2005; pp.
88–111.

10. Lee, A.W.; Ng, W.T.; Chan, L.L.; Hung, W.M.; Chan, C.C.; Sze, H.C.; Chan, O.S.H.; Chang, A.T.; Yeung, R.M. Evolution of
treatment for nasopharyngeal cancer—Success and setback in the intensity-modulated radiotherapy era. Radiother. Oncol. 2014,
110, 377–384. [CrossRef]

11. Butterfield, D. Impacts of Water and Export Market Restrictions on Palestinian Agriculture. Toronto: McMaster University and
Econometric Research Limited, Applied Research Institute of Jerusalem (ARIJ). Available online: http://www.socserv.mcmaster.
ca/kubursi/ebooks/water.htm (accessed on 31 March 2021).

12. Chua, M.L.K.; Wee, J.T.S.; Hui, E.P.; Chan, A.T.C. Nasopharyngeal carcinoma. Lancet 2016, 387, 1012–1024. [CrossRef]

http://doi.org/10.1016/S0140-6736(19)30956-0
https://gco.iarc.fr/today
http://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://doi.org/10.3322/caac.21338
http://doi.org/10.1017/S0022215109005623
http://www.ncbi.nlm.nih.gov/pubmed/19486543
http://doi.org/10.1158/1055-9965.EPI-15-0144
http://doi.org/10.1093/hmg/ddw200
http://doi.org/10.1056/NEJMoa1701717
http://doi.org/10.1016/j.radonc.2014.02.003
http://www.socserv.mcmaster.ca/kubursi/ebooks/water.htm
http://www.socserv.mcmaster.ca/kubursi/ebooks/water.htm
http://doi.org/10.1016/S0140-6736(15)00055-0


Diagnostics 2021, 11, 1523 25 of 32

13. Yuan, H.; Lai-Wan, K.D.; Kwong, D.L.-W.; Fong, D.; King, A.; Vardhanabhuti, V.; Lee, V.; Khong, P.-L. Cervical nodal volume for
prognostication and risk stratification of patients with nasopharyngeal carcinoma, and implications on the TNM-staging system.
Sci. Rep. 2017, 7, 10387. [CrossRef]

14. Chan, A.T.C.; Grégoire, V.; Lefebvre, J.L.; Licitra, L.; Hui, E.P.; Leung, S.F.; Felip, E. Nasopharyngeal cancer: EHNS-ESMO-ESTRO
clinical practice guidelines for diagnosis, treatment andfollow-up. Ann. Oncol. 2012, 23, vii83–vii85. [CrossRef] [PubMed]

15. Wei, W.; Sham, J.S. Nasopharyngeal carcinoma. Lancet 2005, 365, 2041–2054. [CrossRef]
16. Vokes, E.E.; Liebowitz, D.N.; Weichselbaum, R.R. Nasopharyngeal carcinoma. Lancet 1997, 350, 1087–1091. [CrossRef]
17. Pohlhaus, J.R.; Cook-Deegan, R.M. Genomics Research: World Survey of Public Funding. BMC Genom. 2008, 9, 472. [CrossRef]
18. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard,

R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer
2012, 48, 441–446. [CrossRef] [PubMed]

19. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577.
[CrossRef]

20. Aerts, H.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains,
B.; Rietveld, D.; et al. Data from: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.
Nat. Commun. 2014, 5, 4006. [CrossRef]

21. Yip, S.S.F.; Aerts, H.J.W.L. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [CrossRef]
22. Rahmim, A.; Schmidtlein, C.R.; Jackson, A.; Sheikhbahaei, S.; Marcus, C.; Ashrafinia, S.; Soltani, M.; Subramaniam, R.M. A novel

metric for quantification of homogeneous and heterogeneous tumors in PET for enhanced clinical outcome prediction. Phys. Med.
Biol. 2015, 61, 227–242. [CrossRef]

23. Buvat, I.; Orlhac, F.; Soussan, M.; Orhlac, F. Tumor Texture Analysis in PET: Where Do We Stand? J. Nucl. Med. 2015, 56, 1642–1644.
[CrossRef]

24. Zhang, B.; Tian, J.; Dong, D.; Gu, D.; Dong, Y.; Zhang, L.; Lian, Z.; Liu, J.; Luo, X.; Pei, S.; et al. Radiomics Features of
Multiparametric MRI as Novel Prognostic Factors in Advanced Nasopharyngeal Carcinoma. Clin. Cancer Res. 2017, 23, 4259–4269.
[CrossRef] [PubMed]

25. Afshar, P.; Mohammadi, A.; Plataniotis, K.; Oikonomou, A.; Benali, H. From Handcrafted to Deep-Learning-Based Cancer
Radiomics: Challenges and Opportunities. IEEE Signal Process. Mag. 2019, 36, 132–160. [CrossRef]

26. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even,
A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol.
2017, 14, 749–762. [CrossRef] [PubMed]

27. Liu, Z.; Wang, S.; Dong, D.; Wei, J.; Fang, C.; Zhou, X.; Sun, K.; Li, L.; Li, B.; Wang, M.; et al. The Applications of Radiomics in
Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics 2019, 9, 1303–1322. [CrossRef]

28. Limkin, E.J.; Sun, R.; Dercle, L.; Zacharaki, E.I.; Robert, C.; Reuzé, S.; Schernberg, A.; Paragios, N.; Deutsch, E.; Ferté, C.
Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann. Oncol. 2017, 28,
1191–1206. [CrossRef]

29. Ford, J.; Dogan, N.; Young, L.; Yang, F. Quantitative Radiomics: Impact of Pulse Sequence Parameter Selection on MRI-Based
Textural Features of the Brain. Contrast Media Mol. Imaging 2018, 2018. [CrossRef]

30. Peng, H.; Dong, D.; Fang, M.-J.; Li, L.; Tang, L.-L.; Chen, L.; Li, W.-F.; Mao, Y.-P.; Fan, W.; Liu, L.-Z.; et al. Prognostic Value of Deep
Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal
Carcinoma. Clin. Cancer Res. 2019, 25, 4271–4279. [CrossRef]

31. Guo, Y.; Hu, Y.; Qiao, M.; Wang, Y.; Yu, J.; Li, J.; Chang, C. Radiomics Analysis on Ultrasound for Prediction of Biologic Behavior
in Breast Invasive Ductal Carcinoma. Clin. Breast Cancer 2018, 18, e335–e344. [CrossRef]

32. Song, G.; Xue, F.; Zhang, C. A Model Using Texture Features to Differentiate the Nature of Thyroid Nodules on Sonography. J.
Ultrasound Med. 2015, 34, 1753–1760. [CrossRef]

33. Polan, D.F.; Brady, S.L.; Kaufman, R.A. Tissue segmentation of computed tomography images using a Random Forest algorithm:
A feasibility study. Phys. Med. Biol. 2016, 61, 6553. [CrossRef] [PubMed]

34. Qiang, M.; Li, C.; Sun, Y.; Sun, Y.; Ke, L.; Xie, C.; Zhang, T.; Zou, Y.; Qiu, W.; Gao, M.; et al. A Prognostic Predictive System Based
on Deep Learning for Locoregionally Advanced Nasopharyngeal Carcinoma. J. Natl. Cancer Inst. 2021, 113, 606–615. [CrossRef]

35. Aerts, H.J. Data Science in Radiology: A Path Forward. Clin. Cancer Res. 2017, 24, 532–534. [CrossRef]
36. Hatt, M.; Tixier, F.; Pierce, L.; Kinahan, P.; Le Rest, C.C.; Visvikis, D. Characterization of PET/CT images using texture analysis:

The past, the present . . . any future? Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 151–165. [CrossRef]
37. Zhang, L.; Fried, D.V.; Fave, X.J.; Hunter, L.A.; Yang, J.; Court, L.E. IBEX: An open infrastructure software platform to facilitate

collaborative work in radiomics. Med. Phys. 2015, 42, 1341–1353. [CrossRef] [PubMed]
38. Bagherzadeh-Khiabani, F.; Ramezankhani, A.; Azizi, F.; Hadaegh, F.; Steyerberg, E.W.; Khalili, D. A tutorial on variable selection

for clinical prediction models: Feature selection methods in data mining could improve the results. J. Clin. Epidemiol. 2016, 71,
76–85. [CrossRef] [PubMed]

39. Guo, J.; Liu, Z.; Shen, C.; Li, Z.; Yan, F.; Tian, J.; Xian, J. MR-based radiomics signature in differentiating ocular adnexal lymphoma
from idiopathic orbital inflammation. Eur. Radiol. 2018, 28, 3872–3881. [CrossRef]

http://doi.org/10.1038/s41598-017-10423-w
http://doi.org/10.1093/annonc/mds266
http://www.ncbi.nlm.nih.gov/pubmed/22997460
http://doi.org/10.1016/S0140-6736(05)66698-6
http://doi.org/10.1016/S0140-6736(97)07269-3
http://doi.org/10.1186/1471-2164-9-472
http://doi.org/10.1016/j.ejca.2011.11.036
http://www.ncbi.nlm.nih.gov/pubmed/22257792
http://doi.org/10.1148/radiol.2015151169
http://doi.org/10.1038/ncomms5006
http://doi.org/10.1088/0031-9155/61/13/R150
http://doi.org/10.1088/0031-9155/61/1/227
http://doi.org/10.2967/jnumed.115.163469
http://doi.org/10.1158/1078-0432.CCR-16-2910
http://www.ncbi.nlm.nih.gov/pubmed/28280088
http://doi.org/10.1109/MSP.2019.2900993
http://doi.org/10.1038/nrclinonc.2017.141
http://www.ncbi.nlm.nih.gov/pubmed/28975929
http://doi.org/10.7150/thno.30309
http://doi.org/10.1093/annonc/mdx034
http://doi.org/10.1155/2018/1729071
http://doi.org/10.1158/1078-0432.CCR-18-3065
http://doi.org/10.1016/j.clbc.2017.08.002
http://doi.org/10.7863/ultra.15.14.10045
http://doi.org/10.1088/0031-9155/61/17/6553
http://www.ncbi.nlm.nih.gov/pubmed/27530679
http://doi.org/10.1093/jnci/djaa149
http://doi.org/10.1158/1078-0432.CCR-17-2804
http://doi.org/10.1007/s00259-016-3427-0
http://doi.org/10.1118/1.4908210
http://www.ncbi.nlm.nih.gov/pubmed/25735289
http://doi.org/10.1016/j.jclinepi.2015.10.002
http://www.ncbi.nlm.nih.gov/pubmed/26475568
http://doi.org/10.1007/s00330-018-5381-7


Diagnostics 2021, 11, 1523 26 of 32

40. Kim, J.Y.; Park, J.E.; Jo, Y.; Shim, W.H.; Nam, S.J.; Kim, J.H.; Yoo, R.E.; Choi, S.H.; Kim, H.S. Incorporating diffusion-and
perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma
patients. Neuro-Oncology 2019, 21, 404–414. [CrossRef]

41. Zhang, Y.; Oikonomou, A.; Wong, A.; Haider, M.A.; Khalvati, F. Radiomics-based Prognosis Analysis for Non-Small Cell Lung
Cancer. Sci. Rep. 2017, 7, srep46349. [CrossRef] [PubMed]

42. Grootjans, W.; Tixier, F.; van der Vos, C.S.; Vriens, D.; Le Rest, C.C.; Bussink, J.; Oyen, W.J.; de Geus-Oei, L.-F.; Visvikis, D.; Visser,
E.P. The Impact of Optimal Respiratory Gating and Image Noise on Evaluation of Intratumor Heterogeneity on 18F-FDG PET
Imaging of Lung Cancer. J. Nucl. Med. 2016, 57, 1692–1698. [CrossRef]

43. Mahapatra, D.; Poellinger, A.; Shao, L.; Reyes, M. Interpretability-Driven Sample Selection Using Self Supervised Learning for
Disease Classification and Segmentation. IEEE Trans. Med. Imaging 2021. [CrossRef]

44. Conti, A.; Duggento, A.; Indovina, I.; Guerrisi, M.; Toschi, N. Radiomics in breast cancer classification and prediction. Semin.
Cancer Biol. 2021, 72, 238–250. [CrossRef]

45. Hawkins, S.; Wang, H.; Liu, Y.; Garcia, A.; Stringfield, O.; Krewer, H.; Li, Q.; Cherezov, D.; Gatenby, R.A.; Balagurunathan, Y.; et al.
Predicting Malignant Nodules from Screening CT Scans. J. Thorac. Oncol. 2016, 11, 2120–2128. [CrossRef]

46. Verduin, M.; Primakov, S.; Compter, I.; Woodruff, H.; van Kuijk, S.; Ramaekers, B.; Dorsthorst, M.T.; Revenich, E.; ter Laan, M.;
Pegge, S.; et al. Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis
in Glioblastoma. Cancers 2021, 13, 722. [CrossRef]

47. Jiang, Y.; Wang, H.; Wu, J.; Chen, C.; Yuan, Q.; Huang, W.; Li, T.; Xi, S.; Hu, Y.; Zhou, Z.; et al. Noninvasive imaging evaluation of
tumor immune microenvironment to predict outcomes in gastric cancer. Ann. Oncol. 2020, 31, 760–768. [CrossRef]

48. Lian, C.; Ruan, S.; Denœux, T.; Jardin, F.; Vera, P. Selecting radiomic features from FDG-PET images for cancer treatment outcome
prediction. Med. Image Anal. 2016, 32, 257–268. [CrossRef] [PubMed]

49. Chen, M.; Cao, J.; Hu, J.; Topatana, W.; Li, S.; Juengpanich, S.; Lin, J.; Tong, C.; Shen, J.; Zhang, B.; et al. Clinical-Radiomic Analysis
for Pretreatment Prediction of Objective Response to First Transarterial Chemoembolization in Hepatocellular Carcinoma. Liver
Cancer 2021, 10, 38–51. [CrossRef]

50. Carles, M.; Fechter, T.; Radicioni, G.; Schimek-Jasch, T.; Adebahr, S.; Zamboglou, C.; Nicolay, N.; Martí-Bonmatí, L.; Nestle, U.;
Grosu, A.; et al. FDG-PET Radiomics for Response Monitoring in Non-Small-Cell Lung Cancer Treated with Radiation Therapy.
Cancers 2021, 13, 814. [CrossRef] [PubMed]

51. Cai, J.; Zheng, J.; Shen, J.; Yuan, Z.; Xie, M.; Gao, M.; Tan, H.; Liang, Z.-G.; Rong, X.; Li, Y.; et al. A Radiomics Model for Predicting
the Response to Bevacizumab in Brain Necrosis after Radiotherapy. Clin. Cancer Res. 2020, 26, 5438–5447. [CrossRef] [PubMed]

52. Nie, K.; Shi, L.; Chen, Q.; Hu, X.; Jabbour, S.K.; Yue, N.; Niu, T.; Sun, X. Rectal Cancer: Assessment of Neoadjuvant Chemoradiation
Outcome based on Radiomics of Multiparametric MRI. Clin. Cancer Res. 2016, 22, 5256–5264. [CrossRef]

53. Samiei, S.; Granzier, R.; Ibrahim, A.; Primakov, S.; Lobbes, M.; Beets-Tan, R.; van Nijnatten, T.; Engelen, S.; Woodruff, H.; Smidt,
M. Dedicated Axillary MRI-Based Radiomics Analysis for the Prediction of Axillary Lymph Node Metastasis in Breast Cancer.
Cancers 2021, 13, 757. [CrossRef] [PubMed]

54. Yu, J.; Deng, Y.; Liu, T.; Zhou, J.; Jia, X.; Xiao, T.; Zhou, S.; Li, J.; Guo, Y.; Wang, Y.; et al. Lymph node metastasis prediction of
papillary thyroid carcinoma based on transfer learning radiomics. Nat. Commun. 2020, 11, 4807. [CrossRef]

55. Liu, X.; Yang, Q.; Zhang, C.; Sun, J.; He, K.; Xie, Y.; Zhang, Y.; Fu, Y.; Zhang, H. Multiregional-Based Magnetic Resonance Imaging
Radiomics Combined with Clinical Data Improves Efficacy in Predicting Lymph Node Metastasis of Rectal Cancer. Front. Oncol.
2021, 10, 10. [CrossRef]

56. Mouraviev, A.; Detsky, J.; Sahgal, A.; Ruschin, M.; Lee, Y.K.; Karam, I.; Heyn, C.; Stanisz, G.J.; Martel, A.L. Use of radiomics for
the prediction of local control of brain metastases after stereotactic radiosurgery. Neuro-Oncology 2020, 22, 797–805. [CrossRef]
[PubMed]

57. Jiang, Y.; Yuan, Q.; Lv, W.; Xi, S.; Huang, W.; Sun, Z.; Chen, H.; Zhao, L.; Liu, W.; Hu, Y.; et al. Radiomic signature of 18F
fluorodeoxyglucose PET/CT for prediction of gastric cancer survival and chemotherapeutic benefits. Theranostics 2018, 8,
5915–5928. [CrossRef] [PubMed]

58. Santos, M.K.; Júnior, J.R.F.; Wada, D.T.; Tenório, A.P.M.; Barbosa, M.H.N.; Marques, P.M.D.A. Artificial intelligence, machine
learning, computer-aided diagnosis, and radiomics: Advances in imaging towards to precision medicine. Radiol. Bras. 2019, 52,
387–396. [CrossRef] [PubMed]

59. Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [CrossRef]
60. Moor, J. The Dartmouth College artificial intelligence conference: The next fifty years. Ai Mag. 2006, 27, 87.
61. Zhou, X.; Li, C.; Rahaman, M.; Yao, Y.; Ai, S.; Sun, C.; Wang, Q.; Zhang, Y.; Li, M.; Li, X.; et al. A Comprehensive Review for

Breast Histopathology Image Analysis Using Classical and Deep Neural Networks. IEEE Access 2020, 8, 90931–90956. [CrossRef]
62. Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine Learning for Medical Imaging. Radiographics 2017, 37, 505–515.

[CrossRef]
63. Foster, K.R.; Koprowski, R.; Skufca, J.D. Machine learning, medical diagnosis, and biomedical engineering research—Commentary.

Biomed. Eng. Online 2014, 13, 94. [CrossRef]
64. Rashidi, H.H.; Tran, N.K.; Betts, E.V.; Howell, L.P.; Green, R. Artificial intelligence and machine learning in pathology: The

present landscape of supervised methods. Acad. Pathol. 2019, 6. [CrossRef] [PubMed]

http://doi.org/10.1093/neuonc/noy133
http://doi.org/10.1038/srep46349
http://www.ncbi.nlm.nih.gov/pubmed/28418006
http://doi.org/10.2967/jnumed.116.173112
http://doi.org/10.1109/TMI.2021.3061724
http://doi.org/10.1016/j.semcancer.2020.04.002
http://doi.org/10.1016/j.jtho.2016.07.002
http://doi.org/10.3390/cancers13040722
http://doi.org/10.1016/j.annonc.2020.03.295
http://doi.org/10.1016/j.media.2016.05.007
http://www.ncbi.nlm.nih.gov/pubmed/27236221
http://doi.org/10.1159/000512028
http://doi.org/10.3390/cancers13040814
http://www.ncbi.nlm.nih.gov/pubmed/33672052
http://doi.org/10.1158/1078-0432.CCR-20-1264
http://www.ncbi.nlm.nih.gov/pubmed/32727886
http://doi.org/10.1158/1078-0432.CCR-15-2997
http://doi.org/10.3390/cancers13040757
http://www.ncbi.nlm.nih.gov/pubmed/33673071
http://doi.org/10.1038/s41467-020-18497-3
http://doi.org/10.3389/fonc.2020.585767
http://doi.org/10.1093/neuonc/noaa007
http://www.ncbi.nlm.nih.gov/pubmed/31956919
http://doi.org/10.7150/thno.28018
http://www.ncbi.nlm.nih.gov/pubmed/30613271
http://doi.org/10.1590/0100-3984.2019.0049
http://www.ncbi.nlm.nih.gov/pubmed/32047333
http://doi.org/10.1016/j.metabol.2017.01.011
http://doi.org/10.1109/ACCESS.2020.2993788
http://doi.org/10.1148/rg.2017160130
http://doi.org/10.1186/1475-925X-13-94
http://doi.org/10.1177/2374289519873088
http://www.ncbi.nlm.nih.gov/pubmed/31523704


Diagnostics 2021, 11, 1523 27 of 32

65. Jafari, M.; Wang, Y.; Amiryousefi, A.; Tang, J. Unsupervised Learning and Multipartite Network Models: A Promising Approach
for Understanding Traditional Medicine. Front. Pharmacol. 2020, 11, 1319. [CrossRef]

66. Bzdok, D.; Krzywinski, M.; Altman, N. Machine learning: Supervised methods. Nat. Methods 2018, 15, 5–6. [CrossRef] [PubMed]
67. Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical Image Analysis using Convolutional Neural

Networks: A Review. J. Med. Syst. 2018, 42, 226. [CrossRef]
68. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
69. Zipser, D.; Andersen, R.A. A back-propagation programmed network that simulates response properties of a subset of posterior

parietal neurons. Nat. Cell Biol. 1988, 331, 679–684. [CrossRef]
70. Kriegeskorte, N.; Golan, T. Neural network models and deep learning. Curr. Biol. 2019, 29, R231–R236. [CrossRef] [PubMed]
71. Manisha; Dhull, S.K.; Singh, K.K. ECG Beat Classifiers: A Journey from ANN To DNN. Procedia Comput. Sci. 2020, 167, 747–759.

[CrossRef]
72. Soffer, S.; Ben-Cohen, A.; Shimon, O.; Amitai, M.M.; Greenspan, H.; Klang, E. Convolutional Neural Networks for Radiologic

Images: A Radiologist’s Guide. Radiology 2019, 290, 590–606. [CrossRef] [PubMed]
73. Deng, Y.; Bao, F.; Dai, Q.; Wu, L.F.; Altschuler, S.J. Scalable analysis of cell-type composition from single-cell transcriptomics

using deep recurrent learning. Nat. Methods 2019, 16, 311–314. [CrossRef] [PubMed]
74. Li, Y.; Ma, X.; Zhou, X.; Cheng, P.; He, K.; Li, C. Knowledge Enhanced LSTM for Coreference Resolution on Biomedical Texts.

Bioinformatics 2021. [CrossRef]
75. Hua, Y.; Guo, J.; Zhao, H. Deep belief networks and deep learning. In Proceedings of the 2015 International Conference on

Intelligent Computing and Internet of Things, Harbin, China, 17–18 January 2015; pp. 1–4.
76. Ko, W.Y.; Siontis, K.C.; Attia, Z.I.; Carter, R.E.; Kapa, S.; Ommen, S.R.; Demuth, S.J.; Ackerman, M.J.; Gersh, B.J.;

Arruda-Olson, A.M.; et al. Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled
electrocardiogram. J. Am. Coll. Cardiol. 2020, 75, 722–733. [CrossRef]

77. Skrede, O.-J.; De Raedt, S.; Kleppe, A.; Hveem, T.S.; Liestøl, K.; Maddison, J.; Askautrud, H.; Pradhan, M.; Nesheim, J.A.;
Albregtsen, F.; et al. Deep learning for prediction of colorectal cancer outcome: A discovery and validation study. Lancet 2020,
395, 350–360. [CrossRef]

78. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; 773p.
79. Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018,

18, 500–510. [CrossRef] [PubMed]
80. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning, Rome, Italy, 26–28 July 2019; pp. 6105–6114.
81. Zhang, B.; He, X.; Ouyang, F.; Gu, D.; Dong, Y.; Zhang, L.; Mo, X.; Huang, W.; Tian, J.; Zhang, S. Radiomic machine-learning

classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett. 2017, 403, 21–27. [CrossRef] [PubMed]
82. Zhang, B.; Ouyang, F.; Gu, D.; Dongsheng, G.; Zhang, L.; Mo, X.; Huang, W.; Zhang, S. Advanced nasopharyngeal carcinoma:

Pre-treatment prediction of progression based on multi-parametric MRI radiomics. Oncotarget 2017, 8, 72457–72465. [CrossRef]
[PubMed]

83. Ouyang, F.S.; Guo, B.L.; Zhang, B.; Dong, Y.H.; Zhang, L.; Mo, X.K.; Huang, W.H.; Zhang, S.X.; Hu, Q.G. Exploration and
validation of radiomics signature as an independent prognostic biomarker in stage III-IVb Nasopharyngeal carcinoma. Oncotarget
2017, 8, 74869–74879. [CrossRef] [PubMed]

84. Lv, W.; Yuan, Q.; Wang, Q.; Ma, J.; Feng, Q.; Chen, W.; Rahmim, A.; Lu, L. Radiomics Analysis of PET and CT Components of
PET/CT Imaging Integrated with Clinical Parameters: Application to Prognosis for Nasopharyngeal Carcinoma. Mol. Imaging
Biol. 2019, 21, 954–964. [CrossRef] [PubMed]

85. Zhuo, E.-H.; Zhang, W.-J.; Li, H.-J.; Zhang, G.-Y.; Jing, B.-Z.; Zhou, J.; Cui, C.-Y.; Chen, M.-Y.; Sun, Y.; Liu, L.-Z.; et al. Radiomics
on multi-modalities MR sequences can subtype patients with non-metastatic nasopharyngeal carcinoma (NPC) into distinct
survival subgroups. Eur. Radiol. 2019, 29, 5590–5599. [CrossRef] [PubMed]

86. Zhang, L.L.; Huang, M.Y.; Li, Y.; Liang, J.H.; Gao, T.S.; Deng, B.; Yao, J.J.; Lin, L.; Chen, F.P.; Huang, X.D.; et al. Pretreatment MRI
radiomics analysis allows for reliable prediction of local recurrence in non-metastatic T4 Nasopharyngeal carcinoma. EBioMedicine
2019, 42, 270–280. [CrossRef] [PubMed]

87. Yang, K.; Tian, J.; Zhang, B.; Li, M.; Xie, W.; Zou, Y.; Tan, Q.; Liu, L.; Zhu, J.; Shou, A.; et al. A multidimensional nomogram
combining overall stage, dose volume histogram parameters and radiomics to predict progression-free survival in patients with
locoregionally advanced nasopharyngeal carcinoma. Oral Oncol. 2019, 98, 85–91. [CrossRef] [PubMed]

88. Ming, X.; Oei, R.W.; Zhai, R.; Kong, F.; Du, C.; Hu, C.; Hu, W.; Zhang, Z.; Ying, H.; Wang, J. MRI-based radiomics signature is a
quantitative prognostic biomarker for nasopharyngeal carcinoma. Sci. Rep. 2019, 9, 10412. [CrossRef] [PubMed]

89. Zhang, L.; Zhou, H.; Gu, D.; Tian, J.; Zhang, B.; Dong, D.; Mo, X.; Liu, J.; Luo, X.; Pei, S.; et al. Radiomic Nomogram: Pretreatment
Evaluation of Local Recurrence in Nasopharyngeal Carcinoma based on MR Imaging. J. Cancer 2019, 10, 4217–4225. [CrossRef]
[PubMed]

90. Mao, J.; Fang, J.; Duan, X.; Yang, Z.; Cao, M.; Zhang, F.; Lu, L.; Zhang, X.; Wu, X.; Ding, Y.; et al. Predictive value of pretreatment
MRI texture analysis in patients with primary nasopharyngeal carcinoma. Eur. Radiol. 2019, 29, 4105–4113. [CrossRef]

http://doi.org/10.3389/fphar.2020.01319
http://doi.org/10.1038/nmeth.4551
http://www.ncbi.nlm.nih.gov/pubmed/30100821
http://doi.org/10.1007/s10916-018-1088-1
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1038/331679a0
http://doi.org/10.1016/j.cub.2019.02.034
http://www.ncbi.nlm.nih.gov/pubmed/30939301
http://doi.org/10.1016/j.procs.2020.03.340
http://doi.org/10.1148/radiol.2018180547
http://www.ncbi.nlm.nih.gov/pubmed/30694159
http://doi.org/10.1038/s41592-019-0353-7
http://www.ncbi.nlm.nih.gov/pubmed/30886411
http://doi.org/10.1093/bioinformatics/btab153
http://doi.org/10.1016/j.jacc.2019.12.030
http://doi.org/10.1016/S0140-6736(19)32998-8
http://doi.org/10.1038/s41568-018-0016-5
http://www.ncbi.nlm.nih.gov/pubmed/29777175
http://doi.org/10.1016/j.canlet.2017.06.004
http://www.ncbi.nlm.nih.gov/pubmed/28610955
http://doi.org/10.18632/oncotarget.19799
http://www.ncbi.nlm.nih.gov/pubmed/29069802
http://doi.org/10.18632/oncotarget.20423
http://www.ncbi.nlm.nih.gov/pubmed/29088830
http://doi.org/10.1007/s11307-018-01304-3
http://www.ncbi.nlm.nih.gov/pubmed/30671740
http://doi.org/10.1007/s00330-019-06075-1
http://www.ncbi.nlm.nih.gov/pubmed/30874880
http://doi.org/10.1016/j.ebiom.2019.03.050
http://www.ncbi.nlm.nih.gov/pubmed/30928358
http://doi.org/10.1016/j.oraloncology.2019.09.022
http://www.ncbi.nlm.nih.gov/pubmed/31569054
http://doi.org/10.1038/s41598-019-46985-0
http://www.ncbi.nlm.nih.gov/pubmed/31320729
http://doi.org/10.7150/jca.33345
http://www.ncbi.nlm.nih.gov/pubmed/31413740
http://doi.org/10.1007/s00330-018-5961-6


Diagnostics 2021, 11, 1523 28 of 32

91. Du, R.; Lee, V.H.; Yuan, H.; Lam, K.-O.; Pang, H.H.; Chen, Y.; Lam, E.Y.; Khong, P.-L.; Lee, A.W.; Kwong, D.L.; et al. Radiomics
Model to Predict Early Progression of Nonmetastatic Nasopharyngeal Carcinoma after Intensity Modulation Radiation Therapy:
A Multicenter Study. Radiol. Artif. Intell. 2019, 1, e180075. [CrossRef]

92. Xu, H.; Lv, W.; Feng, H.; Du, D.; Yuan, Q.; Wang, Q.; Dai, Z.; Yang, W.; Feng, Q.; Ma, J.; et al. Subregional Radiomics Analysis of
PET/CT Imaging with Intratumor Partitioning: Application to Prognosis for Nasopharyngeal Carcinoma. Mol. Imaging Biol.
2020, 22, 1414–1426. [CrossRef]

93. Shen, H.; Wang, Y.; Liu, D.; Lv, R.; Huang, Y.; Peng, C.; Jiang, S.; Wang, Y.; He, Y.; Lan, X.; et al. Predicting Progression-Free
Survival Using MRI-Based Radiomics for Patients with Nonmetastatic Nasopharyngeal Carcinoma. Front. Oncol. 2020, 10, 618.
[CrossRef]

94. Bologna, M.; Corino, V.; Calareso, G.; Tenconi, C.; Alfieri, S.; Iacovelli, N.A.; Cavallo, A.; Cavalieri, S.; Locati, L.; Bossi, P.; et al.
Baseline MRI-Radiomics Can Predict Overall Survival in Non-Endemic EBV-Related Nasopharyngeal Carcinoma Patients. Cancers
2020, 12, 2958. [CrossRef] [PubMed]

95. Feng, Q.; Liang, J.; Wang, L.; Niu, J.; Ge, X.; Pang, P.; Ding, Z. Radiomics Analysis and Correlation with Metabolic Parameters in
Nasopharyngeal Carcinoma Based on PET/MR Imaging. Front. Oncol. 2020, 10, 1619. [CrossRef] [PubMed]

96. Peng, L.; Hong, X.; Yuan, Q.; Lu, L.; Wang, Q.; Chen, W. Prediction of local recurrence and distant metastasis using radiomics
analysis of pretreatment nasopharyngeal [18F]FDG PET/CT images. Ann. Nucl. Med. 2021, 35, 458–468. [CrossRef]

97. Zhang, L.; Dong, D.; Li, H.; Tian, J.; Ouyang, F.; Mo, X.; Zhang, B.; Luo, X.; Lian, Z.; Pei, S.; et al. Development and validation of a
magnetic resonance imaging-based model for the prediction of distant metastasis before initial treatment of nasopharyngeal
carcinoma: A retrospective cohort study. EBioMedicine 2019, 40, 327–335. [CrossRef]

98. Zhong, X.; Li, L.; Jiang, H.; Yin, J.; Lu, B.; Han, W.; Li, J.; Zhang, J. Cervical spine osteoradionecrosis or bone metastasis after
radiotherapy for nasopharyngeal carcinoma? The MRI-based radiomics for characterization. BMC Med. Imaging 2020, 20, 104.
[CrossRef]

99. Akram, F.; Koh, P.E.; Wang, F.; Zhou, S.; Tan, S.H.; Paknezhad, M.; Park, S.; Hennedige, T.; Thng, C.H.; Lee, H.K.; et al. Exploring
MRI based radiomics analysis of intratumoral spatial heterogeneity in locally advanced nasopharyngeal carcinoma treated with
intensity modulated radiotherapy. PLoS ONE 2020, 15, e0240043. [CrossRef]

100. Zhang, X.; Zhong, L.; Zhang, B.; Zhang, L.; Du, H.; Lu, L.; Zhang, S.; Yang, W.; Feng, Q. The effects of volume of interest
delineation on MRI-based radiomics analysis: Evaluation with two disease groups. Cancer Imaging 2019, 19, 89–112. [CrossRef]
[PubMed]

101. Lv, W.; Yuan, Q.; Wang, Q.; Ma, J.; Jiang, J.; Yang, W.; Feng, Q.; Chen, W.; Rahmim, A.; Lu, L. Robustness versus disease
differentiation when varying parameter settings in radiomics features: Application to nasopharyngeal PET/CT. Eur. Radiol. 2018,
28, 3245–3254. [CrossRef] [PubMed]

102. Du, D.; Feng, H.; Lv, W.; Ashrafinia, S.; Yuan, Q.; Wang, Q.; Yang, W.; Feng, Q.; Chen, W.; Rahmim, A.; et al. Machine Learning
Methods for Optimal Radiomics-Based Differentiation Between Recurrence and Inflammation: Application to Nasopharyngeal
Carcinoma Post-therapy PET/CT Images. Mol. Imaging Biol. 2020, 22, 730–738. [CrossRef]

103. Wang, G.; He, L.; Yuan, C.; Huang, Y.; Liu, Z.; Liang, C. Pretreatment MR imaging radiomics signatures for response prediction to
induction chemotherapy in patients with nasopharyngeal carcinoma. Eur. J. Radiol. 2018, 98, 100–106. [CrossRef] [PubMed]

104. Yu, T.-T.; Lam, S.-K.; To, L.-H.; Tse, K.-Y.; Cheng, N.-Y.; Fan, Y.-N.; Lo, C.-L.; Or, K.-W.; Chan, M.-L.; Hui, K.-C.; et al. Pretreatment
Prediction of Adaptive Radiation Therapy Eligibility Using MRI-Based Radiomics for Advanced Nasopharyngeal Carcinoma
Patients. Front. Oncol. 2019, 9, 1050. [CrossRef]

105. Yongfeng, P.; Chuner, J.; Lei, W.; Fengqin, Y.; Zhimin, Y.; Zhenfu, F.; Haitao, J.; Yangming, J.; Fangzheng, W. The usefulness of pre-
treatment MR-based radiomics on early response of neoadjuvant chemotherapy in patients with locally advanced Nasopharyngeal
carcinoma. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2021, 28, 605–613.

106. Zhang, L.; Ye, Z.; Ruan, L.; Jiang, M. Pretreatment MRI-Derived Radiomics May Evaluate the Response of Different Induction
Chemotherapy Regimens in Locally advanced Nasopharyngeal Carcinoma. Acad. Radiol. 2020, 27, 1655–1664. [CrossRef]

107. Zhao, L.; Gong, J.; Xi, Y.; Xu, M.; Li, C.; Kang, X.; Yin, Y.; Qin, W.; Yin, H.; Shi, M. MRI-based radiomics nomogram may predict
the response to induction chemotherapy and survival in locally advanced nasopharyngeal carcinoma. Eur. Radiol. 2020, 30,
537–546. [CrossRef] [PubMed]

108. Liu, Y.; Shi, H.; Huang, S.; Chen, X.; Zhou, H.; Chang, H.; Xia, Y.; Wang, G.; Yang, X. Early prediction of acute xerostomia during
radiation therapy for nasopharyngeal cancer based on delta radiomics from CT images. Quant. Imaging Med. Surg. 2019, 9,
1288–1302. [CrossRef]

109. Zhang, B.; Lian, Z.; Zhong, L.; Zhang, X.; Dong, Y.; Chen, Q.; Zhang, L.; Mo, X.; Huang, W.; Yang, W.; et al. Machine-learning
based MRI radiomics models for early detection of radiation-induced brain injury in nasopharyngeal carcinoma. BMC Cancer
2020, 20, 502. [CrossRef] [PubMed]

110. Qiang, M.; Lv, X.; Li, C.; Liu, K.; Chen, X.; Guo, X. Deep learning in nasopharyngeal carcinoma: A retrospective cohort study of
3D convolutional neural networks on magnetic resonance imaging. Ann. Oncol. 2019, 30, v471. [CrossRef]

111. Du, R.; Cao, P.; Han, L.; Ai, Q.; King, A.D.; Vardhanabhuti, V. Deep convolution neural network model for automatic risk
assessment of patients with non-metastatic Nasopharyngeal carcinoma. arXiv 2019, arXiv:1907.11861.

112. Yang, Q.; Guo, Y.; Ou, X.; Wang, J.; Hu, C. Automatic T Staging Using Weakly Supervised Deep Learning for Nasopharyngeal
Carcinoma on MR Images. J. Magn. Reson. Imaging 2020, 52, 1074–1082. [CrossRef]

http://doi.org/10.1148/ryai.2019180075
http://doi.org/10.1007/s11307-019-01439-x
http://doi.org/10.3389/fonc.2020.00618
http://doi.org/10.3390/cancers12102958
http://www.ncbi.nlm.nih.gov/pubmed/33066161
http://doi.org/10.3389/fonc.2020.01619
http://www.ncbi.nlm.nih.gov/pubmed/33014815
http://doi.org/10.1007/s12149-021-01585-9
http://doi.org/10.1016/j.ebiom.2019.01.013
http://doi.org/10.1186/s12880-020-00502-2
http://doi.org/10.1371/journal.pone.0240043
http://doi.org/10.1186/s40644-019-0276-7
http://www.ncbi.nlm.nih.gov/pubmed/31864421
http://doi.org/10.1007/s00330-018-5343-0
http://www.ncbi.nlm.nih.gov/pubmed/29520429
http://doi.org/10.1007/s11307-019-01411-9
http://doi.org/10.1016/j.ejrad.2017.11.007
http://www.ncbi.nlm.nih.gov/pubmed/29279146
http://doi.org/10.3389/fonc.2019.01050
http://doi.org/10.1016/j.acra.2020.09.002
http://doi.org/10.1007/s00330-019-06211-x
http://www.ncbi.nlm.nih.gov/pubmed/31372781
http://doi.org/10.21037/qims.2019.07.08
http://doi.org/10.1186/s12885-020-06957-4
http://www.ncbi.nlm.nih.gov/pubmed/32487085
http://doi.org/10.1093/annonc/mdz252.057
http://doi.org/10.1002/jmri.27202


Diagnostics 2021, 11, 1523 29 of 32

113. Jing, B.; Deng, Y.; Zhang, T.; Hou, D.; Li, B.; Qiang, M.; Liu, K.; Ke, L.; Li, T.; Sun, Y.; et al. Deep learning for risk prediction in
patients with nasopharyngeal carcinoma using multi-parametric MRIs. Comput. Methods Programs Biomed. 2020, 197, 105684.
[CrossRef]

114. Cui, C.; Wang, S.; Zhou, J.; Dong, A.; Xie, F.; Li, H.; Liu, L. Machine Learning Analysis of Image Data Based on Detailed MR
Image Reports for Nasopharyngeal Carcinoma Prognosis. BioMed Res. Int. 2020, 2020. [CrossRef]

115. Liu, K.; Xia, W.; Qiang, M.; Chen, X.; Liu, J.; Guo, X.; Lv, X. Deep learning pathological microscopic features in endemic
nasopharyngeal cancer: Prognostic value and protentional role for individual induction chemotherapy. Cancer Med. 2019, 9,
1298–1306. [CrossRef] [PubMed]

116. Zhang, L.; Wu, X.; Liu, J.; Zhang, B.; Mo, X.; Chen, Q.; Fang, J.; Wang, F.; Li, M.; Chen, Z.; et al. MRI-based deep-learning model
for distant metastasis-free survival in locoregionally advanced Nasopharyngeal carcinoma. J. Magn. Reson. Imaging 2021, 53,
167–178. [CrossRef] [PubMed]

117. Li, Y.; Zhu, J.; Liu, Z.; Teng, J.; Xie, Q.; Zhang, L.; Liu, X.; Shi, J.; Chen, L. A preliminary study of using a deep convolution neural
network to generate synthesized CT images based on CBCT for adaptive radiotherapy of nasopharyngeal carcinoma. Phys. Med.
Biol. 2019, 64, 145010. [CrossRef]

118. Wang, Y.; Liu, C.; Zhang, X.; Deng, W. Synthetic CT Generation Based on T2 Weighted MRI of Nasopharyngeal Carcinoma (NPC)
Using a Deep Convolutional Neural Network (DCNN). Front. Oncol. 2019, 9, 1333. [CrossRef]

119. Tie, X.; Lam, S.K.; Zhang, Y.; Lee, K.H.; Au, K.H.; Cai, J. Pseudo-CT generation from multi-parametric MRI using a novel
multi-channel multi-path conditional generative adversarial network for Nasopharyngeal carcinoma patients. Med. Phys. 2020,
47, 1750–1762. [CrossRef]

120. Peng, Y.; Chen, S.; Qin, A.; Chen, M.; Gao, X.; Liu, Y.; Miao, J.; Gu, H.; Zhao, C.; Deng, X.; et al. Magnetic resonance-based synthetic
computed tomography images generated using generative adversarial networks for nasopharyngeal carcinoma radiotherapy
treatment planning. Radiother. Oncol. 2020, 150, 217–224. [CrossRef]

121. Mohammed, M.A.; Abd Ghani, M.K.; Arunkumar, N.; Raed, H.; Mohamad, A.; Mohd, B. A real time computer aided object
detection of Nasopharyngeal carcinoma using genetic algorithm and artificial neural network based on Haar feature fear. Future
Gener. Comput Syst. 2018, 89, 539–547. [CrossRef]

122. Mohammed, M.A.; Abd Ghani, M.K.; Arunkumar, N.; Hamed, R.I.; Mostafa, S.A.; Abdullah, M.K.; Burhanuddin, M.A. Decision
support system for Nasopharyngeal carcinoma discrimination from endoscopic images using artificial neural network. J.
Supercomput. 2020, 76, 1086–1104. [CrossRef]

123. Abd Ghani, M.K.; Mohammed, M.A.; Arunkumar, N.; Mostafa, S.; Ibrahim, D.A.; Abdullah, M.K.; Jaber, M.M.; Abdulhay, E.;
Ramirez-Gonzalez, G.; Burhanuddin, M.A. Decision-level fusion scheme for Nasopharyngeal carcinoma identification using
machine learning techniques. Neu. Comput. Appl. 2020, 32, 625–638. [CrossRef]

124. Li, C.; Jing, B.; Ke, L.; Li, B.; Xia, W.; He, C.; Qian, C.; Zhao, C.; Mai, H.; Chen, M.; et al. Development and validation of an
endoscopic images-based deep learning model for detection with nasopharyngeal malignancies. Cancer Commun. 2018, 38, 1–11.
[CrossRef] [PubMed]

125. Diao, S.; Hou, J.; Yu, H.; Zhao, X.; Sun, Y.; Lambo, R.L.; Xie, Y.; Liu, L.; Qin, W.; Luo, W. Computer-Aided Pathologic Diagnosis of
Nasopharyngeal Carcinoma Based on Deep Learning. Am. J. Pathol. 2020, 190, 1691–1700. [CrossRef] [PubMed]

126. Chuang, W.-Y.; Chang, S.-H.; Yu, W.-H.; Yang, C.-K.; Yeh, C.-J.; Ueng, S.-H.; Liu, Y.-J.; Chen, T.-D.; Chen, K.-H.; Hsieh, Y.-Y.; et al.
Successful Identification of Nasopharyngeal Carcinoma in Nasopharyngeal Biopsies Using Deep Learning. Cancers 2020, 12, 507.
[CrossRef] [PubMed]

127. Wong, L.M.; King, A.D.; Ai, Q.Y.H.; Lam, W.K.J.; Poon, D.M.C.; Ma, B.B.Y.; Chan, K.C.A.; Mo, F.K.F. Convolutional neural network
for discriminating Nasopharyngeal carcinoma and benign hyperplasia on MRI. Eur. Radiol. 2021, 31, 3856–3863. [CrossRef]

128. Ke, L.; Deng, Y.; Xia, W.; Qiang, M.; Chen, X.; Liu, K.; Jing, B.; He, C.; Xie, C.; Guo, X.; et al. Development of a self-constrained 3D
DenseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images. Oral
Oncol. 2020, 110, 104862. [CrossRef] [PubMed]

129. Men, K.; Chen, X.; Zhang, Y.; Zhang, T.; Dai, J.; Yi, J.; Li, Y. Deep Deconvolutional Neural Network for Target Segmentation of
Nasopharyngeal Cancer in Planning Computed Tomography Images. Front. Oncol. 2017, 7, 315. [CrossRef] [PubMed]

130. Li, Q.; Xu, Y.; Chen, Z.; Liu, D.; Feng, S.-T.; Law, M.; Ye, Y.; Huang, B. Tumor Segmentation in Contrast-Enhanced Magnetic
Resonance Imaging for Nasopharyngeal Carcinoma: Deep Learning with Convolutional Neural Network. BioMed Res. Int.
2018, 2018. [CrossRef] [PubMed]

131. Wang, Y.; Zu, C.; Hu, G.; Luo, Y.; Ma, Z.; He, K.; Wu, X.; Zhou, J. Automatic Tumor Segmentation with Deep Convolutional
Neural Networks for Radiotherapy Applications. Neural Process. Lett. 2018, 48, 1323–1334. [CrossRef]

132. Ma, Z.; Wu, X.; Sun, S.; Xia, C.; Yang, Z.; Li, S.; Zhou, J. A discriminative learning based approach for automated Nasopharyngeal
carcinoma segmentation leveraging multi-modality similarity metric learning. In Proceedings of the 2018 IEEE 15th International
Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 813–816.

133. Daoud, B.; Morooka, K.; Kurazume, R.; Leila, F.; Mnejja, W.; Daoud, J. 3D segmentation of nasopharyngeal carcinoma from CT
images using cascade deep learning. Comput. Med. Imaging Graph. 2019, 77, 101644. [CrossRef] [PubMed]

134. Lin, L.; Dou, Q.; Jin, Y.-M.; Zhou, G.-Q.; Tang, Y.-Q.; Chen, W.-L.; Su, B.-A.; Liu, F.; Tao, C.-J.; Jiang, N.; et al. Deep Learning
for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma. Radiology 2019, 291, 677–686.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.cmpb.2020.105684
http://doi.org/10.1155/2020/8068913
http://doi.org/10.1002/cam4.2802
http://www.ncbi.nlm.nih.gov/pubmed/31860791
http://doi.org/10.1002/jmri.27308
http://www.ncbi.nlm.nih.gov/pubmed/32776391
http://doi.org/10.1088/1361-6560/ab2770
http://doi.org/10.3389/fonc.2019.01333
http://doi.org/10.1002/mp.14062
http://doi.org/10.1016/j.radonc.2020.06.049
http://doi.org/10.1016/j.future.2018.07.022
http://doi.org/10.1007/s11227-018-2587-z
http://doi.org/10.1007/s00521-018-3882-6
http://doi.org/10.1186/s40880-018-0325-9
http://www.ncbi.nlm.nih.gov/pubmed/30253801
http://doi.org/10.1016/j.ajpath.2020.04.008
http://www.ncbi.nlm.nih.gov/pubmed/32360568
http://doi.org/10.3390/cancers12020507
http://www.ncbi.nlm.nih.gov/pubmed/32098314
http://doi.org/10.1007/s00330-020-07451-y
http://doi.org/10.1016/j.oraloncology.2020.104862
http://www.ncbi.nlm.nih.gov/pubmed/32615440
http://doi.org/10.3389/fonc.2017.00315
http://www.ncbi.nlm.nih.gov/pubmed/29376025
http://doi.org/10.1155/2018/9128527
http://www.ncbi.nlm.nih.gov/pubmed/30417017
http://doi.org/10.1007/s11063-017-9759-3
http://doi.org/10.1016/j.compmedimag.2019.101644
http://www.ncbi.nlm.nih.gov/pubmed/31426004
http://doi.org/10.1148/radiol.2019182012
http://www.ncbi.nlm.nih.gov/pubmed/30912722


Diagnostics 2021, 11, 1523 30 of 32

135. Liang, S.; Tang, F.; Huang, X.; Yang, K.; Zhong, T.; Hu, R.; Liu, S.; Yuan, X.; Zhang, Y. Deep-learning-based detection and
segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Eur.
Radiol. 2018, 29, 1961–1967. [CrossRef] [PubMed]

136. Zhong, T.; Huang, X.; Tang, F.; Liang, S.; Deng, X.; Zhang, Y. Boosting-based cascaded convolutional neural networks for the
segmentation of CT organs-at-risk in Nasopharyngeal carcinoma. Med. Phys. 2019, 46, 5602–5611. [CrossRef] [PubMed]

137. Ma, Z.; Zhou, S.; Wu, X.; Zhang, H.; Yan, W.; Sun, S.; Zhou, J. Nasopharyngeal carcinoma segmentation based on enhanced
convolutional neural networks using multi-modal metric learning. Phys. Med. Biol. 2018, 64, 025005. [CrossRef]

138. Li, S.; Xiao, J.; He, L.; Peng, X.; Yuan, X. The Tumor Target Segmentation of Nasopharyngeal Cancer in CT Images Based on Deep
Learning Methods. Technol. Cancer Res. Treat. 2019, 18. [CrossRef]

139. Xue, X.; Qin, N.; Hao, X.; Shi, J.; Wu, A.; An, H.; Zhang, H.; Wu, A.; Yang, Y. Sequential and Iterative Auto-Segmentation of
High-Risk Clinical Target Volume for Radiotherapy of Nasopharyngeal Carcinoma in Planning CT Images. Front. Oncol. 2020,
10, 1134. [CrossRef] [PubMed]

140. Chen, H.; Qi, Y.; Yin, Y.; Li, T.; Liu, X.; Li, X.; Gong, G.; Wang, L. MMFNet: A multi-modality MRI fusion network for segmentation
of nasopharyngeal carcinoma. Neurocomputing 2020, 394, 27–40. [CrossRef]

141. Guo, F.; Shi, C.; Li, X.; Wu, X.; Zhou, J.; Lv, J. Image segmentation of nasopharyngeal carcinoma using 3D CNN with long-range
skip connection and multi-scale feature pyramid. Soft Comput. 2020, 24, 12671–12680. [CrossRef]

142. Ye, Y.; Cai, Z.; Huang, B.; He, Y.; Zeng, P.; Zou, G.; Deng, W.; Chen, H.; Huang, B. Fully-Automated Segmentation of Nasopharyn-
geal Carcinoma on Dual-Sequence MRI Using Convolutional Neural Networks. Front. Oncol. 2020, 10, 166. [CrossRef]

143. Li, Y.; Peng, H.; Dan, T.; Hu, Y.; Tao, G.; Cai, H. Coarse-to-fine Nasopharyngeal carcinoma Segmentation in MRI via Multi-stage
Rendering. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Korea,
16–19 December 2020; pp. 623–628.

144. Jin, Z.; Li, X.C.; Shen, L.; Lang, J.; Li, J.; Wu, J.; Xu, P.; Duan, J. Automatic Primary Gross Tumor Volume Segmentation for
Nasopharyngeal carcinoma using ResSE-UNet. In Proceedings of the 2020 IEEE 33rd International Symposium on Computer-
Based Medical Systems (CBMS), Mayo Clinic, Rochester, MN, USA, 28–30 July 2020; pp. 585–590.

145. Wang, X.; Yang, G.; Zhang, Y.; Zhu, L.; Xue, X.; Zhang, B.; Cai, C.; Jin, H.; Zheng, J.; Wu, J.; et al. Automated delineation of
nasopharynx gross tumor volume for nasopharyngeal carcinoma by plain CT combining contrast-enhanced CT using deep
learning. J. Radiat. Res. Appl. Sci. 2020, 13, 568–577. [CrossRef]

146. Wong, L.M.; Ai, Q.Y.H.; Mo, F.K.F.; Poon, D.M.C.; King, A.D. Convolutional neural network in nasopharyngeal carcinoma: How
good is automatic delineation for primary tumor on a non-contrast-enhanced fat-suppressed T2-weighted MRI? Jpn. J. Radiol.
2021, 39, 571–579. [CrossRef]

147. Bai, X.; Hu, Y.; Gong, G.; Yin, Y.; Xia, Y. A deep learning approach to segmentation of nasopharyngeal carcinoma using computed
tomography. Biomed. Signal. Process. Control. 2021, 64, 102246. [CrossRef]

148. Shboul, Z.; Alam, M.; Vidyaratne, L.; Pei, L.; Elbakary, M.I.; Iftekharuddin, K.M. Feature-Guided Deep Radiomics for Glioblastoma
Patient Survival Prediction. Front. Neurosci. 2019, 13, 966. [CrossRef]

149. Paul, R.; Hawkins, S.H.; Schabath, M.B.; Gillies, R.J.; Hall, L.O.; Goldgof, D.B. Predicting malignant nodules by fusing deep
features with classical radiomics features. J. Med. Imaging 2018, 5, 011021. [CrossRef]

150. Bizzego, A.; Bussola, N.; Salvalai, D.; Chierici, M.; Maggio, V.; Jurman, G.; Furlanello, C. Integrating deep and radiomics
features in cancer bioimaging. In Proceedings of the 2019 IEEE Conference on Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB), Certosa di Pontignano, Siena–Tuscany, Italy, 9–11 July 2019; pp. 1–8.

151. Hatt, M.; Parmar, C.; Qi, J.; El Naqa, I. Machine (Deep) Learning Methods for Image Processing and Radiomics. IEEE Trans.
Radiat. Plasma Med. Sci. 2019, 3, 104–108. [CrossRef]

152. Li, S.; Wang, K.; Hou, Z.; Yang, J.; Ren, W.; Gao, S.; Meng, F.; Wu, P.; Liu, B.; Liu, J.; et al. Use of Radiomics Combined with
Machine Learning Method in the Recurrence Patterns After Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma:
A Preliminary Study. Front. Oncol. 2018, 8, 648. [CrossRef] [PubMed]

153. Zhong, L.-Z.; Fang, X.-L.; Dong, D.; Peng, H.; Fang, M.-J.; Huang, C.-L.; He, B.-X.; Lin, L.; Ma, J.; Tang, L.-L.; et al. A deep learning
MR-based radiomic nomogram may predict survival for Nasopharyngeal carcinoma patients with stage T3N1M0. Radiother.
Oncol. 2020, 151, 1–9. [CrossRef] [PubMed]

154. Zhang, F.; Zhong, L.-Z.; Zhao, X.; Dong, D.; Yao, J.-J.; Wang, S.-Y.; Liu, Y.; Zhu, D.; Wang, Y.; Wang, G.-J.; et al. A deep-
learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in
nasopharyngeal carcinoma: A multi-cohort study. Ther. Adv. Med. Oncol. 2020, 12. [CrossRef] [PubMed]

155. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.; van Ginneken, B.; Sánchez, C.I. A
survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]

156. Coroller, T.P.; Bi, W.L.; Huynh, E.; Abedalthagafi, M.; Aizer, A.A.; Greenwald, N.F.; Parmar, C.; Narayan, V.; Wu, W.W.;
Miranda de Moura, S.; et al. Radiographic prediction of meningioma grade by semantic and radiomic features. PLoS ONE 2017,
12, e0187908. [CrossRef]

157. Kebir, S.; Khurshid, Z.; Gaertner, F.C.; Essler, M.; Hattingen, E.; Fimmers, R.; Scheffler, B.; Herrlinger, U.; Bundschuh, R.A.; Glas,
M. Unsupervised consensus cluster analysis of [18F]-fluoroethyl-L-tyrosine positron emission tomography identified textural
features for the diagnosis of pseudoprogression in high-grade glioma. Oncotarget 2016, 8, 8294–8304. [CrossRef]

http://doi.org/10.1007/s00330-018-5748-9
http://www.ncbi.nlm.nih.gov/pubmed/30302589
http://doi.org/10.1002/mp.13825
http://www.ncbi.nlm.nih.gov/pubmed/31529501
http://doi.org/10.1088/1361-6560/aaf5da
http://doi.org/10.1177/1533033819884561
http://doi.org/10.3389/fonc.2020.01134
http://www.ncbi.nlm.nih.gov/pubmed/32793483
http://doi.org/10.1016/j.neucom.2020.02.002
http://doi.org/10.1007/s00500-020-04708-y
http://doi.org/10.3389/fonc.2020.00166
http://doi.org/10.1080/16878507.2020.1795565
http://doi.org/10.1007/s11604-021-01092-x
http://doi.org/10.1016/j.bspc.2020.102246
http://doi.org/10.3389/fnins.2019.00966
http://doi.org/10.1117/1.JMI.5.1.011021
http://doi.org/10.1109/TRPMS.2019.2899538
http://doi.org/10.3389/fonc.2018.00648
http://www.ncbi.nlm.nih.gov/pubmed/30622931
http://doi.org/10.1016/j.radonc.2020.06.050
http://www.ncbi.nlm.nih.gov/pubmed/32634460
http://doi.org/10.1177/1758835920971416
http://www.ncbi.nlm.nih.gov/pubmed/33403013
http://doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
http://doi.org/10.1371/journal.pone.0187908
http://doi.org/10.18632/oncotarget.14166


Diagnostics 2021, 11, 1523 31 of 32

158. Antropova, N.; Huynh, B.Q.; Giger, M.L. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three
imaging modality datasets. Med. Phys. 2017, 44, 5162–5171. [CrossRef]

159. Gierach, G.L.; Li, H.; Loud, J.T.; Greene, M.H.; Chow, C.K.; Lan, L.; Prindiville, S.A.; Eng-Wong, J.; Soballe, P.W.;
Giambartolomei, C.; et al. Relationships between computer-extracted mammographic texture pattern features and BRCA1/2
mutation status: A cross-sectional study. Breast Cancer Res. 2014, 16, 424.

160. Ciompi, F.; Chung, K.; Van Riel, S.J.; Setio, A.A.A.; Gerke, P.K.; Jacobs, C.; Scholten, E.T.; Schaefer-Prokop, C.; Wille, M.M.W.;
Marchianò, A.; et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci. Rep.
2017, 7, 46479. [CrossRef]

161. Coroller, T.P.; Grossmann, P.; Hou, Y.; Velazquez, E.R.; Leijenaar, R.T.; Hermann, G.; Lambin, P.; Haibe-Kains, B.; Mak, R.H.;
Aerts, H.J. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother. Oncol. 2015, 114, 345–350.
[CrossRef]

162. Zeng, Y.; Xu, S.; Chapman, W.C.; Li, S.; Alipour, Z.; Abdelal, H.; Chatterjee, D.; Mutch, M.; Zhu, Q. Real-time colorectal cancer
diagnosis using PR-OCT with deep learning. Theranostics 2020, 10, 2587–2596. [CrossRef]

163. Kather, J.N.; Krisam, J.; Charoentong, P.; Luedde, T.; Herpel, E.; Weis, C.-A.; Gaiser, T.; Marx, A.; Valous, N.A.; Ferber, D.; et al.
Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Med.
2019, 16, e1002730. [CrossRef]

164. Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al.
Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin. 2019, 69, 127–157. [CrossRef]

165. Spadarella, G.; Calareso, G.; Garanzini, E.; Ugga, L.; Cuocolo, A.; Cuocolo, R. MRI based radiomics in nasopharyngeal cancer:
Systematic review and perspectives using radiomic quality score (RQS) assessment. Eur. J. Radiol. 2021, 140, 109744. [CrossRef]
[PubMed]

166. Denny, J.C.; Collins, F.S. Precision medicine in 2030—seven ways to transform healthcare. Cell 2021, 184, 1415–1419. [CrossRef]
167. Fan, M.; Xia, P.; Clarke, R.; Wang, Y.; Li, L. Radiogenomic signatures reveal multiscale intratumour heterogeneity associated with

biological functions and survival in breast cancer. Nat. Commun. 2020, 11, 4861. [CrossRef]
168. Iwatate, Y.; Hoshino, I.; Yokota, H.; Ishige, F.; Itami, M.; Mori, Y.; Chiba, S.; Arimitsu, H.; Yanagibashi, H.; Nagase, H.; et al.

Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer. Br. J.
Cancer 2020, 123, 1253–1261. [CrossRef]

169. Shui, L.; Ren, H.; Yang, X.; Li, J.; Chen, Z.; Yi, C.; Zhu, H.; Shui, P. Era of radiogenomics in precision medicine: An emerging
approach for prediction of the diagnosis, treatment and prognosis of tumors. Front. Oncol. 2020, 10, 3195.

170. Jain, R.; Chi, A.S. Radiogenomics identifying important biological pathways in gliomas. Neuro-Oncology 2021, 23, 177–178.
[CrossRef] [PubMed]

171. Cho, N. Breast Cancer Radiogenomics: Association of Enhancement Pattern at DCE MRI with Deregulation of mTOR Pathway.
Radiology 2020, 296, 288–289. [CrossRef]

172. Pinker-Domenig, K.; Chin, J.; Melsaether, A.N.; Morris, E.A.; Moy, L. Precision Medicine and Radiogenomics in Breast Cancer:
New Approaches toward Diagnosis and Treatment. Radiology 2018, 287, 732–747. [CrossRef]

173. Badic, B.; Tixier, F.; Le Rest, C.C.; Hatt, M.; Visvikis, D. Radiogenomics in Colorectal Cancer. Cancers 2021, 13, 973. [CrossRef]
174. Zhou, M.; Leung, A.; Echegaray, S.; Gentles, A.; Shrager, J.B.; Jensen, K.C.; Berry, G.J.; Plevritis, S.K.; Rubin, D.L.; Napel, S.; et al.

Non–Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with
Prognostic Implications. Radiology 2018, 286, 307–315. [CrossRef]

175. Vargas, H.A.; Huang, E.P.; Lakhman, Y.; Ippolito, J.E.; Bhosale, P.; Mellnick, V.; Shinagare, A.B.; Anello, M.; Kirby, J.; Fevrier-
Sullivan, B.; et al. Radiogenomics of high-grade serous ovarian cancer: Multireader multi-institutional study from the Cancer
Genome Atlas Ovarian Cancer Imaging Research Group. Radiology 2017, 285, 482–492. [CrossRef]

176. Panayides, A.S.; Pattichis, M.S.; Leandrou, S.; Pitris, C.; Constantinidou, A.; Pattichis, C.S. Radiogenomics for precision medicine
with a big data analytics perspective. IEEE J. Biomed. Health Inform. 2018, 23, 2063–2079. [CrossRef] [PubMed]

177. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease; National Academies
Press: Washington, DC, USA, 2011.

178. Bodalal, Z.; Trebeschi, S.; Nguyen-Kim, T.D.L.; Schats, W.; Beets-Tan, R. Radiogenomics: Bridging imaging and genomics. Abdom.
Radiol. 2019, 44, 1960–1984. [CrossRef]

179. Arimura, H.; Soufi, M.; Kamezawa, H.; Ninomiya, K.; Yamada, M. Radiomics with artificial intelligence for precision medicine in
radiation therapy. J. Radiat. Res. 2019, 60, 150–157. [CrossRef] [PubMed]

180. Lao, J.; Chen, Y.; Li, Z.-C.; Li, Q.; Zhang, J.; Liu, J.; Zhai, G. A Deep Learning-Based Radiomics Model for Prediction of Survival in
Glioblastoma Multiforme. Sci. Rep. 2017, 7, 10353. [CrossRef] [PubMed]

181. Avanzo, M.; Wei, L.; Stancanello, J.; Vallières, M.; Rao, A.; Morin, O.; Mattonen, S.A.; El Naqa, I. Machine and deep learning
methods for radiomics. Med. Phys. 2020, 47, e185–e202. [CrossRef] [PubMed]

182. Jiang, M.; Li, C.-L.; Luo, X.-M.; Chuan, Z.-R.; Lv, W.-Z.; Li, X.; Cui, X.-W.; Dietrich, C.F. Ultrasound-based deep learning radiomics
in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer. Eur. J.
Cancer 2021, 147, 95–105. [CrossRef] [PubMed]

http://doi.org/10.1002/mp.12453
http://doi.org/10.1038/srep46479
http://doi.org/10.1016/j.radonc.2015.02.015
http://doi.org/10.7150/thno.40099
http://doi.org/10.1371/journal.pmed.1002730
http://doi.org/10.3322/caac.21552
http://doi.org/10.1016/j.ejrad.2021.109744
http://www.ncbi.nlm.nih.gov/pubmed/33962253
http://doi.org/10.1016/j.cell.2021.01.015
http://doi.org/10.1038/s41467-020-18703-2
http://doi.org/10.1038/s41416-020-0997-1
http://doi.org/10.1093/neuonc/noaa290
http://www.ncbi.nlm.nih.gov/pubmed/33630091
http://doi.org/10.1148/radiol.2020201607
http://doi.org/10.1148/radiol.2018172171
http://doi.org/10.3390/cancers13050973
http://doi.org/10.1148/radiol.2017161845
http://doi.org/10.1148/radiol.2017161870
http://doi.org/10.1109/JBHI.2018.2879381
http://www.ncbi.nlm.nih.gov/pubmed/30596591
http://doi.org/10.1007/s00261-019-02028-w
http://doi.org/10.1093/jrr/rry077
http://www.ncbi.nlm.nih.gov/pubmed/30247662
http://doi.org/10.1038/s41598-017-10649-8
http://www.ncbi.nlm.nih.gov/pubmed/28871110
http://doi.org/10.1002/mp.13678
http://www.ncbi.nlm.nih.gov/pubmed/32418336
http://doi.org/10.1016/j.ejca.2021.01.028
http://www.ncbi.nlm.nih.gov/pubmed/33639324


Diagnostics 2021, 11, 1523 32 of 32

183. Gospodarowicz, M.K.; Miller, D.; Groome, P.A.; Greene, F.L.; Logan, P.A.; Sobin, L.H.; Project, F.T.U.T. The process for continuous
improvement of the TNM classification. Cancer 2003, 100. [CrossRef] [PubMed]

184. Hosny, A.; Parmar, C.; Coroller, T.P.; Grossmann, P.; Zeleznik, R.; Kumar, A.; Bussink, J.; Gillies, R.J.; Mak, R.H.; Aerts, H.J.W.L.
Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Med. 2018, 15, e1002711.
[CrossRef] [PubMed]

http://doi.org/10.1002/cncr.11898
http://www.ncbi.nlm.nih.gov/pubmed/14692017
http://doi.org/10.1371/journal.pmed.1002711
http://www.ncbi.nlm.nih.gov/pubmed/30500819

	Introduction 
	Pipeline of Radiomics 
	The Principle of DL 
	Screening of Studies 
	Studies Based on Radiomics 
	Prognosis Prediction 
	2017 
	2018 
	2019 
	2020 
	2021 

	Assessment of Tumour Metastasis 
	2017–2018 
	2019 
	2020 
	2021 

	Tumour Diagnosis 
	2017 
	2018 
	2019 
	2020 

	Prediction of Therapeutic Effect 
	2017 
	2018 
	2019 
	2020 

	Predicting Complications 
	2017–2018 
	2019 
	2020 


	Studies Based on DL 
	Prognosis Prediction 
	2017–2018 
	2019 
	2020 
	2021 

	Image Synthesis 
	2017–2018 
	2019 
	2020 

	Detection and/or Diagnosis 
	2017 
	2018 
	2019 
	2020 

	Segmentation 
	2017 
	2018 
	2019 
	2020 
	2021 


	Deep Learning-Based Radiomics 
	Studies Based on Deep Learning-Based Radiomics (DLR) 
	2017 
	2018 
	2019 
	2020 


	Discussion 
	Conclusions and Future Work 
	References

