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Abstract

Multivariate neuroimaging analyses constitute a powerful class of techniques to identify psychological representations. How-
ever, not all psychological processes are represented at the same spatial scale throughout the brain. This heterogeneity
is apparent when comparing hierarchically organized local representations of perceptual processes to flexible transmodal
representations of more abstract cognitive processes such as social and affective operations. An open question is how the
spatial scale of analytic approaches interacts with the spatial scale of the representations under investigation. In this article,
we describe how multivariate analyses can be viewed as existing on a spatial spectrum, anchored by searchlights used to
identify locally distributed patterns of information on one end, whole brain approach used to identify diffuse neural repre-
sentations at the other and region-based approaches in between. We describe how these distinctions are an important and
often overlooked analytic consideration and provide heuristics to compare these different techniques to choose based on the
analyst’s inferential goals.
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Introduction

The past decade has witnessed an explosion in empirical
studies employing advanced statistical methods to understand
brain representations. Traditional univariate analyses of func-
tional magnetic resonance imaging (fMRI) data have historically
focused on differences inmagnitudes of activation (Friston et al.,
1995), while more contemporary approaches have explored how
spatial patterns of activity encode psychological information
(multivariate pattern analysis; MVPA) (Haxby et al., 2014) and
how the temporal dynamics of neural responses are shared
across individuals (intersubject correlation; ISC) (Nastase et al.,
2019). Unlike univariate techniques that independently model
each voxel, these modern techniques often involve aggregating
responses across multiple voxels during the modeling process

(e.g. searchlights, regions of interest (ROIs) or whole brain). An
underappreciated consideration when using these approaches
is the spatial scale at which these analyses are performed. In
this article, we will discuss how different psychological and cog-
nitive processes may be reflected at different spatial scales and
how thismight impact choices in the analysis pipeline. We begin
by exploring evidence for spatial-scale heterogeneity, then com-
pare and contrast themost commonly employed techniques and
conclude with practical considerations for choosing methods
best suited for different research questions.

Spatial scale of representations in the brain

Many contemporary fMRI methods focused on mapping brain
representations or modeling neural synchrony require selecting
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specific spatial features to be used in an analysis (e.g. fMRI
decoding, encoding, representational similarity analysis (RSA),
ISC, intersubject RSA (Naselaris et al., 2011; Diedrichsen and
Kriegeskorte, 2017; van Baar et al., 2019; Chen et al., 2019;
Nastase et al., 2019; Finn et al., 2020)). In this context, fea-
tures refer to the specific information that is entered into a
model (e.g. a group of voxels, the average activity in a cortical
region or a neural distance matrix) and used to make inferences
about a specific process, representation or psychological state.
Numerous published papers have made general recommenda-
tions about setting up and interpreting analyses with different
techniques (e.g. Haynes, 2015). However, these guides primar-
ily make recommendations based on statistical considerations
such as the interpretability of decoding accuracy (Etzel et al.,
2013), or highlight what contemporary techniques offer beyond
simple univariate contrasts of brain activity (Kriegeskorte and
Bandettini, 2007).

A key consideration often missing from these discussions
is the spatial variability with which different kinds of neural
and/or psychological information may be represented in the
brain (Kragel et al., 2018). For example, considerable evidence
stemming from neuronal recordings, univariate fMRI stud-
ies, neuropsychological investigations, computational model-
ing and animal studies has demonstrated a reliable functional
organizational scheme for sensory systems, with a particular
focus on the visual system (Felleman and Van Essen, 1991;
Grill-Spector and Malach, 2004; Hubel and Wiesel, 2004; Yamins
et al., 2014). This modular organizational structure has served
as a scaffold for much contemporary research and has also
importantly impacted the analytic approaches used tomake sci-
entific discoveries. The structure of the visual system affords
researchers the ability to test specific predictions and buildmod-
els at fine spatial scales. Some notable examples include direct
recordings of populations in preselected cortical patches (Chang
and Tsao, 2017), or using local patterns of neural activity to
topographicallymaphow representations change and transform
as information moves through the visual system (Kriegeskorte
et al., 2006). It has also been a key driver of highly sophisti-
cated contemporary work such as comparing features learned
by layers of deep neural networks to neural representations
in different stages of the ventral visual stream (Kriegeskorte,
2015; Cichy et al., 2016; Yamins and DiCarlo, 2016). This scale of
analysis comports well with consensus understanding of how
perceptual systems are organized and is well-suited for exam-
ining the brain through the lens of functional compartments
or locally distributed populations of activity (Haxby et al., 2014;
Kragel et al., 2018).

In parallel, a large body of work has taken a more macro-
scopic view of brain organization by examining how diffusely
distributed representations and networks subserve different
cognitive functions by dynamically adapting to the task at
hand (Kragel et al., 2018). At this spatial scale, cortical areas
can be seen as belonging to various subtypes such as primary
sensorimotor, unimodal associative, transmodal associative,
paralimbic and limbic (Mesulam, 1998). These subtypes demon-
strate independent patterns of functional connectivity at rest
(rsfMRI) and can be used to parcellate the brain into distinct
networks (Power et al., 2011; Yeo et al., 2011; Glasser et al., 2016;
Schaefer et al., 2016). Interestingly, several groups have demon-
strated that subtypes of cortex vary markedly in the similarity
between their structural and functional connectivity (Honey
et al., 2009). For example, functional connectivity most closely
resembles anatomical connectivity and microstructural prop-
erties in sensory and unimodal regions, but this resemblance
breaks down in transmodal areas such as the default mode
network (DMN) (Paquola et al., 2019; Vázquez-Rodríguez et al.,
2019). Further, the variability in functional connectivity patterns

appears to be organized around functional gradients that range
from unimodal primary sensory regions to transmodal asso-
ciative regions (Margulies et al., 2016). In other words, neural
activity at rest is organized in a manner consistent with the
geometric structure of the brain. Brain regions farther away from
primary sensory areas are responsible for less externally focused
computations and more abstract modes of cognition (e.g. asso-
ciative, multimodal and internally directed). Transmodal regions
often exhibit less hierarchical organization, denser intercon-
nectivity, more top-down projections between cortical layers
and less laminar differentiation, which are believed to facili-
tate more abstract and flexible responding to different kinds
of information (Paquola et al., 2019; Vázquez-Rodríguez et al.,
2019).

The contrast between these domains serves to highlight the
breadth of spatial scales at which the brain represents and sup-
ports different psychological and cognitive functions. If tight,
localized, hierarchical organization of primary sensory systems
represent one end of this range, the other appears to be a more
spatially diffuse, abstract and flexible organization of trans-
modal areas. In the field of social and affective neuroscience,
there appears to be a network of brain regions, overlapping
with the DMN, thought to reliably support socio-emotional pro-
cessing (Lieberman, 2007; Adolphs, 2009). An open question,
however, is whether the functional organization of these regions
resembles primary sensory systems with circumscribed func-
tional subdivisions, or a more general structure such that all
regions support socio-emotional cognition by flexibly adapting
their responsibilities to the particular task at hand.

There is some evidence that this social brain network may
contain distinct cortical areas, patches and populations of
neurons with highly circumscribed responsibilities functionally
tuned to specific aspects of a socio-emotional experience, akin
to functional specificity in primary sensory systems (Adolphs,
2009). Meta-analyses of the medial prefrontal cortex (mPFC), for
example, posit the existence of distinct subdivisions for cogni-
tive and emotional tasks (Amodio and Frith, 2006; De La Vega
et al., 2016) and a dorsal to ventral gradient which delineates
representations about others or the self, respectively (Mitchell
et al., 2006; Wagner et al., 2012; Sul et al., 2015). The temporopari-
etal junction (TPJ) has been strongly associated with theory of
mind and specifically reasoning about others’ beliefs and inten-
tions as distinct from their feelings and emotions (Saxe and
Kanwisher, 2003; Peelen et al., 2010; Young et al., 2010; Carter
et al., 2012; Koster-Hale et al., 2017), akin to the relationship
between the fusiform gyrus and face processing (Kanwisher
et al., 1997). However, subdivisions within this area show dif-
ferent patterns of functional connectivity with the rest of the
brain, suggesting distinct local representations despite cortical
proximity (Mitchell, 2008; Mars et al., 2012; Carter and Huettel,
2013). This work hints at a potentially fine-grained organiza-
tional structurewithin socio-emotional brain regions but has yet
to be characterized to the same degree of functional and spatial
granularity as primary sensory systems.

A different perspective proposes that socio-emotional rep-
resentations might be more diffusely distributed because the
phenomenological experiences themselves (e.g. feeling an emo-
tion and inferring an intention) are by their very nature more
abstract, consisting of the integration of numerous processes
such as perception, memory, prediction, and interoception
(Chang et al., 2015; Barrett, 2017). Numerous studies sup-
port this account by demonstrating how regions within the
DMN are critical for mental-state inference but also prospec-
tion, episodic memory, navigation, narrative comprehension,
mind-wandering and high-level comprehension (Buckner and
Carroll, 2007; Mason et al., 2007; Spreng et al., 2009; Simony
et al., 2016; Tamir et al., 2016; Golchert et al., 2017). A wide
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Fig. 1. Spatial scales of different analytic strategies. Most common analytic methods can be seen as lying on a spectrum of varying spatial scales. Searchlights (left)

represent one endpoint of this spectrum as they are well suited for modeling information at small spatial scales such as fine-grained neural patterns in a local

neighborhood around a voxel defined by a radius size. ROI (middle) approaches can be used to model larger spatial scales explicitly taking into account functional

and anatomical divisions. Multiple ROIs can be combined together to model even larger spatial extents such as functional networks. Whole brain (right) approaches

represent the other endpoint of this spectrum as they are well suited for modeling diffuse representations that extend beyond local neighborhoods, regions and

networks.

range of brain regions, spanning multiple networks, including
the default-mode, salience, and frontoparietal, appear to be
involved in the representation of emotions (Kober et al., 2008;
Lindquist et al., 2012; Chang et al., 2015; Wager et al., 2015; Kragel
and LaBar, 2016). Further, even local neural patterns within
specific areas such as the anterior TPJ demonstrate flexible
responding as the same neural populations encode information
about distances in space, time, as well as social ties (Parkinson
et al., 2014) or are broadly involved in establishing social context
(Carter and Huettel, 2013). In this view, socio-emotional repre-
sentations are entangledwith other cognitive processes because
they depend upon them. As such, neural representations appear
to be correspondingly diffuse, recruiting distributed dynamic
brain networks that can flexibly represent the highly abstract
nature of social and emotional experiences.

What is the problem?

Given the heterogeneity of the spatial scale of different psycho-
logical processes, this immediately raises a question: how do
the spatial scales of various analytic techniques interact with
the representations they are measuring? For example, due to
their inherently small spatial scale, searchlights are highly sen-
sitive to identifying locally distributed patterns (Kriegeskorte
et al., 2008; Kriegeskorte and Diedrichsen, 2019), making them
well suited to investigating representations that themselves
are organized in a fine-grained manner (e.g. perceptual fea-
tures). On the other hand, whole brain models, which jointly
model functional responses across the entire brain, have been
more successful than searchlights in identifying sensitive and
specific predictive models of more abstract psychological pro-
cesses such as pain (Wager et al., 2013), negative affect (Chang
et al., 2015), guilt (Yu et al., 2020), empathy (Krishnan et al., 2016;
López-Solà et al., 2017) and identifying supramodal emotion cat-
egories (Kragel and LaBar, 2016). These examples raise the possi-
bility that the efficient study of neural representations requires
methods that coincide with the scale at which representations
are organized. This problem is similar in nature to the choice
of spatial smoothing kernel used in conventional fMRI analysis,
whereby the optimal kernel size is dictated by the spatial extent
of the hemodynamic response function as per the matched
filter theorem (Friston, 2007). A large body of work has inves-
tigated how acquisition parameters like spatial resolution and
pre-processing choices like smoothing affect the sensitivity of
various analyses such as fMRI decoding (e.g. Gardumi et al., 2016;
Todd et al., 2016; Yoo et al., 2018). However, there have been far
fewer studies investigating the optimal spatial scale (kernel size)

of different multivariate analysis techniques (e.g. Stelzer et al.,
2014). This necessitates that researchers carefully consider the
spatial scale of their analyses, rather than defaulting to particu-
lar pipelines. To aid in this process, we compare and contrast
how common methodological conventions may interact with
the spatial scale of neural representations.

Current conventions

Whether researchers are performing MVPA analyses to test
information encoding or decoding, ISC analyses tomeasure neu-
ral synchrony, or connectivity analyses to examine networks,
each technique implicitly or explicitly constrains the spatial
scale at which statistics are computed. Should separate sta-
tistical models be built for different voxels, neighborhoods or
regions of the brain (i.e. independent groups of voxels)? And if
so, how should this be determined? Should predictions, weights
and variability from these models be combined to make infer-
ences? And if so, how? Because different answers to these ques-
tions ultimately test very different statistical models, spatial
feature selection becomes a key decision that always adds addi-
tional assumptions or constraints to the hypotheses being tested
and the conclusions being drawn. Fortunately, there are numer-
ous options available to researchers that fall along a spectrum
of fine grain to diffuse spatial scales1 (Figure 1).

Searchlights. The popular searchlight approach (Kriegeskorte
et al., 2006; Kriegeskorte and Bandettini, 2007) lies at one end of
the spectrum and can be viewed as the ‘mass-multivariate’ ana-
logue to the ‘mass-univariate’ approach popular in conventional
activation-based fMRI analyses (Friston et al., 1995). Searchlight
analyses only consider information contained in local, over-
lapping neighborhoods around each voxel defined by a radius,
and ignore how information may be distributed across spa-
tial scales outside of those local neighborhoods. In this way,
searchlights may ignore relevant signals in more diffuse repre-
sentations such as emotions and are consistently outperformed
by whole brain or regional models in those situations (Kragel
et al., 2018; Chang et al., 2015). When used for decoding analyses,
searchlights are equivalent to feature subset-selection in the
machine-learning literature, whereby subsets are determined

1 Because all methods fundamentally operate on information contained in
voxels, fine-grained in this context refers to information in voxel patterns
comprised of small (often-contiguous) spatial neighborhoods, whereas
diffuse refers to voxel patterns encompassing much larger contiguous or
non-contiguous spatial extents.
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by the coordinates of each voxel and the radius of each search-
light (Hastie et al., 2009). Similar to their univariate counterpart,
searchlights are agnostic to functional or anatomical subdivi-
sions and typically require as many statistical computations as
voxels in the brain. Though rarely directly contrasted, search-
lights can be easily compared as they are most often computed
with the same radius size and therefore different searchlights
contain the same number of voxels.

Regions of interest. At a larger spatial scale, ROI approaches
consist of groups of voxels determined by anatomical or func-
tional divisions. There are broadly two types of ROI approaches:
(i) contiguous and (ii) non-contiguous. Contiguous approaches
consist of voxel groups that are spatially constrained to cover
a continuous area of the brain, whereas non-contiguous
approaches include both spatially contiguous but also spatially
disjoint groups of voxels such as functional networks. Non-
contiguous ROIs by their nature tend to encompass a larger
spatial extent than contiguous regions. In both cases, spatial
constraints are typically determined in two ways. One approach
leverages functional responses, measured for example by using
functional localizers from independent data (Saxe et al., 2006)
or by directly pruning voxels using techniques such as recur-
sive feature elimination (De Martino et al., 2008). The other
approach relies on anatomical boundaries typically determined
from brain atlases, rsfMRI connectivity network parcellations
or meta-analyses (Yarkoni et al., 2011; Chang et al., 2013; De La
Vega et al., 2016; Eickhoff et al., 2018; Shenton et al., n.d.). The
number of unique statistical computations estimated in the ROI
approach is generally fewer than the searchlight approach and
is determined based on the number of distinct regions selected.
Unlike searchlights, ROI approaches can directly leverage known
anatomical distinctions or functional response profiles as part
of the spatial feature selection process. This flexibility enables
them to capture a wide range of spatial scales, for example,
modeling multiple distinct brain regions together or differenti-
ating cortical sub-divisions across multiple models. More gener-
ally, ROI approaches are tests of focal hypotheses constrained to
locations researchers often believe to be relevant a priori, such
as social brain regions (Thornton and Mitchell, 2017). However,
with this flexibility comes a trade-off in consistency across anal-
yses. Comparisons across regions can becomemore complicated
as ROIs typically don’t contain the same number of voxels.

Whole brain models. Whole brain models reflect the largest
spatial scale as they consider all voxels and their covariance
duringmodel estimation. In contrast to numerous small search-
lights or ROIs, the whole brain approach can be viewed as a ‘sin-
gle searchlight/region’ with a radius large enough to encompass
all brain voxels. This approach can be used with unsupervised
methods such as independent components analysis (Calhoun
et al., 2001; Beckmann et al., 2005), or supervised methods such
as decoding (Wager et al., 2013; Chang et al., 2015). Like search-
lights, no anatomical information is explicitly used to determine
the spatial scale of whole brain models. However, in decoding
analyses, some more sophisticated algorithms can incorporate
information about spatial smoothness or regional connectivity
to find model estimates that better reflect the regional structure
by forcing spatial constraints (Baldassarre et al., 2012; Gramfort
et al., 2013; Grosenick et al., 2013). Whole brain prediction anal-
yses can provide a single model comprised of feature weights
at each voxel that are simple to test in additional experimental
contexts. Such generalization tests are highly valuable as they
can provide valid reverse inference (Varoquaux and Poldrack,

2019) and also aid in identifying relative voxel importance
(with caveats) (Haufe et al., 2014; Kriegeskorte and Douglas,
2019). In addition, generalization tests can facilitate psycho-
logical construct validity, whereby model performance in dif-
ferent contexts can provide measurement information about
the sensitivity and specificity of how a particular psychologi-
cal construct is defined (e.g. different types of pain, memory
and touch) (Kragel et al., 2018). For this reason, these models
have been particularly popular in translational and affective
neuroscience, where whole brain decoders have been used as
‘biomarkers’ because they generalize well across populations
and tasks evenwithin a single subject (Wager et al., 2013; Gabrieli
et al., 2015; Lindquist et al., 2015; Krishnan et al., 2016; Woo et al.,
2017; Kragel et al., 2018).

Analytic considerations

There are several key factors that researchers might consider
when choosing between different scales of spatial feature selec-
tion. We have organized these factors into three broad cate-
gories. The first concerns subjective choices such as the goals
of a particular analysis and the types of inferences researchers
hope to make. The second comprises practical considerations
for reliable statistical estimation. The third concerns compu-
tational resource availability and the trade-offs between differ-
ent approaches. A summary of these comparisons is listed in
Table 1.

What is the goal?

A primary distinguishing factor between different analytic tech-
niques is the type of inference researchers want to make.
Broadly construed, modeling falls into two ‘cultures,’ (Breiman,
2001; Yarkoni and Westfall, 2016): inference emphasizes
model interpretability and is evaluated using null-hypothesis-
significance testing in a single context (e.g. a single dataset
or task), while prediction emphasizes generalizability to new
contexts and is evaluated based on out-of-sample model perfor-
mance (Bzdok and Ioannidis, 2019). While this characterization
cleanly distinguishes univariate magnitude-based analyses and
multivariate predictive analyses, different multivariate analy-
ses often conflate both goals in confusing ways (Hebart and
Baker, 2018). For example, searchlight analysis was primarily
conceived of as an information mapping technique and, when
combined with cross-validated decoding, can approximate out-
of-sample performance to make inferences about ‘where infor-
mation is represented’ (Kriegeskorte et al., 2006; Kriegeskorte
and Bandettini, 2007). Decoding in the context of whole brain
models has focused primarily on predictive performance and
generalization to a variety of contexts such as developing brain–
computer interfaces (Woo et al., 2017; Hebart and Baker, 2018).

Reflecting these differences, results from searchlight anal-
yses are typically reported as accuracy maps and inference is
performed by comparing accuracy at each searchlight to empir-
ical or permuted chance (Haynes, 2015) (Table 1 Conventional
Inferences). However, the feasible conclusions that can be drawn
from this approach only indicate whether at least one voxel in a
local neighborhood is related to the outcome being predicted,
not necessarily that every voxel in that neighborhood is reli-
ably representing psychological information (Viswanathan et al.,
2012; Etzel et al., 2013).2 Feature weights within a searchlight

2 This same criticism does not necessarily apply to searchlight-RSA or
searchlight-ISC analyses.
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Table 1. Comparison of different analytics strategies

Searchlight ROI Whole brain

Spatial Scale Fine-grained and fixed.
Determined by searchlight radius
which is typically the same for all
searchlights.

Medium and flexible.
Determined by how ROI was parcel-
lated (e.g. functional responses,
anatomy and network). Size reflects
variable anatomy or functional
response profiles.

Diffuse and fixed.
Determined by sampling resolution
of data (number of voxels).

Conventional
inferences

Predictive performance of each search-
light (e.g. accuracy and correlation
distance).

Feature weights within searchlights
typically not examined.

Separate statistical models per indi-
vidual and model performance
aggregated at the group level.

Predictive performance for each ROI.
Feature weights within ROIs high-
light most informative voxels.

Separate or common models across
individuals.

Single predictive performance for
model.

Feature weights highlight most
informative voxels.

Separate or common models across
individuals.

Estimation (decoding) Independent models with overlapping
features and some regularization (e.g.
SVM).

Anatomy is not part of estimation.
n>p; n ~ p; n < p

Independent models with non-
overlapping features and medium
regularization (e.g. SVM and ridge).

Anatomy can be used to define
regions.

n<p; n ≪ p

Single model that uses global
covariance across all features
with high regularization and/or
dimensionality reduction (e.g.
LASSO-PCRa)

Anatomy is not part of estimation
but provide constraints.b

n ≪ p

Compute Cost
(CPU-time)

High
Large number of independent estima-
tions required; more with permutation
testing.

Parallelization can reduce cost, but
integrating results can be complicated

Medium
Number of estimations depends on
number of regions.

Parallelization can reduce cost and
integrating results is straightfor-
ward

Low
Typically just one estimation and
permutation regime performed.

Parallelization is not trivial or not
possible except for permutation
testing or bootstrapping weights

Compute Cost
(Memory)

Low/Medium memory
Each searchlight has a small/medium
memory footprint determined
by radius and number of tri-
als/conditions.

Estimation rarely requires operating on
all searchlight models simultaneously.

Medium memory
Memory cost scales with the size
of regions selected and number of
trials/conditions/participants.

Estimation rarely requires operating
all ROI models simultaneously.

High memory
Memory cost typically depends on
total number of voxels (sampling
resolution) and specific estimation
routine (e.g. SVD).

Estimation almost always requires
operating on all voxels and observa-
tions simultaneously; exacerbated
for between-subject models that
require operating on many individ-
ual participants simultaneously

Compute cost
(Storage+Ease of
Sharing)

Low and simple if primarily working
with performance only (e.g. accuracy
maps, distance correlation) because
each voxel is associated with a single
value.

High and complicated if intending
to save feature weights because
searchlights are overlapping.

Data sharing typically consists of
accuracy maps.

Low and simple because ROIs are
most often non-overlapping and
each voxel is associated with a
single value (feature-weight or
performance).

Can represent performance and
weight maps in a single standard
format (array, NIfTI). Easy to apply
to new datasets.

Data sharing typically consists of
accuracy maps, but feature weight
maps are trivial to share as well.

Low and simple because just one
model in which each voxel is asso-
ciated with a single feature-weight.

Can represent weightmaps in a single
standard format.

Data sharing typically consists of
weight maps that are then applied
to novel datasets

This table compares searchlight, ROI, andwhole brain approaches in terms of their strengths andweaknesses along three categories: inferential goals, model estimation
and computational resource demands. Legend: n: number of observations; p: number of features;~: approximately equal;<or>: less or greater than; << or >>: much
less or much greater than.
aThe number of dimensions of predictive group models is typically limited by the number of participants in the dataset.
bSee structured sparsity models (Baldassarre et al., 2012; Gramfort et al., 2013; Grosenick et al., 2013).

are almost never examined nor used to make predictions
on completely distinct datasets. This is due to the fact that
searchlights are most often overlapping, leading each voxel to
have a different feature weight depending upon the particular

searchlight (local neighborhood) it belongs to. This makes it
infeasible to perform traditional feature importance testing
(e.g. bootstrapping/permutation testing) as there are numer-
ous possible ways to integrate these different weights across
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searchlights (e.g. see MIDAS (Varol et al., 2018)). With increasing
radius size, these issues make it nearly impossible to identify
which voxels are most important for prediction, as accuracy
scores are ‘smeared’ over spatial extents because searchlights
are overlapping (Viswanathan et al., 2012).3 Searchlight analyses
are also often computed on individual brains and performance
metrics (e.g. accuracy) are aggregated at the group level to
draw inferences (Stelzer et al., 2014). This also means that the
particular geometry of a representation (i.e. the spatial lay-
out of feature weights within a local neighborhood) is likely
to differ across individuals, greatly complicating what types of
valid group inferences are possible. Unlike univariate activation
analyses, rejecting the null-hypothesis of conventional para-
metric tests on accuracies (e.g. one-sample t-test) only suggests
that some individuals demonstrate an effect not that the effect
is typical in the population (Nichols et al., 2005; Stelzer et al.,
2013; Allefeld et al., 2016).

In contrast, whole brain analyses are often concerned with
generalization to completely new datasets, which can be com-
prised of different individuals (Woo et al., 2017). While predic-
tive performance is essential in translational applications, the
resulting feature weights at each voxel also provide some use-
ful information as to the spatial layout of the representations
e.g. ‘neural signature’ (Wager et al., 2013). Feature importance
(Table 1 Conventional Inferences) can be assessed by thresh-
olding via resampling methods such as bootstrapping or per-
mutation (Stelzer et al., 2014; Chang et al., 2015); however, the
resulting thresholded maps must be interpreted with caution.
Unlike univariate activation maps, reliable weight maps do not
indicate that a voxel explicitly represents psychological infor-
mation but that in concert with other voxels it can effectively
predict an outcome (Haufe et al., 2014). In other words, some
voxelsmay indeed represent outcome-relevant information, but
some may serve to denoise other voxels which share correlated
noise (Kriegeskorte and Douglas, 2019).

ROI analyses are flexible enough to inherit the strengths
and weaknesses of both searchlight and whole brain analy-
ses depending on the details of an implementation. Separate
models can be estimated for disjoint ROIs and aggregated to
make predictions, similar to kernel learning in machine learn-
ing, where different kernels are used for different regions
(Filippone et al., 2012; Schrouff et al., 2013). A single model
encompassing multiple disjoint voxels can also be estimated
to draw inferences about a network of regions or voxels that
share similar functional response profiles, e.g. ‘social-brain
mask’ (Thornton andMitchell, 2017). Because ROImethods don’t
typically involve overlapping features like searchlights, accu-
racy maps do not suffer from spatial ‘smearing,’ and feature
weights can be examined for relative voxel importance sim-
ilar to whole brain models (Chang et al., 2018). At the same
time, performance metrics and generalization tests on sep-
arate datasets and contexts are feasible and straightforward,
permitting inferences about the sensitivity and specificity of
representations within single brain regions (Chang et al., 2015;
Krishnan et al., 2016).

Thus, each end of the spectrum varies in its inferential goals.
Searchlight decoding permits spatial inference based on isolated
local neighborhoods tested in similar contexts while ignoring
how that information is represented (ignoring feature weights)
unless explicitly modeled with approaches like RSA. Because

3 Smearing, however, can happen in principal with searchlight-RSA and
searchlight-ISC analyses.

they are typically estimated separately across individuals, they
do not identify shared or common representations, but rather
whether any kind of task-relevant representations exist in the
brain (Allefeld et al., 2016). Whole brain models permit strong
inferences about generalization, based on model performance,
and diffuse inferences about the spatial location of representa-
tions based on feature weights. Most often in practice, whole
brain models aim to learn a common representation that gener-
alizes across individuals. Regional approaches land in-between
these endpoints based on their particular implementation. All
methods, however, can extend beyond simple decoding anal-
yses to facilitate stronger inferences. Searchlight analyses can
use cross-validated RSA or pattern-component modeling (PCM)
with model comparison to test hypotheses about what stimulus
features geometrically organize information within a neigh-
borhood (Nastase et al., 2017; Kriegeskorte and Diedrichsen,
2019). Different whole brain feature weight maps can be com-
pared within the same context to determine representational
specificity, share information and facilitate valid reverse infer-
ences (Krishnan et al., 2016; Varoquaux and Poldrack, 2019).

Model estimation

The most common multivariate4 fMRI analyses are typically
decoding models and RSA (Kriegeskorte et al., 2006; Norman
et al., 2006). In decoding approaches, voxels are considered fea-
tures, while time-points, trials, individuals or sessions serve
as observations. Building a statistical model (e.g. a classifier,
regression) requires estimating weights for features that can be
combined to predict an outcome that generalizes over observa-
tions, such as properties of a task/stimulus (e.g. condition or
category labels) or responses from individuals (e.g. behavior and
emotional ratings).5 Voxel-selection procedures are the primary
determinant of inputs that a statistical model uses to predict
an outcome. This means that successful statistical estimation is
heavily affected by the ratio between the number of features (p)
and number of observations (n) (Hastie et al., 2009). When n≥p,
(more or equivalent observations than features) a model can be
consistently6 estimated without further constraints. However,
situations where n<p (fewer observations than features) yield a
statistically underdetermined problem such that many unique
combinations of features weights can yield the same predicted
outcome. This issue is further exacerbated by the degree of
independence between features. For example, spatial smooth-
ing is a preprocessing step that can help boost signal-to-noise
ratios but decreases spatial independence. Together these issues
can lead to models that exhibit overfitting,7 whereby feature

4 While encoding models can also be viewed as a kind of multivariate
model, they are most often multivariate in stimulus feature space but
univariate in brain space. In other words, high-dimensional models are
primarily used to fit and predict a single voxel’s responses rather than a
local or global spatial pattern (Nishimoto et al., 2011; Huth et al., 2016).
5 This delineation doesn’t perfectly capture RSA analyses as models are
typically distancematrices derived from stimulus or task features and out-
comes are neural distance matrices based on responses to those stimulus
or task features.
6 Consistently here refers to a single solution (weights) that maps between
features and outcomes conditional on some error/loss function (e.g. sum-
of-squared errors/L2 norm in linear regression).
7 Underfitting is also possible, whereby feature weight fails to capture the
true signal in a data, but occurs less often in fMRI analyses. This is because
inmost datasets, irrespective of spatial scale, researchers rarely havemore
observations being predicted (e.g. trials, conditions and individuals) than
features used to make predictions (e.g. voxels), i.e. n<p or n << p.
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weights reflect both true signal but also idiosyncratic noise and
generalize poorly to newdata. To combat these issues, most esti-
mation routines rely on some form of regularization, whereby
constraints or penalties are used to limit the range of possible
estimated feature weights. Common approaches include mini-
mizing the squared (ridge and L2 penalty) or absolutemagnitude
(lasso and L1 penalty) (Hastie et al., 2009) of feature weights. In
many cases, these penalization techniques are similar to impos-
ing differently shaped priors in Bayesian models (James et al.,
2013; Nunez-Elizalde et al., 2019).

Since searchlights focus on local neighborhoods, their radius
size, along with the details of an experimental task (e.g. num-
ber of conditions, trials, trials per condition, etc.), determine the
ratio between features (voxels) and observations (trials, condi-
tions) (Table 1 Estimation). Small neighborhoods comprise few
features (e.g. ~28 voxels in a 6mm radius searchlight collected at
2 mm voxel resolution volume) meaning approximately equiv-
alent number of observations and features (n~ p) or a smaller
imbalance of more features than observations (n<p; e.g. 100
voxels to 80 observations (Nastase et al., 2017)). This may facil-
itate algorithms that require less regularization as evidenced
by the popular use of linear models (e.g. linear discriminant
analysis and support vector machine (SVM)) that exhibit good
performance using default or variance-scaled hyperparameters
rather than optimal hyperparameters tuned via cross-validation
(e.g. Norman et al., 2006; Hanke et al., 2009). However, radii are
often arbitrarily chosen based on sizes in previous studies and
can have large effects on this ratio and thus may require differ-
ent statistical models and regularization strategies, e.g. cross-
validated MANOVA (multivariate analysis of variance) (Allefeld
and Haynes, 2014). In addition, multiple comparisons correc-
tions are needed to adjust for the large number of estimated
models (Etzel et al., 2013).

Since whole brain models include all voxels and are often
used to identify representations that generalize across individ-
uals, the features greatly outnumber observations (n ≪ p; e.g.
350k voxels to 182 individuals (Chang et al., 2015)) often requir-
ing stronger regularization (Kragel et al., 2018) (Table 1 Estima-
tion). For this reason, several studies use rigorous nested cross-
validation along with independent hold-out sets to first tune
regularization hyperparameters, then evaluate cross-validated
predicted performance and, finally, test generalization perfor-
mance on completely new individuals (Wager et al., 2013; Chang
et al., 2015; López-Solà et al., 2017; Kragel et al., 2018). Another
popular regularization approach is the LASSO-PCR (LASSO prin-
cipal components regression), in which dimensionality reduc-
tion over all brain voxels is first performed using principal
components analysis (PCA)8 followed by a sparse regression
model (LASSO) to estimate weights on each principal compo-
nent that are later inverted back into voxel space (Wager et al.,
2011). This approach jointly considers large groups of voxels
with similar responses as single features used for prediction
and produces sparse weight maps where only a few such voxel
groups contribute strongly to prediction.

As noted in the previous section, the flexibility of ROI
approaches, and the particular implementation chosen, will
largely dictate the properties of an estimation regime. However,
using a particular implementation such as non-overlapping, but
contiguous ROIs, it may be possible to balance the strengths
and weakness of both searchlight and whole-brain approaches

8 In practice, the maximum number of retainable components is limited
to the number of observations, typically individuals, in the dataset.

(e.g. smaller neighborhoods, necessitates less regularization,
but with estimable feature importance maps that can be used
for generalization testing).

Computational resources

The differences in inference and estimation routines between
different techniques also impose different demands on com-
putational resources (Table 1 Compute Cost). Broadly speak-
ing, resources can be divided into three categories: (i) central
processing units (CPU) time—the number of independent esti-
mations required, the time required for each and the serial or
parallelizability of the estimations; (ii) random access memory
(RAM)—the ‘temporary’ working memory required to perform
each estimation, typically determined by how and whether a
particular algorithm needs to operate on all features and obser-
vations together, or can operate on them in a piecewise (batch)
fashion and (iii) Storage—the hard disk space required to store
the outputs of an estimation routine and the format of this
storage that can determine ease of sharing models.

At the small spatial scale end of the spectrum, searchlights
often demand high CPU costs, low to medium memory and,
most often, low storage. This is because searchlight analy-
ses require estimating as many models as there are voxels in
a dataset. However, estimations can proceed in parallel and
because features come from local neighborhoods with a small
number of voxels, memory demands are typically low as well.
Memory demands increase monotonically with increasing fea-
tures and/or observations, i.e. larger radius or more task tri-
als/conditions. If inferences are primarily made using accuracy
maps, then storage is simple as a single value can be stored
at each voxel location which can be easily shared. However,
if researchers intend to store feature weights for each search-
light, storage becomes more complex due to large demands on
disk-space and complicated indexing assigning feature weight
vectors to each voxel location.

At the large spatial scale end of the spectrum, whole brain
models often demand low CPU costs, high memory and low and
simple storage. Because all voxels are used for estimation, only a
single model needs be computed. However, because algorithms
require operating on all voxels and observations simultaneously,
they must hold and manipulate very large matrices (e.g. whole
brain covariance matrix of 3k observations (100 participants
with 30 trials each) by 200k voxels) in memory. Storage costs are
low and straightforward as a model consists of a single scalar
performance score and each voxel is only associated with a sin-
gle feature weight, making whole brain models very easy to
share and test on new datasets.

As with other analytic considerations, ROI approaches typ-
ically fall between searchlight and whole brain analyses with
relatively medium CPU costs and memory but simple and low
storage requirements. CPU costs can be minimized using par-
allelization like searchlight analyses. Memory demands scale
with the size of each ROI as larger regions (e.g. non-contiguous
DMN mask) require manipulating more features and observa-
tions together. Since ROI models are typically non-overlapping,
they share storage demands similar to whole brain models as
feature weights from different regions can be stored together in
a single file along with binary masks to later extract the weights
and apply them to new data. Accuracy maps derived from
ROI models are similar to those estimated from searchlights,
as only a single value needs to be associated with each voxel
location.
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Fig. 2. Interactions between methodological and representational spatial scales. Depending on the type of phenomenon under inquiry some analytic techniques may

be more or less optimal. Increasing spatial scale of analysis techniques are depicted on the x-axis with searchlights at the small (left) end and whole brain approaches

on the large (right) end; these mirror the spectrum Figure 1. The y-axis depicts hypothetical endpoints of representational scales with fine-grained local patterns in

the bottom row (e.g. perceptual processes) and more diffuse patterns in the top row (e.g. social and emotional processes). Fine scale methods like searchlights may fail

to capture diffuse representations as local neighborhoods provide a distorted view of a diffuse representation (top-row; left). These same methods may be optimal for

finer neural representation in which all relevant information is reflected in a local neighborhood (bottom-row; left). On the other hand, large-scale methods such as

whole brain approaches may be unable to reliably identify informative voxels when representations are organized in local neighborhoods (bottom-row; right) and may

be better suited to identifying diffuse representations with large spatial extents (top-row; right). ROI approaches (top/bottom-row; middle) offer a flexible compromise,

inheriting both the strengths and weaknesses of searchlight and whole brain approaches depending on the particular ROI method employed. At the same time, the

smallest spatial scale measurable by fMRI is likely limited by the BOLD point-spread-function at a particular magnetic field strength, e.g. 3–5 mm at 3T (Parkes et al.,

2005).

For all spatial scales, cross-validation or non-parametric
inference using resampling methods such as bootstrapping and
permutation testing, will dramatically increase CPU costs and
can potentially increase memory or storage requirements. This
is because resampling methods require re-estimating a com-
pletely new model for each cross-validation fold and boot-
strapped/permuted iteration. In the case of cross-validation
or permutation testing, only the performance of each itera-
tion needs to be retained, keeping storage costs low. However,
bootstrapping distributions of feature weights requires retain-
ing each iteration in order to define upper and lower uncer-
tainty bounds (e.g. confidence intervals), thereby increasing
costs depending upon researchers’ goals. For example, keep-
ing feature weights in memory can reduce storage costs at
the expense of increased RAM and decreased analytic flexibil-
ity down the line (e.g. loading and estimating a distribution).
Saving feature weights to disk, on the other hand, increases
storage costs by a factor of bootstrap iterations (each iteration
produces a new set of feature weights of the same shape and
size as the original model) but provides more analytic flexibility
later on.

Conclusions and recommendations

In this article, we have highlighted literature demonstrating how
neural representations can exist atmultiple spatial scales across
the brain. Representations related to perceptual processes are
often localized to small neighborhoods with highly specific
response properties and hierarchical organization. Representa-
tions related to more abstract modes of cognition like social

and emotional processing have been observed at fine spatial
scales but more often consist of diffuse spatial representations
spanning multiple regions and networks. This representational
heterogeneity can interact with the spatial scale of particular
analytic techniques, ranging from fine-grain pattern sensitiv-
ity in local neighborhoods (searchlights), focal tests of specific
regions and networks (ROI), to whole brain neural markers that
generalize across experimental contexts.

While it may be tempting to iterate over many possible anal-
yses and attempt to ‘optimize’ for the ‘best’ spatial scale, we
caution researchers against framing the issue in this way given
the lack of research specifically addressing this issue. For exam-
ple, techniques like model comparison between searchlights
and whole brain models are not trivial or even feasible to per-
form in most cases. Whole brain approaches estimate a single
model, but other approaches estimate N models, where N is the
number of ROIs or searchlights. Which of the N models should
be used to compare to the whole brain model? Or should N
models be combined into an ensemble? And if so how? One
possible approach illustrated by Chang et al. (2015) (Supple-
mentary Figure S4 Panel B) and Kragel et al. (2018) (Figure 2)
compares the performance of whole brain models to the entire
distribution of searchlight models but is unable to directly com-
pare how different model weights capture the representation
of emotions. Adding decision points to analysis pipelines with-
out cross-validation multiplies analytic flexibility and will likely
increase experiment level false-positive rates or facilitate ‘p-
hacking’ (Carp, 2012). Instead, we recommend researchers more
carefully select their analytic approach using a combination
of empirical goals, estimation techniques and computational
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resources to determine what makes the most sense for the
investigation at hand. At the same time, we believe the fieldmay
benefit from investigations directly examining the spatial scale
of psychological phenomena thereby bringing greater clarity and
more progress to this understudied issue.
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