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The bi-directional nucleocytoplasmic shuttling of macromolecules like molecular signals,
transcription factors, regulatory proteins, and RNAs occurs exclusively through Nuclear
Pore Complex (NPC) residing in the nuclear membrane. This magnanimous complex is
essentially a congregation of ~32 conserved proteins termed Nucleoporins (Nups) present
in multiple copies and mostly arranged as subcomplexes to constitute a functional NPC.
Nups participate in ancillary functions such as chromatin organization, transcription
regulation, DNA damage repair, genome stabilization, and cell cycle control, apart from
their central role as nucleocytoplasmic conduits. Thus, Nups exert a role in the
maintenance of cellular homeostasis. In mammals, precisely three nucleoporins traverse
the nuclear membrane, are called transmembrane Nups (TM-Nups), and are involved in
multiple cellular functions. Owing to their vital roles in cellular processes and homeostasis,
dysregulation of nucleoporin function is implicated in various diseases. The deregulated
functioning of TM-Nups can thus act as an opportune window for the development of
diseases. Indeed, mounting evidence exhibits a strong association of TM-Nups in cancer
and numerous other physiological disorders. These findings have provided much-needed
insights into the novel mechanisms of disease progression. While nucleoporin’s functions
have often been summarized in the disease context, a focus on TM-Nups has always
lacked. This review emphasizes the elucidation of distinct canonical and non-canonical
functions of mammalian TM-Nups and the underlying mechanisms of their
disease association.
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INTRODUCTION

The membrane encircling the nucleus is studded with Nuclear Pore Complexes (NPCs), facilitating
the regulated mixing of nucleocytoplasmic contents. NPCs are large (~120MDa) assemblages of 30-
32 pore-forming proteins called nucleoporins (Nups), exhibiting eightfold radial symmetry across
the central core and a two-fold quasi-symmetry across the nuclear envelope (NE) (1, 2). While
NPCs form a gateway, the nucleoporins act as the gatekeepers for molecular traffic and regulate
NPC channels (3). The overall structural framework of NPC is fundamentally conserved across
eukaryotic species; however, their size and Nup composition vary (4). While the nucleocytoplasmic
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transport of smaller molecules is passive, the directionally-
regulated, selective, yet swift translocation of larger (>40kDa)
cargos requires interaction with Nuclear Transport Receptors
(NTRs). The bulk of nucleocytoplasmic transport (NCT)
through the aqueous NPC pore utilizes karyopherin family
NTRs (2, 5).

Nucleoporins are assembled and intricately arranged within
the NPC as distinct and stable subcomplexes. All eukaryotic
NPCs carry a central scaffold skirted by cytoplasmic and
nucleoplasmic peripheral filaments. In mammals, the core
scaffold coat is the unstructured FG repeat (-FxFG- and
-GLFG-) domain-containing Nups, Nup62, Nup54, and
Nup58/Nup45, which enclose the central channel and facilitate
NTR mediated transport. The Nup93-Nup155 subcomplex
forms the inner ring, and the symmetrically located core coat
Nup107-160 subcomplex forms the outer rings. Nup88, Nup214,
Nup358, Gle1, and ALADIN nucleoporins form the cytoplasmic
filament subcomplex, while Nup50, Nup153, and TPR constitute
the nuclear basket (6) (Figure 1). The magnanimous assembly of
NPC requires tethering in the double-layered NE and is fastened
there via attachment of membrane-spanning nucleoporins.
Intriguingly in mammals, only three transmembrane
nucleoporins (TM-Nups), POM121 (Pore membrane protein
of 121kDa), NDC1 (Nuclear-Division-Cycle 1), and Nup210
(also called gp210), carry the onus of securing the large NPC
at the NE. Of these, POM121 displays long residence time and
low exchange rates at the NPC and is stable protein, whereas
Nup210 displays shorter NPC residence time, indicating its non-
structural functioning (7).

Post-mitosis, vesicles carrying these TM-Nups help initiate the
nuclear membrane and nuclear pore reassembly (8). Canonically,
these TM-Nups were considered as only structural elements of
NPC; however, recent functional investigations on TM-Nups have
uncovered their miscellaneous non-canonical functions like other
Nups accomplished via dynamic properties exhibited by them.
This review provides an account of hitherto under-appreciated
functions and a perspective of evident disease association of
TM-Nups.
NPC IS A CONGLOMERATE
OF NUCLEOPORINS WITH
MULTIFARIOUS ACTIVITIES

Nucleoporins, the structural and functional entities of NPCs,
play critical roles in NCT (5, 9). For instance, the direct
interaction of Nup62 with nuclear transport factor 2 (NTF2)
regulates nuclear pore permeability and selective cargo shuttling
across the NE, thus explicating a canonical function for the NPC
(10, 11). However, nucleoporins are now well recognized for
their additional non-canonical functions. Accordingly,
nucleoporins participate in gene expression regulation (12, 13),
DNA repair (14, 15), chromatin organization (13, 16),
heterochromatin localization (17, 18), chromosome segregation
(19), modulation of cellular signaling pathways (20, 21), cell
differentiation and development (22–24). Apart from being static
Frontiers in Oncology | www.frontiersin.org 2
NPC components, Nups form dynamic entities as well. For
example, Nup62 shuttles between the plasma membrane and
the perinuclear compartment in HeLa cells, connecting Nup62
with cell migration (25). Similarly, the intranuclear functioning
of Nup98 regulates gene expression (26, 27). Several
nucleoporins localize outside the NPC and exhibit a plethora
of transport-independent functions, also facilitating cell
specificity. Moreover, the nucleoporin composition of the NPC
itself displays tissue-type or cell differentiation stage-specific
variations (22). The idea of NPC heterogeneity and
specialization correlating with different transport-specific and
tissue-specific functions has been previously proposed (28).
Likewise, chromatin tethering of Nup93, Nup62, and Nup155
is ascribed in transcriptional regulation to direct the genome
expression profile of the cell, thereby enabling cell specificity
(29). Nup155 exerts epigenetic control over cardiac cell growth
through interaction with histone deacetylase 4 (HDAC4) to
modulate specific gene expression (30). Interestingly,
differential expression of Nup62 in the prefrontal cortex (31)
and CA3 hippocampal region (32) of the brain correlates with
chronic stress and depression. Such observations have
highlighted an extensive range of functions adopted by the
nucleoporins critical for proper cellular functioning.

Given the diverse and tissue-specific properties of
nucleoporins, it is no surprise that a perturbation in their
structure-function and protein levels induces a myriad of
physiological disorders. Contextually, identifying aberrations in
Nup coding genes underpins numerous diseases like
autoimmune defects, neurological complications, and cancers.
Primarily, chromosomal translocation events have led to the
formation of chimeric fusion proteins. Accordingly, Nup214/
CAN and tyrosine kinase ABL1 chimera formation induced gene
expression dysregulations causing elevated expression of
oncogenesis promoting genes (33). Similarly, mutations and
altered expression of Nups frequently cause Nup-mediated
disease pathophysiology and are extensively observed in several
carcinomas (34–36). Nuclear pore components such as Nup62
and Nup153 also affect TGF-b and Wnt/b-Catenin cellular
signaling pathways that are now being comprehended (37, 38).
Interestingly, the TM-Nups have also been recognized to
encompass diverse roles, including transcription regulation. A
detailed mechanistic understanding of the individual Nup or
NPC functioning can aid in the development of mitigation
strategies for Nup-associated diseases (or nucleoporopathies).
DYNAMIC CELLULAR FUNCTIONS OF
THE TRANSMEMBRANE NUCLEOPORINS

The TM-Nups constitute only those Nups that tether the central
framework of the pore complex to the NE. Attempts to assess the
role of TM-Nups in NPC assembly and anchoring identified only
two Nups, POM121, and Nup210 initially. Both were suggested
to be crucial for nuclear membrane fusion and assembly of the
pore complexes. POM121 plays a role in NPC congregation and
docks the NPC to NE at the double membrane fusion pore.
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While NPC assemblage at the interphase requires POM121, it is
dispensable for the inner (INM) and outer nuclear membranes
(ONM) fusion during post-mitotic events (39–41). The distinct
NE-binding region, determined using live imaging, allows
POM121 to localize to the INM components like lamin B
receptor (LBR) during the initial seeding steps of NPC
assembly (39). Interactions of the nuclear localization signals
(NLSs) of POM121 with importin-a and importin-b aid in its
active nuclear targeting or import during interphase (39). A
report simultaneously provided evidence for transient
association of POM121 with another INM protein, Sun1
(cytoskeleton interacting protein), which localizes to forming
NPCs at interphase (42).

Furthermore, during NPC assembly, the N-terminal region of
POM121 associates with two scaffold subcomplexes by directly
interacting with Nup155 and Nup160, members of the Nup93
and the Nup107-160 subcomplex, respectively (43). These
observations provided insights on how POM121 anchors NPCs
to NE and the integration of the Nup107-160 complex as one of
the rapid early events of interphase NPC assembly. Although
classified as immobile and fixed TM-Nup, the remarkable
discovery of a soluble form of POM121 or sPOM121 reflected
on its intranuclear regulatory role. sPOM121 isoform, encoded
from an alternate transcription start site, lacks the N-terminal
transmembrane domain and NPC localization. Thus,
the intranuclear off-pore functions of sPOM121 are exerted by
Frontiers in Oncology | www.frontiersin.org 3
co-binding with Nup98, aiding the retention of Nup107-160
complex components in the nucleoplasm and altogether
regulating transcription at the gene promoters (44).

Structurally, Nup210 is required during NPC disassembly and
NE breakdown (45). Nevertheless, the proposed role for Nup210
in the process of NPC assembly was challenged when Nup210
exhibited cell-type-specific expression during mouse
organogenesis. Nup210 gene and transcript expression was
revealed to be very low or absent in many developing mouse
tissues and dividing cell lines (46). While Nup210 is absent in
undifferentiated cells, it is expressed during myogenesis or
differentiation of embryonic stem cells and functions
independent of its NPC association (47). Additionally, analysis
of Nup210 deficient cells showed that POM121 and Nup107
could remain steadily associated with the NPC in its absence
(48). Nonetheless, myogenic differentiation is dependent on
Nup210 mediated recruitment of the Mef2C transcriptional
complex at the nuclear periphery, which results in the
induction of differentiation-specific gene profiles (49). These
observations indicated the dispensable nature of Nup210 in
NPC assembly and tethering along with its tissue-specific and
dynamic functioning beyond NPC structural recruitment and
maintenance. However, Nup210 has been ascertained to regulate
gene expression and induce genes needed for cell differentiation
(21). For mouse fibroblast differentiation into neural stem cells
(NSCs), Nup210 functions to activate the SoxB1 family of
FIGURE 1 | Schematic representation of NPC sub-complexes and constituent nucleoporins. A snapshot representation of nucleo-cytoplasmic face distribution of
NPC sub-complexes across the nuclear membrane (left) and localization of individual Nups at the NPC (right). The distinct transmembrane Nups, POM121, NDC1,
and Nup210 are highlighted and color-coded (right).
December 2021 | Volume 11 | Article 784319

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bindra and Mishra Transmembrane Nucleoporins and Physiological Disorders
transcription factors (50). Nup210 has also been found essential
for T-cell homeostasis and modulates TCR signaling (51, 52).

The reasonable extent of NPCs assembled in human cells
lacking membrane-spanning Nups POM121 and Nup210 (53)
prompted the identification of additional factors required for
NPC assembly. Already recognized as a cell cycle modulator in
budding yeast (54), NDC1 was later characterized as a part of the
NPC constituting one of the TM-Nups in the vertebrates (55).
NDC1 interacts with Nups like Nup53 and plays critical roles in
NPC assembly and anchoring into the NE (56, 57). NDC1 also
anchors another nuclear pore protein ALADIN onto the NE
(58), and this interaction is linked with disease pathophysiology
as discussed henceforward.
MOLECULAR MECHANISMS
UNDERLYING TRANSMEMBRANE
NUP-MEDIATED DISEASES

Growing evidence has underscored the association of mammalian
TM-Nups in several physiological diseases, including cancer.
However, the molecular mechanisms associated with
transmembrane Nup-mediated disease development are yet to be
uncovered conclusively. Nevertheless, various studies have
elucidated the genetic and molecular roles of individual TM-Nups
that lead to numerous disease pathologies summarized in Table 1.
Here, we discuss each one of them in the context of physiological
anomalies that their loss induces.
Frontiers in Oncology | www.frontiersin.org 4
POM121
POM121 is encoded by two different gene loci (designated locus A
andC)onchromosome7q11.23 to formPOM121AandPOM121C
in humans (85). POM121C has been linked to body mass index
(BMI), particularly in monogenic obesity syndromes (86).
Abdominal adipose tissue biopsies highlighted a role for
POM121C in type-2 diabetes-related insulin resistance (IR) by
stimulating adipogenesis and increasing adipocyte sensitivity to
insulin (87). However, further comprehensive scrutiny is necessary
to establish its role in controlling systemic sensitivity to insulin and
other metabolic traits. Population-based fluorescence in situ
hybridization (FISH) analysis demonstrated chromosomal
translocation events involving the POM121 gene forming gene
fusions leading to cancer. POM121 fusion with PAX5 (a
transcription factor critical in B-cell development) generates
aberrant chimeric proteins in childhood acute lymphoblastic
leukemia (ALL) (60). Detailed analysis of PAX5 and POM121
gene translocation revealed that genetic rearrangements between
chromosomes 7, 9, and 12 produce the in-frame chimeric protein
(N-terminal PAX5 DNA binding paired domain merges with
POM121) with higher probable occurrence in pediatric ALL than
adult ALL (61). Additionally, the PAX5-POM121 fusion protein
localizes to the nucleus, where it may also stimulate PAX5 target
genes suchasCD79A, likely indicating transcriptionactivation (61).
This observation highlighted an alternate role of the structural
nucleoporin POM121 in transcription regulation. Apart from
acting as a gene fusion product, POM121 also contributes to
cancer progression by mediating the transport of oncogenic
TABLE 1 | List of transmembrane nucleoporins-associated diseases and suggested molecular mechanisms.

Transmembrane
Nucleoporin

Disease Underlying Molecular Mechanism/Defect(s)

POM121 Prostate cancer POM121 upregulation, Nuclear import of transcription factors MYC, E2F1, AR,
GATA2 (59)

Acute Lymphoblastic Leukemia Gene translocation and fusion with PAX5 (60, 61)
Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Deregulation of other Nups, NCT defects (62)
Non-Small-Cell Lung Cancer Modulation of TGF-b/SMAD and PI3K/AKT pathways (63)
Oral Squamous Cell Carcinoma, Laryngeal Cancer,
Colorectal Cancer

POM121 upregulation (64–66)

Inflammation P65 transport inhibition, NFkB pathway repression (67)
NDC1 Ischemic Cardiomyopathy, Dilated Cardiomyopathy, Non-

Small-Cell Lung Cancer
Upregulation of NDC1 (68, 69)

Esophageal Squamous Cell Carcinoma mRNA transport anomaly (70)
Non-Small-Cell Lung Cancer Apoptotic pathway modulation (69, 71)
Cervical Cancer Wnt/b-catenin pathway modulation (72)
Triple-A syndrome Interaction with and recruitment of ALADIN (58)
Infertility NDC1 mutation, Interaction with regulatory molecule Septin12 (73, 74)

Nup210/gp210 Primary Biliary Cholangitis Nup210 upregulation, autoantibody-mediated heightened immunoreactivity
(75, 76)

Prostate Cancer Nup210 upregulation, Androgen receptor (AR) splice variant-7 (AR-V7)
mediated activation (77)

Liver Cancer Nup210 upregulation, scaffold for SMARCB1 chromatin remodeler binding (78)
Lung Cancer H3K27ac and H3K4me3 histone modifications (79)
Cervical Cancer Nup210 upregulation, miR-22-NUP210-Fas axis modulation (80, 81)
Amyotrophic Lateral Sclerosis Age-dependent mislocalization and precipitation with Nup205 at NE (82)
Focal cerebral ischemia Mislocalization of Nup210 with Nup205 (83)
Endometriosis Rs354476 polymorphism within NUP210 gene affecting miRNA hsa-miR-

125b-5p binding site (84)
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molecules into the nucleus.While POM121 is highly upregulated in
advanced lethal prostate cancer (PC), it is found to promote PC
aggressiveness by augmenting the selective importin-dependent
nuclear shuttling of oncogenic MYC, E2F1, Androgen receptor
(AR), andGATA2 (PC-specific) transcription factors (TFs) (59). In
agreement, inhibition of the POM121-importin-b axis is shown to
result in reduced tumorigenicity and proliferation in pre-clinical
models, representing this as a potential pharmacological target in
lethal PC (59). POM121 has also been linked as a potential
prognostic biomarker in oral squamous cell carcinoma (OSCC)
(64), colorectal cancer (CRC) (65), laryngeal cancer (LRC) (66), and
non-small-cell lung cancer (NSCLC) (63), where elevated levels of
POM121 are linked to advanced tumor-node-metastasis (TNM)
stages. A recent study on POM121 inNSCLC has provided insights
into the involvement of TGF-b/SMAD and PI3K/AKT signaling
pathways in cancer cell proliferation andmetastasis (63). However,
this is just the beginning of our understanding of cellular pathways
modulated by TM-Nups.

Interestingly, nuclear transportation is utilized by POM121 to
exert an immune-modulatory effect on macrophage
inflammation by repressing the NFkB pathway and inhibiting
phosphorylated p65 protein nuclear translocation (67). The
mechanistic underpinnings of C9orf72 in cellular toxicity and
ultimately neuronal degeneration dependent Amyotrophic
Lateral Sclerosis and Frontotemporal Dementia (ALS/FTD)
emphasized the pathologic effects of POM121 depletion
downstream of G4C2 repeat RNA expression. Super-resolution
microscopy of spinal neurons revealed that the deregulation of
POM121 resulted in the consequent decline of other Nups in the
nucleus, thereby causing NCT defects and cellular toxicity in
ALS/FTD (62). The molecular basis in C9orf72-mediated ALS
may also potentially reflect similar pathology of NCT disruption
and abnormal build-up of NPC-associated proteins as detected
in multiple neurodegenerative diseases.
NDC1
NDC1 (also known as Transmembrane Protein 48 or TMEM48)
anchors another nuclear pore protein ALADIN onto the NE, while
a mutation in the latter disrupts this interaction (58). ALADIN
mutations are also shown to result in triple-A syndrome, thus
providing indirect evidence that NDC1 may be linked to the
development of this disorder. The study of mutations in NDC1 in
mice has been shown to cause defective gametogenesis, infertility,
and skeletal deformities. NDC1 forms complex with Septin12
(SEPT12 gene product is necessary for imparting sperm
morphological characteristics) and affects its localization during
murine spermiogenesis, highlighting the involvement of NDC1 in
sperm head and tail development (73, 74). NDC1 is upregulated
and mislocalized into the nucleus in ventricular cardiac tissues of
ischemic cardiomyopathy and dilated cardiomyopathy (ICM and
DCM, respectively) (68). Such alterations may reflect defective
nucleocytoplasmic trafficking and nuclear organization in
ventricular cells of the heart, but the exact molecular mechanism
for progression towards heart failure (HF) is yet to be defined.

Altered expression of NDC1 is also seen in the development of
numerous malignancies. Accordingly, it was found overexpressed
Frontiers in Oncology | www.frontiersin.org 5
in NSCLC cell lines, H1299, and A549 (69). Downregulation of
NDC1 inhibits DNA replication and cell cycle-associated genes
like PCNA and CYCLINB1 and reduces cell proliferation and
migration. Moreover, studies in nude mice revealed that NDC1
inhibition decreases cell migration and tumorigenicity and induces
apoptosis (69). Thus, suppression of NDC1 might render a
potential therapeutic effect against NSCLCs. Indeed, another
study evaluating the effect of miRNA-induced silencing of
NDC1 in lung cancer demonstrated similar outcomes.
Significant suppression of NDC1 in A549 cells by miR-421 leads
to the augmented expression of tumor suppressors and pro-
apoptotic molecules like PTEN, Caspase3, and TP53, thereby
inducing apoptosis (71). These results indicate that NDC1
modulates the apoptotic pathway, albeit the precise apoptotic
regulation needs further speculation. In a gene enrichment and
meta-analytic study, NDC1 was reported as one of the critical
genes in addition to NUP107 and NUP155 genes regulating
esophageal squamous cell carcinoma (ESCC) (70). These
nucleoporin genes were attributed to the RNA transport
pathway; nonetheless, their mechanistic role in ESCC
progression requires substantiation. A study examining the
signal transduction pathway influenced by NDC1 in cervical
cancer (CC) reported that NDC1-mediated cell proliferation and
metastasis is modulated partly by activating the Wnt/b-catenin
pathway (72). The downregulation of NDC1 in CC cell lines
(HeLa and SiHa) curtailed the levels of b-catenin (effector of Wnt
pathway) and its targets T cell factor 1 (TCF1) and axis formation
inhibitor 2 (AXIN2) and reduced cell growth in grafts (in vivo). In
contrast, activator-mediated induction of the Wnt pathway could
significantly reverse the effect of NDC1 knockdown on cell
proliferation and migration in CC. This observation emphasizes
the downstream contribution of the Wnt pathway in cancer
progression as a result of NDC1 alterations.
Nup210
Gene-specific expression studies identifiedNup210 or gp210 as one
of theprime targets for autoantibodies inprimarybiliary cholangitis
(PBC), an autoimmune disease of the liver (75). Consequently, it
was also overexpressed in the biliary epithelial cells of the liver small
bile duct in PBC patients, wherein it depicts enhanced
immunoreactivity (76). Analysis of Nup210 in tumorigenesis
shows its upregulation in several carcinomas as the basis of cell
proliferation, including cervical cancer (CC) (80, 81), lung
carcinoma (LC) (79), and prostate cancer (PC) (77). Nup210 has
also been determined as an epigenetic biomarker in lung
adenocarcinoma as the gene promoter region undergoes
H3K27ac and H3K4me3 histone modifications (79). Studies
inspecting the nature of Nup210 function in cancer progression
have described diverse molecular mechanisms moderated by this
transmembrane protein. Upregulated Nup210 in HeLa cells is
attributed to the downregulation of miR-22, as miR-22 normally
binds with Nup210 transcript and inhibits its expression.

Moreover, miR-22-Nup210 deregulation results in apoptotic
inhibition via regulation of Fas expression, thereby affecting Fas
signaling. Thus, the miR-22-Nup210-Fas axis is suggested in CC
progression (81). Nup210 has also been shown to interact with
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and act as a scaffold for chromatin remodeler SMARCB1
(fundamental subunit of the SWI/SNF chromatin remodeling
complex) in liver cancer (78). Nup210-SMARCB1 interaction
mediates the oncogenic effects demonstrated by the upregulation
of this remodeling protein. In PC cells, the NUP210 gene is
specifically targeted downstream of androgen receptor (AR)
splice variant-7 (AR-V7) activity which drives the progression
of primary PC to castration-resistant prostate cancer (CRPC)
(77). Mislocalization of Nup210 has also been commonly
observed in cerebral ischemic tissues and neurodegenerative
Amyotrophic lateral sclerosis (ALS), wherein Nup210 co-
localizes and forms precipitate with Nup205 (82, 83). The role
of Nup210 has also been examined in endometriosis. Here, a
genetic modification in the 3’-UTR of NUP210 gene, i.e.,
Rs354476 polymorphism (miRSNP or SNP at microRNA
binding site), affects its binding with hsa-miR-125b-5p, a
microRNA critical in the development of endometriosis (87).

The intermolecular interactions mediated by various TM-Nups
affecting several cellular processes are summarised in Figure 2. It is
Frontiers in Oncology | www.frontiersin.org 6
easily conceivable from the summary that TM-Nups play a critical
role in cellular homeostasis but are undermined by the
overwhelming presence of their non-TM cousin Nups. Given the
value these TM-Nups hold by sheer location in the cells, they can be
a prominent player in cellular events directly affected by
perturbations in strict nucleocytoplasmic partitioning. The
interplay of TM and non-TM Nups becomes very important in
this context and needs urgent attention in physiologically relevant
health conditions.
CONCLUSION

Thus far, studies evaluating the three known mammalian TM-
Nups, POM121, NDC1, and Nup210, have illuminated their
functional plasticity and distinctiveness by regulating functions
like nuclear envelope assembly, nuclear pore insertion in NE,
nucleocytoplasmic transport, and gene expressions.
FIGURE 2 | Known transmembrane Nup alterations underlying human diseases. An interaction web of the three TM-Nups, POM121, NDC1 and Nup210 that
regulate various cellular processes.
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Nevertheless, specific molecular interactions and mechanisms in
such diseases and identification of other diseases associated with
TM-Nups are worth exploring. Although an association is made
between TM-Nups and disease, the molecular details await
identification and recognition. The lack of structural
information also impedes the desired progress. Therefore,
further structural, biochemical, and functional analyses are
necessary to realize the functional significance and diverse
roles of TM-Nups. Various cellular signaling pathways where
TM-Nups participate are beginning to emerge, and their
incipient mechanistic examinations in disease conditions
continue to build a platform for in-depth analysis. Intriguingly,
the tissue-specific expression of such TM-Nups also invokes
undertaking an engaging analysis of their tissue-specific
variations and any association with disease outcomes. We
envisage that research groups will undertake a more focussed
approach to uncover the relevance of TM-Nups in a myriad of
cellular processes, tissue specificity, and disease association,
including but not limited to organ-specific disease, and cancer.
Frontiers in Oncology | www.frontiersin.org 7
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