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Epidemiological studies have shown that maternal hormone exposure is associated with
autism spectrum disorders (ASD). The hormone oxytocin (OXT) is a central nervous
neuropeptide that plays an important role in social behaviors as well as ASD etiology,
although the detailed mechanism remains largely unknown. In this study, we aim to
investigate the potential role and contribution of OXT to prenatal progestin exposure-
mediated mouse offspring. Our in vitro study in the hypothalamic neurons that isolated
from paraventricular nuclei area of mice showed that transient progestin exposure causes
persistent epigenetic changes on the OXT promoter, resulting in dissociation of estrogen
receptor b (ERb) and retinoic acid-related orphan receptor a (RORA) from the OXT
promoter with subsequent persistent OXT suppression. Our in vivo study showed that
prenatal exposure of medroxyprogesterone acetate (MPA) triggers social deficits in
mouse offspring; prenatal OXT deficiency in OXT knockdown mouse partly mimics,
while postnatal ERb expression or postnatal OXT peptide injection partly ameliorates,
prenatal MPA exposure-mediated social deficits, which include impaired social interaction
and social abilities. On the other hand, OXT had no effect on prenatal MPA exposure-
mediated anxiety-like behaviors. We conclude that prenatal MPA exposure-mediated
oxytocin suppression contributes to social deficits in mouse offspring.

Keywords: autism spectrum disorders, oxytocin, oxidative stress, progestin, social deficits
Abbreviations: ASD, autism spectrum disorders; ChIP, chromatin immunoprecipitation; EPM, elevated plus maze; ERE,
estrogen response element; ERb, estrogen receptor b; MBT, marble-burying test; MPA, medroxyprogesterone acetate; O2,
superoxide anions; OXT, oxytocin; OXTR, oxytocin receptor; PVN, paraventricular nuclei; RORA, retinoic acid-related
orphan receptor alpha; ROS, reactive oxygen species; SI, social interaction; SOD2, superoxide dismutase 2; USV,
ultrasonic vocalization.
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INTRODUCTION

Autism spectrum disorders (ASD) are a ser ies of
neurodevelopmental disorders characterized by symptoms
including social deficits and restricted or repetitive behaviors
(1, 2). While the potential mechanism for ASD remains unclear,
many factors, including environmental exposure, sex, and
epigenetic modifications, are reported to be associated with
ASD development (1, 3, 4). It has been reported that ASD
patients have increased steroidogenic activity and that
abnormal steroid levels may be involved in ASD development
(5, 6). We have previously reported that maternal exposure to
either progestin (7, 8) or androgens (9) contribute to autism-like
behaviors in offspring; and the epidemiological study shows that
maternal hormonal exposure may be associated with autism
development (10).

Oral contraceptive hormones, primarily including estrogens
and progestins, were originally used starting around 60 years ago
for birth control by preventing ovulation; this time period has
been reported to coincide with the dramatic increase in ASD
prevalence (8, 10). Our epidemiological study has shown that the
following 3 risk factors are highly associated with ASD: 1) Use of
progestin to prevent threatened abortion, 2) Use of progestin
contraceptives at the time of conception, and 3) prenatal
consumption of progestin-contaminated food (10). We then
hypothesize that maternal exposure to oral contraceptive
hormones, especially progestin, may be associated with
autism development.

Oxytocin (OXT) is a neuropeptide primarily secreted by
hypotha lamic neurons tha t loca ted in e i ther the
paraventricular nuclei (PVN) or supraoptic nuclei (SON) (11).
OXT, in conjunction with oxytocin receptor (OXTR) (12), has
been reported to play an important role in regulation of social
recognition and anxiety-like behaviors (13–16) as well as many
other kinds of pathophysiological processes (17). OXT/OXTR
signaling abnormalities have been associated with ASD (18, 19).
We have previously reported that maternal diabetes-mediated
OXTR suppression contributes to social deficits in mouse
offspring (20), while the detailed mechanism for the role of
OXT in ASD development remains largely unknown (21).

Estrogen receptor b (ERb) is widely expressed in a variety of
brain regions and has been reported to be associated with
anxiety-like behaviors and ASD development (8, 22–24). We
have previously reported that ERb expression is reduced in the
amygdala, contributing to prenatal progestin exposure-mediated
autism-like behaviors in rat offspring (7, 8). Additionally, ERb
regulates the expression of superoxide dismutase 2 (SOD2),
modulating cellular oxidative stress (25). Interestingly, both
ERb and SOD2 are suppressed in maternal diabetes-mediated
autism-like mouse offspring (26). ERb is highly expressed and
co-localized in OXT neurons in the hypothalamic region, and
OXT may be regulated directly or indirectly by ERb, while the
possible mechanism remains largely unknown (12, 27, 28).

In this study, we aim to investigate the role and mechanisms
for maternal progestin exposure-mediated OXT suppression and
its contribution to social behaviors in offspring. Our in vitro
study in mouse hypothalamic neurons showed that transient
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treatment by 10µM of medroxyprogesterone acetate (MPA) for 3
days triggers persistent OXT suppression through epigenetic
modifications and subsequent dissociation of ERb and retinoic
acid-related orphan receptor a (RORA) (29) from the OXT
promoter, indicating that ERb and RORA may play a role in
progestin-mediated OXT suppression. We then conducted the in
vivo mouse study, and we found that prenatal exposure to MPA
triggers OXT suppression as well as autism- and anxiety-like
behaviors in offspring. Prenatal OXT deficiency had no effect on
prenatal MPA exposure-induced anxiety-like behavior, but it
partly mimicked prenatal MPA exposure-mediated social deficits
in offspring. We next conducted postnatal gene manipulation of
ERb and RORA targeting to hypothalamic OXT neuron-located
PVN area, and we found that postnatal ERb expression partly
ameliorated prenatal MPA exposure-induced social deficits,
while postnatal RORA expression had no effect. Furthermore,
postnatal OXT peptide injection to the third ventricle partly
ameliorated prenatal MPA exposure-induced social deficits in
offspring as well. We conclude that prenatal MPA exposure-
mediated oxytocin suppression contributes to social deficits in
mouse offspring.
MATERIALS AND METHODS

An expanded section for Materials and Methods is available in
Supplementary Information (see Data S1), and the details for
used primers are available in Table S1.

Reagents and Materials
The primary hypothalamus neurons were isolated from the
paraventricular nucleus (PVN) area of experimental mice. The
antibodies for b-actin (sc-47778), p53 (sc-126), RORA (sc-
518081), RXRa (sc-515929) and SOD2 (sc-30080) were
purchased from Santa Cruz Biotechnology. The oxytocin
(OXT) from tissue, culture medium, serum and cerebrospinal
fluid (CSF) was determined using the Oxytocin ELISA Kit
(ab133050) according to manufacturers’ instructions.

Generation of OXT Reporter Construct
The genomic DNA was purified from primary mouse
hypothalamic neurons, and the mouse OXT promoter (2kb
upstream + first exon) was identified from Ensembl gene ID:
OXT-201 ENSMUST00000028764.6, and amplified by PCR, then
subcloned into the pGL3-basic vector (# E1751, Promega) using
the following primers with underlined restriction sites: OXT
forward: 5’-gcgc-acgcgt- cta acc taa agc cca aag ctg -3’ (Mlu I)
and OXT reverse: 5’- gtac- aagctt- ctt gcg cat atc cag gtc cag -3’
(Hind III). To map the progestin-responsive element on the OXT
promoter, the related OXT deletion reporter constructs were
generated using PCR techniques and subcloned into pGL3-
basic vector (30).

Generation of Expression Lentivirus
The mouse ERb expression lentivirus was prepared previously in
our lab (20). The cDNA for mouse RORA was purchased from
March 2022 | Volume 13 | Article 840398
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Open Biosystems and then amplified using the following primers
with underlined restriction sites: RORA forward primer: 5’- gtac
- gggccc- atg gag tca gct ccg gca gcc -3’ (ApaI) and RORA reverse
primer: 5’- gtac - tctaga- tta ccc atc gat ttg cat ggc -3’ (Xba1), and
then subcloned into the pLVX-Puro vector (from Clontech). The
lentivirus for ERb, RORA, and empty control were expressed
using Lenti-X™ Lentiviral Expression Systems (from Clontech)
and concentrated according to manufacturers’ instructions (26).

DNA Methylation Analysis
The DNA methylation on the OXT promoter was evaluated
using a methylation-specific PCR-based method as described
previously with minor modifications (31–33). The mouse
genomic DNA was extracted and purified from primary
hypothalamic neurons, and then treated by bisulfite
modification through EpiJET Bisulfite Conversion Kit (#K1461,
from Fisher). The treated DNA was then amplified using the
following primers: Methylated primer: forward 5’- tga aaa ata gtt
ttt ggt tag ggc -3’ and reverse 5’- ctc tta aat caa att att cca cgc t -3’;
Unmethylated primer: forward 5’- gaa aaa tag ttt ttg gtt agg gtg t
-3’ and reverse 5’- ctc tta aat caa att att cca cac t -3’. Product size:
198bp (methylated) & 197bp (unmethylated); CpG island size:
227bp; Tm: 68.4°C. The final DNA methylation results were
normalized by DNA unmethylated results as input.

In Vivo Mouse Experiments
Generation of neuron-specific OXT knockout mice. The OXTfl/fl

mouse, which has loxP flanking sites targeting exon 3 of the OXT
gene, was generated by in vitro fertilization and was obtained for
this study as a generous gift from Dr. Haimou Zhang (Hubei
University). The Oxytocin-Ires Cre mice (OxtCre, #024234), which
expresses Cre recombinase under the control of the oxytocin
promoter, was obtained from Jackson Laboratories. To generate
neuron-specific OXT-/- null mice (OxtCre-OXTfl/fl), OXTfl/fl mice
were cross-bred with OxtCre mice for over 4 generations on the
C57BL/6J background. Positive offspring were confirmed by
genotyping through PCR using specific primers (see Table S1)
for the presence of both loxP sites within OXT alleles and Cre
recombinase (34, 35). The experimental animals were either OXT
wild type (WT) or OXT null (OXT-/-) mice with C57BL/6J genetic
background as described above.

Mouse Protocol 1: Prenatal treatment by progestin MPA or
OXT deficiency. Female mice (3-month old) were mated with
males, and the pregnant dams were verified, then received either
MPA treatment (20 mg/kg body weight, which is similar or equal
to high-dose of women exposure) or control (CTL) group that
received vehicle only, which containing 1% ethanol in organic
sesame oil, and 0.1 ml of drugs were given every 2 days by
peritoneal injection from day 1 until offspring delivery for ~21
days in total. The above treated dams were then randomly
assigned to the below 4 groups: Group 1: OXT WT
background dams receiving CTL injection (CTL/WT); Group
2: OXT WT background dams receiving MPA injection (MPA/
WT); Group 3: OXT null background dams receiving CTL
injection (CTL/OXT-/-); Group 4: OXT null background dams
receiving MPA injection (MPA/OXT-/-). 10 dams were assigned
Frontiers in Endocrinology | www.frontiersin.org 3
for each group, and one representative offspring was selected
randomly from each dam for experiments and analysis. Nine
representative offspring were selected from the 10 in total in
order to account for potential death of an experimental animal
during the process. Hypothalamic neurons from PVN area were
isolated on embryonic day 18 (E18), and the offspring were then
fed by normal chow until 7-8 weeks old, after which they were
given behavior tests. The offspring were then sacrificed; the
serum and CSF were collected for OXT analysis and various
brain tissues, including the amygdala, hypothalamus (PVN area)
and hippocampus, were isolated for further biological assays,
including gene expression and oxidative stress.

Mouse Protocol 2: Postnatal manipulation of ERb/RORA
lentivirus-carried expression. At 6-week of age, offspring of
OXT wild type background that received either the CTL or
MPA treatment as described in Mouse Protocol 1 were
anesthetized by a mixture of ketamine (90 mg/kg) and xylazine
(2.7 mg/kg) and implanted with a guide cannula targeting the
PVN area by the direction of an ultra-precise stereotax (Kopf
Instruments) using the coordinates of 0.85 mm posterior to the
bregma, 0.15 mm lateral to the midline, and 4.8 mm below the
skull surface (36). The lentivirus for expression of ERb (↑ERb),
RORA (↑RORA), or empty (EMP) was infused immediately by a
flow rate of 0.5 µl/h after placement of the cannula and
minipump, and in total, 0.5ml of (2×103 cfu) lentivirus was
infused in 1 hour, and the lentivirus was dissolved in artificial
cerebrospinal fluid (aCSF), which containing 140 mM NaCl, 3
mM KCl, 1.2 mM Na2HPO4, 1 mM MgCl2, 0.27 mM
NaH2PO4, 1.2 mMCaCl2, and 7.2 mM dextrose in pH 7.4.
The experimental animals were randomly separated into the
following 4 groups (10 mice each group). Group 1: CTL treated
offspring received vehicle lentivirus infusion (CTL/P-EMP);
Group 2: MPA treated offspring received vehicle lentivirus
infusion (MPA/P-EMP); Group 3: MPA treated offspring
received ERb lentivirus infusion (MPA/P-↑ERb); Group 4:
MPA treated offspring received RORA lentivirus infusion
(MPA/P-↑RORA). To confirm a successful lentivirus injection
into PVN area, the cannula placement was checked histologically
postmortem by injection of 0.5ml India ink. Animals whose dye
injections were not located in the PVN area were excluded from
the final analysis, and the offspring were used for behavior tests
after two-week of lentivirus infusion followed with biological
assays as indicated in Mouse Protocol 1 (37).

Mouse Protocol 3: Postnatal administration of OXT peptides.
The offspring (6-week old) from Mouse Protocol 1 were
anesthetized and implanted with a guide cannula targeting the
third ventricle at the midline coordinates of 1.8 mm posterior to
the bregma and 5.0 mm below the skull surface (36). Two weeks
were allowed for mice to recover from surgery, and each mouse
then received injection with either aCSF as vehicle (VEH) control
or oxytocin peptide (OXT, dissolved in aCSF) via pre-implanted
cannula (36, 38). The experimental animals were then randomly
separated into the following 4 groups (10 mice each group).
Group 1: CTL treated offspring received vehicle injection (CTL/
P-VEH); Group 2: MPA treated offspring received vehicle
injection (MPA/P-VEH); Group 3: CTL treated offspring
March 2022 | Volume 13 | Article 840398

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Huang et al. Progestin Induces Oxytocin Suppression
received OXT peptide injection (MPA/P-OXT); Group 4: MPA
treated offspring received OXT peptide injection (MPA/P-OXT).
The oxytocin (0.1 mM, diluted in aCSF, 1 mg/20ml aCSF) or
vehicle was locally administered via the installed catheter (39). 20
min (including a period for 5 min-adaptation in the test cage)
after the injection, the offspring were used for behavior tests
followed by biological assays, as indicated in Mouse Protocol
1 (37).

Animal Behavior Tests
The animal behavior tests were evaluated at ages of 7-8 weeks old
from offspring unless otherwise mentioned. Anxiety-like
behavior was determined by the marble-burying test (MBT)
and the elevated plus maze (EPM) tests (7). Autism-like
behavior was determined by ultrasonic vocalization (USV),
social interaction (SI) test and a three-chambered social test
(40–42), and the details for these tests are described in
Supplementary Information.

Isolation of Brain Tissues
The brain tissues were isolated from experimental offspring for
further biological assays. The experimental mouse was deeply
anesthetized through free breathing of isoflurane vapor (> 5%).
The whole blood was then withdrawn by heart puncture for
PBMC isolation and the mouse was perfused transcardially by 20
ml cold perfusion solution for 5 min. The skull was cut using a
pair of small surgical scissors and the brain was carefully freed
from the skull before being transferred to a petri dish (60 mm×15
mm) that was filled with ice-cold DPBS solution. The targeted
brain regions, including the amygdala, hypothalamus (PVN
area) and hippocampus, were dissected under the surgical
microscope under the referred location from the atlas outlined
in The Mouse Brain in Stereotaxic Coordinates (3rd Edition). A
separate petri dish was prepared for each of the target regions.
The whole dissection process was carried out in the span of no
more than one hour. The dissected tissues were then frozen at
-80°C for either immediate use or later biological assays (43, 44).

Collection of Cerebrospinal Fluid
The procedure for CSF collection is based on a previously
established protocol with minor modifications. In brief, the
mouse was anesthetized and the shaved head was clamped in
place for dissection under a dissecting microscope. The layers of
muscles were carefully dissected away using forceps and the dura
over the cisterna magna was exposed. This area has large blood
vessels running through, which is optimal for capillary insertion
and CSF collection. The angle of the glass capillary was carefully
adjusted and the sharpened tip of glass capillary was aligned and
eventually tapped through the dura to collect CSF using a
micromanipulator control. Approximately 20 µl of CSF was
automatically drawn into the capillary tube once the opening
was punctured. The glass capillary was gently removed from the
mouse by micromanipulator control and the CSF was then
mixed with 1 µl of 20x protease inhibitor in a 1.5 ml centrifuge
tube for a quick centrifugation (pulse spin for 5 seconds at
maximal speed), and the CSF samples were aliquoted for either
immediate analysis or stored at -80°C (45).
Frontiers in Endocrinology | www.frontiersin.org 4
In Vitro Primary Culture of Hypothalamic
Neurons
The isolation of hypothalamic neurons was carried out following
a previously described procedure with minor modifications.
Three to five hypothalami from PVN area of mice on
embryonic day 18 (E18 rats) were isolated, pooled, and then
dissociated into single cell suspension by trituration. They were
then transferred to a culture dish, which containing primary
DMEM culture medium, 10% FBS, 10% heat-inactivated horse
serum, 20mM D-glucose and combined antibiotics (from
Invitrogen). The osmolarity of medium was then adjusted to
320-325 mOsm using glucose. The subsequent cell suspension
was then split into tissue culture flasks that coated with 100mg/ml
of poly-L-lysine (Sigma). 24 hours of incubation were allowed for
cells to attach to the flask at 37°C with 5% CO2, the medium was
then refreshed for cells to growth until confluent for further
biological assays (46). The isolated primary hypothalamic
neurons were used for in vitro cell culture study until passage
3. For mapping of progestin-responsive element on the OXT
promoter, the cells were immortalized by an hTERT lentivirus
vector for a longer life span (up to passage 12) to achieve better
transfection efficiency and higher experimental stability as
described previously (47, 48).
RESULTS

Transient Progestin Treatment Causes
Persistent OXT Suppression and
Oxidative Stress; ERb Expression
Completely, While RORA Expression
Partly, Reverses This Effect
We first determined the possible effect of MPA treatment on
OXT expression. Mouse hypothalamic neurons were treated by
MPA for 3 days and then cultured for another 3 days in the
absence of MPA, but with the infection of either ERb (↑ERb) or
RORA lentivirus (↑RORA) for biological assays. Our results
showed that 3-day MPA treatment significantly suppressed
OXT mRNA levels and that OXT mRNA remained low after
removal of MPA. Infection of ERb lentivirus completely, while
RORA expression partly, reversed this effect (see Figures 1A, B).
We also measured mRNA expression of these genes at the end of
the treatment on day 6, and the results showed that lentivirus
infection of either ERb or RORA was successful. Transient MPA
treatment significantly suppressed expression of ERb, SOD2 and
RORA, and the expression remained low during subsequent
MPA absence (see Figure 1B). We then evaluated protein levels
of these genes by either western blotting (see Figures 1C, D, S1A)
or ELISA for OXT (see Figure 1E), and the expression pattern was
similar to that of mRNA levels. In addition, we conduct
immunostaining of OXT for the hypothalamic neurons that
isolated from PVN area of mice, and the results showed that
almost all the neurons had OXT expression (see Figure S2),
indicating a successful OXT neuron preparation. We also
evaluated the potential effect of MPA on OXTR expression and
the results showed that MPA had no effect, while ERb expression
March 2022 | Volume 13 | Article 840398
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significantly increased OXTR mRNA levels (see Figure S3). We
then measured the effect of MPA on oxidative stress, and the
results showed that MPA treatment significantly decreased SOD2
activity (see Figure 1F) and increased ROS formation (see
Figure 1G) and 3-nitrotyrosine formation (see Figure 1H).
Again, ERb expression completely, while RORA expression
partly, reversed this effect. Furthermore, we determined the
potential effect of other progestins on OXT expression and
epigenetic changes. The results showed that estrogen (E2),
progesterone (P2) and NGM had no significant effect, while
almost all transient treatments of progestin, including LNG,
NES, NET, NETA, NEN and OHPC, induced persistent OXT
Frontiers in Endocrinology | www.frontiersin.org 5
suppression and increased H3K27me2 modification on the OXT
promoter (see Table 1). We conclude that transient progestin
treatment causes persistent OXT suppression and oxidative stress
in hypothalamic neurons.

MPA Induces OXT Suppression by
Epigenetic Modifications and Subsequent
Dissociation of ERb and RORA From the
OXT Promoter
We evaluated the potential molecular mechanism for MPA-
induced OXT suppression. The conditionally immortalized
hypothalamic neurons from PVN area were transfected by
TABLE 1 | Transient progestin exposure causes persistent epigenetic changes on the OXT promoter and the subsequent OXT suppression.

Transient Progestin Exposure OXT mRNA level by Qpcr (% control) H3K27me2 modification by ChIP (% control)

E2 106 ± 11 91 ± 12
P4 92 ± 10 108 ± 11
LNG 76 ± 9* 163 ± 8*
MPA 43 ± 10* 215 ± 11*
NES 69 ± 12* 121 ± 10
NET 58 ± 11* 147 ± 10*
NETA 71 ± 8* 168 ± 12*
NEN 62 ± 10* 177 ± 9*
NGM 87 ± 11 119 ± 13
OHPC 64 ± 12* 188 ± 12*
Primary mouse hypothalamic neurons were treated with either 10 mM of progestin (dissolved in 0.1% DMSO) or vehicle control for 3 days before then being cultured for another 3 days in
the absence of progestin in the presence of 1% FBS during 6-day treatment. The cells were harvested for mRNA analysis and ChIP analysis on the OXT promoter. E2, 17b-estradiol; P4,
progesterone; LNG, levonorgestrel; MPA, medroxyprogesterone acetate; NES, nestorone; NET, norethindrone; NETA, norethindrone acetate; NEN, norethynodrel; NGM, norgestimate;
OHPC, hydroxyprogesterone caproate; *, P<0.05, vs control group. n=4, results were expressed as mean ± SD.
A B C

D

GFE H

FIGURE 1 | Transient MPA treatment causes persistent OXT suppression and oxidative stress; ERb expression completely, while RORA expression partly, reverses
this effect. Mouse hypothalamic neurons were treated with either 10 mM MPA or vehicle control (CTL) for 3 days. The cells were infected by empty (CTL), ERb
(↑ERb), or RORA (↑RORA) lentivirus on day 3 and the cells were then cultured without MPA for another 3 days in the presence of 1% FBS before being harvested for
biological assays. (A) OXT mRNA levels on different time points, n=4, *P < 0.05, vs. day 0 group; ¶P < 0.05, vs. day 3 group. (B–H) Biological assays on day 6.
(B) mRNA levels, n=4. (C) Protein quantitation, n=5. (D) Representative western blots for (C). (E) OXT levels in culture medium, n=5. (F) SOD2 activity, n=5.
(G) ROS generation, n=5. (H) 3-nitrotyrosine generation, n=5. *P < 0.05, vs. CTL(3d)+CTL(3d)/EMP group; ¶P < 0.05, vs. MPA(3d)+CTL(3d)/EMP group. Data were
expressed as mean ± SD.
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either OXT full length (pOXT-2000) or deletion reporter
constructs and then treated by MPA for luciferase reporter
assay. Our results showed that MPA-induced OXT suppression
had no significant changes in the constructs of -2000, -1600,
-1200, -800, -600, -400 and -200, while the suppression was
significantly diminished in deletion constructs of -100 and -0,
indicating that the MPA-responsive element is located in the
range of -200~-100 on the OXT promoter (see Figure 2A). We
then searched all the potential binding motifs in the range of
-200~-100 on the OXT promoter and found that there were two
RXRa motifs at -188 and -105, two estrogen response element
(ERE) motifs at -182 (marked in red) and -169, one motif for
Frontiers in Endocrinology | www.frontiersin.org 6
RORA at -163 (marked in red) and one for p53 at -135,
respectively (see Figure 2B). We then mutated these potential
binding motifs respectively in the OXT full length reporter
constructs and transfected them for reporter assay. The results
showed that single mutants (marked in green, see Figure 2B) of
ERE at -162 (M-182/ERE) and RORA at -163 (M-163/RORA)
significantly diminished MPA-induced OXT suppression, while
other single mutants had no effect (see Figure 2C). We then
transfected either single or double mutants of M-182/ERE and
M163/RORA to investigate the effect of MPA, and the result
showed that single mutant of either M-182/ERE or M-163/
RORA partly, while double mutant M-182/ERE/163/RORA
A B

D

E F

C

FIGURE 2 | MPA induces OXT suppression by epigenetic modifications and the subsequent dissociation of ERb and RORA from the OXT promoter. (A) The
immortalized mouse hypothalamic neurons from PVN area were transfected by either OXT full length (pOXT-2000) or deletion reporter constructs. After 24 hours,
cells were then treated by either control or 10mM MPA for 3 days and the OXT reporter activities were then calculated, n=5. *P < 0.05, vs. pOXT-2000 group.
(B) Schematic model for the possible transcriptional binding element on the OXT promoter with one of ERE and RORA binding site (in red) as well as related
mutation sites (in green). (C) The cells were transfected with either wild type OXT reporter construct (pOXT-2000) or single point mutation construct as shown in
(B) and then treated by either control or MPA for 3 days, and the OXT reporter activities were then determined, n=5. *P < 0.05, vs. pOXT-2000 group. (D) The cells
were transfected by either OXT full length (pOXT-2000), single mutant, double mutants as indicated, or infected by ERb lentivirus (↑ERb), and then treated by either
control or MPA for 3 days, and the OXT reporter activities were then determined, n=5. *P < 0.05, vs. pOXT-2000/CTL group; ¶P < 0.05, vs. pOXT-2000/MPA group.
(E) ChIP analysis for transcription factor binding ability assay, n=4. (F) ChIP analysis for histone 3 methylation, n=4. *P < 0.05, vs. CTL(3d)+CTL(3d)/EMP group; ¶P <
0.05, vs. MPA(3d)+CTL(3d)/EMP group. Data were expressed as mean ± SD.
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completely, reversed MPA-induced suppression. ERb expression
completely, but RORA expression partly, reversed MPA-induced
suppression (see Figure 2D). We also evaluated the binding
ability of these motifs by ChIP techniques, and the results
showed that MPA treatment significantly decreased the
binding abilities of ERb and RORA on the OXT promoter.
Again, ERb expression completely, but RORA expression
partly, reversed MPA-induced suppression (see Figure 2E).
We finally evaluated MPA-mediated epigenetic changes on the
OXT promoter by ChIP techniques. The results showed that
MPA treatment significantly increased H3K27me2 modifications
on the OXT promoter, but had no effect on H3K9me2,
H3K9me3 or H3K27me3. ERb expression completely, while
RORA expression partly, reversed this effect (see Figure 2F).
In addition, we found that MPA treatment had no effect on the
OXT promoter for DNA methylation (see Figure S4), histone 4
methylation (see Figure S5A) and histone 3 acetylation (see
Figure S5B). We conclude that MPA induces OXT suppression
by epigenetic modifications and the subsequent dissociation of
ERb and RORA from the OXT promoter.
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Prenatal OXT Deficiency Mimics Prenatal
MPA Exposure-Mediated OXT
Suppression and Oxidative Stress
We determined the effect of prenatal OXT deficiency on prenatal
MPA exposure-mediated OXT suppression and oxidative stress.
The OXT wild type (WT) or OXT null (OXT-/-) background
dams were exposed to either control (CTL) or MPA and the
hypothalamic neurons or tissues from PVN area of offspring
were isolated for analysis. We first evaluated gene expression in
hypothalamic tissues, and found that MPA exposure significantly
decreased mRNA levels of ERb, SOD2, RORA and OXT in
hypothalamic tissues. Prenatal OXT deficiency showed no
further effect, although it decreased OXT mRNA levels in the
control (CTL) group (CTL/OXT-/-), indicating that OXT
knockdown in these animals was successful (see Figure 3A).
We also measured protein levels for the genes through either
western blotting (see Figures 3B, C, S1B) or ELISA for OXT (see
Figure 3D), and the expression pattern was similar to that of
mRNA levels. In addition, we measured gene expression in
tissues of both the amygdala (see Figure S6A) and
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FIGURE 3 | Prenatal OXT deficiency mimics prenatal MPA exposure-mediated OXT suppression and oxidative stress. The OXT wild type (WT) or OXT null (OXT-/-)
background dams were treated by either control (CTL) or MPA and the hypothalamic neurons or tissues from PVN area of offspring were isolated for biological
assays. (A-D) The hypothalamic tissues were isolated for analysis. (A) mRNA levels, n=4. (B) Protein quantitation, n=5. (C) Representative western blots for
(B). (D) OXT levels in hypothalamic tissues, n=5. (E) Superoxide anion release in hypothalamic tissues, n=5. (F, G) Immunostaining of hypothalamic neurons. (F) 8-
oxo-dG staining quantitation, n=5. (G) Representative 8-oxo-dG staining (red) and DAPI staining (blue). (H) OXT levels in CSF, n=5. (I) OXT levels in serum, n=5.
*P < 0.05, vs. CTL/WT group; #P < 0.05, vs. CTL/OXT-/- group. Data were expressed as mean ± SD.
March 2022 | Volume 13 | Article 840398

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Huang et al. Progestin Induces Oxytocin Suppression
hippocampus (see Figure S6B), and the results showed that
MPA exposure decreased mRNA levels of ERb, SOD2 and
RORA in the amygdala but had no effect in the hippocampus.
OXT knockdown showed no further effect. We also evaluated the
effect of MPA and OXT deficiency on oxidative stress in
hypothalamic tissues, and the results showed that prenatal
MPA exposure significantly increased superoxide anion release
(see Figure 3E) and 8-oxo-dG formation (see Figures 3F, G),
while prenatal OXT deficiency showed no effect. We then
evaluated OXT peptide levels in both the CSF (see Figure 3H)
and serum (see Figure 3I), and found that prenatal MPA
exposure significantly decreased OXT levels, and prenatal OXT
deficiency achieved a further decrease. We conclude that prenatal
OXT deficiency mimics prenatal MPA exposure-mediated OXT
suppression and oxidative stress.

Prenatal OXT Deficiency Partly Mimics
Prenatal MPA Exposure-Mediated Social
Deficits in Mouse Offspring
We determined the potential effect of prenatal MPA exposure
and OXT deficiency on animal behaviors. We first evaluated
anxiety-like behaviors, and our results showed that offspring in
the prenatal MPA exposure (MPA/WT) group buried less
marbles in the marble-burying test (MBT) test (see Figure 4A)
and spent less time in the Open Arm and more time in Closed
Arm during the elevated plus maze (EPM) test (see Figure 4B)
compared to the control (CTL/WT) group. We then evaluated
Frontiers in Endocrinology | www.frontiersin.org 8
autism-like behaviors, and the results showed that mice in the
MPA/WT group had fewer ultrasonic vocalizations in the USV
tests (see Figure 4C) and spent significantly less time sniffing,
mounting and interacting in total during the social interaction
(SI) tests (see Figure 4D). They spent less time sniffing in the
Stranger 1 side and more time in the Empty side for sociability
(see Figure 4E); additionally, they spent more time in the
Stranger 1 side and less time in the Stranger 2 side for social
novelty (see Figure 4F) during the three-chambered social test
compared to the CTL/WT group. OXT deficiency had no effect
on the MBT, EPM or USV tests, while it slightly decreased
sniffing and total interaction time in the SI test and slightly
decreased social ability and social novelty in the three-
chambered social tests. We conclude that prenatal OXT
deficiency partly mimics prenatal MPA exposure-mediated
social deficits in mouse offspring.

Postnatal ERb Expression Completely,
While Postnatal RORA Expression Partly,
Reverses Prenatal MPA Exposure-
Mediated OXT Suppression and Oxidative
Stress in Offspring
Pregnant dams were given either control (CTL) or MPA
treatment, and the subsequent offspring received either empty
(EMP), ERb (↑ERb) or RORA (↑RORA) lentivirus in the PVN
area before then being sacrificed for analysis. We first determined
gene expression in the hypothalamic tissues that isolated from
A B
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C

FIGURE 4 | Prenatal OXT deficiency partly mimics prenatal MPA exposure-mediated social deficits in mouse offspring. The OXT wild type (WT) or OXT null (OXT-/-)
background dams were treated by either control (CTL) or MPA, and the subsequent offspring were used for animal behavior tests. (A) MBT test, n=9. (B) EPM test,
n=9. (C) Ultrasonic vocalization, n=9. (D) Social interaction (SI) test, n=9. (E, F) Three-chambered social tests for sociability (E) and social novelty (F), n=9. *P < 0.05,
vs. CTL/WT group; #P < 0.05, vs. CTL/OXT-/- group. Data were expressed as mean ± SD.
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PVN area of offspring, and found that infection of either ERb or
RORA lentivirus significantly increased mRNA levels,
respectively, indicating a successful gene manipulation.
Additionally, ERb expression (MPA/P-↑ERb) completely
reversed MPA exposure-mediated gene suppression of ERb,
SOD2, RORA and OXT. RORA expression (MPA/P-↑RORA)
showed no effect on ERb and SOD2, while it partly reversed
MPA exposure-mediated OXT suppression (see Figure 5A). We
also measured protein levels for the genes using either western
blotting (see Figures 5B, C, S1C) or ELISA for OXT (see
Figure 5D), and the expression pattern was similar to that of
mRNA levels. Moreover, we measured gene expression in the
other brain regions, and the results showed that ERb expression
completely reversed MPA exposure-mediated gene suppression
of ERb, SOD2 and RORA in the amygdala, while RORA
expression showed no effect (see Figure S7A). Neither prenatal
MPA exposure nor postnatal gene manipulation showed any
effect on gene expression in the hippocampus (see Figure S7B).
We also evaluated the effect of MPA exposure and postnatal gene
manipulation on oxidative stress in hypothalamic tissues, and the
results showed that postnatal ERb expression completely, while
RORA expression partly, reversed prenatal MPA exposure-
mediated increased superoxide anion release (see Figure 5E)
and 8-OHdG formation (see Figure 5F). We then evaluated
OXT peptide levels in both the CSF (see Figure 5G) and serum
(see Figure 5H), and the results showed that postnatal ERb
expression completely, while RORA expression partly, reversed
Frontiers in Endocrinology | www.frontiersin.org 9
prenatal MPA exposure-mediated OXT suppression. We
conclude that postnatal ERb expression completely, while
postnatal RORA expression partly, reverses prenatal MPA
exposure-mediated OXT suppression and oxidative stress
in offspring.

Postnatal ERb Expression Partly
Ameliorates Prenatal MPA Exposure-
Mediated Social Deficits in Mouse
Offspring, While Postnatal RORA
Expression Has no Effect
We evaluated animal behaviors of offspring with prenatal MPA
exposure and postnatal gene manipulation. Our results showed
that postnatal expression of either ERb or RORA showed no
effect on MPA exposure-mediated anxiety-like behaviors, as
measured using the marble-burying test (MBT) test (see
Figure 6A) and elevated plus maze (EPM) test (see
Figure 6B). We also evaluated autism-like behaviors, and the
results showed that postnatal expression of either ERb or RORA
showed no effect on MPA exposure-mediated decreased
ultrasonic vocalization in USV tests (see Figure 5C). On the
other hand, postnatal ERb expression partly ameliorated MPA
exposure-mediated impaired social interaction, including
sniffing and total interaction time, as measured in the social
interaction (SI) tests (see Figure 6D). Additionally, it partly
ameliorated MPA exposure-mediated impaired sociability (see
Figure 6E) but not social novelty (see Figure 6F) during the
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FIGURE 5 | Postnatal ERb expression completely, while postnatal RORA expression partly, reverses prenatal MPA exposure-mediated OXT suppression and
oxidative stress in offspring. The pregnant dams were treated with either control (CTL) or MPA, and the subsequent offspring received either empty (EMP), ERb
(↑ERb) or RORA (↑RORA) lentivirus, and the offspring were then sacrificed for biological assays. (A–F) The hypothalamic tissues from PVN area were isolated for
biological assays: (A) mRNA levels, n=4. (B) Protein quantitation, n=5. (C) Representative western blots for (B). (D) OXT levels in hypothalamic tissues, n=5.
(E) Superoxide anion release, n=5. (F) 8-OHdG generation, n=5. (G) OXT levels in CSF, n=5. (H) OXT levels in serum, n=5. *P < 0.05, vs. CTL/P-EMP group;
¶P < 0.05, vs. MPA/P-EMP group. Data were expressed as mean ± SD.
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three-chambered social test. Postnatal RORA expression showed
no effect on MPA exposure-mediated behaviors in offspring (see
Figures 6C–F). We conclude that postnatal ERb expression
partly ameliorates prenatal MPA exposure-mediated social
deficits in mouse offspring.

Postnatal Injection of OXT Peptide Partly
Reverses Prenatal MPA Exposure-
Mediated Social Deficits in Mouse
Offspring
Pregnant dams were treated with either control (CTL) or MPA,
and the subsequent offspring received either vehicle (VEH) or
OXT peptide injection through the third ventricle for biological
assays. We first determined gene expression in hypothalamic
tissues that isolated from PVN area, and found that OXT peptide
showed no effect on MPA exposure-mediated gene suppression
of ERb, SOD2, RORA or OXT (see Figure 7A). We also
measured OXT peptide levels after OXT injection, and found
that postnatal OXT injection significantly increased OXT levels
in the CSF compared to the control (CTL/P-VEH) group (see
Figure 7B) and also partly reversed MPA exposure-mediated
decreased OXT serum levels (see Figure 7C). We evaluated
animal behaviors in the offspring, and our results showed that
postnatal OXT injection showed no effect on MPA exposure-
mediated anxiety-like behaviors, as measured through the
marble-burying test (MBT) test (see Figure 7D) and elevated
Frontiers in Endocrinology | www.frontiersin.org 10
plus maze (EPM) test (see Figure 7E). We also evaluated autism-
like behaviors, and the results showed that postnatal OXT
injection showed no effect on MPA exposure-mediated
decreased ultrasonic vocalization in USV tests (see Figure 7F).
On the other hand, postnatal OXT injection partly ameliorated
MPA exposure-mediated impaired social interaction, as
indicated through sniffing and total interaction time during the
social interaction (SI) tests (see Figure 7G). Additionally, it
partly ameliorated MPA exposure-mediated impaired
sociability (see Figure 7H) but not social novelty (see
Figure 7I) during the three-chambered social test. We
conclude that postnatal OXT injection partly ameliorates
prenatal MPA exposure-mediated social deficits in
mouse offspring.
DISCUSSION

In this study, we found that transient progestin treatment
triggers persistent epigenetic changes and OXT suppression in
hypothalamic neurons. Prenatal MPA exposure induces OXT
suppression, oxidative stress and social deficits in offspring. OXT
knockdown mice partly mimics, while postnatal ERb expression
or postnatal OXT peptide injection partly ameliorates, prenatal
MPA exposure-mediated social deficits in mouse offspring.
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FIGURE 6 | Postnatal ERb expression partly ameliorates prenatal MPA exposure-mediated social deficits in mouse offspring, while postnatal RORA expression has
no effect. The pregnant dams were treated with either control (CTL) or MPA, and the subsequent offspring received empty (EMP), ERb (↑ERb) or RORA (↑RORA)
lentivirus before then being used for animal behavior tests. (A) MBT tests, n=9. (B) EPM tests, n=9. (C) Ultrasonic vocalization, n=9. (D) Social interaction (SI) test,
n=9. (E, F) Three-chambered social tests for sociability (E) and social novelty (F), n=9. *P < 0.05, vs. CTL/WT group; #P < 0.05, vs. CTL/OXT-/- group. Data were
expressed as mean ± SD.
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Effect of Prenatal Progestin Exposure
Our in vitro study in hypothalamic neurons showed that
transient progestin treatment induces persistent epigenetic
modifications even after removal of progestin and subsequently
dissociates both ERb and RORA from the OXT promoter,
triggering OXT suppression. The in vivo study in mouse
models showed that prenatal MPA exposure induces OXT
suppression, partly contributing to social deficits in mouse
models. In addition, the regular MPA dose for treatment of
women contraception is reported as 150mg (49), and the high
MPA dose for tumor suppression is in the range of 400-2000mg
daily (50), and those doses can be calculated as 2.5-33.3mg/kg
body weight if the average weight of women is considered as
60kg. Given the fact that the practical human exposure time can
be 3 months (first trimester is most sensitive for ASD
development) or more during the pregnancy (10, 51), while the
exposure time of pregnant dams is much less, can only reach to
21 days in maximum, we finally chose MPA dose of 20mg/kg
body weight for prenatal treatment of pregnant dams to mimic
the possible high dose of MPA for human exposure.
Furthermore, our in vitro and in vivo study showed that
progestin exposure induces suppression of ERb and RORA in
addition to OXT suppression, which is consistent with our
previous finding in rat models (7, 8), indicating that ERb may
play an important role in prenatal progestin exposure-mediated
social deficits in mouse offspring. In addition, our results showed
that prenatal progestin exposure triggers social deficits in
rodents, which is consistent with previous reports that
maternal hormone exposure is a potential risk factor for ASD
(52, 53), modulating a neurogenic response and social
recognition during development (54, 55).
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Role of ERb and RORA in OXT Expression
Our in vitro study showed that the OXT promoter has the
potential binding sites of ERb and RORA, which are responsible
for progestin treatment-mediated OXT suppression. This
indicates that RORA may also play a role in OXT expression
that adds to the significant effect of ERb, which is consistent with
previous findings that RORA plays a critical role in embryo
development (35) and is associated with autism development
(56). Interestingly, our in vitro study found that ERb expression
completely, while RORA expression partly, reverses progestin
treatment-mediated OXT suppression. Furthermore, in vivo
mouse study showed that postnatal ERb expression completely,
while RORA expression partly, reverses prenatal MPA-mediated
OXT suppression in hypothalamic neurons. Postnatal ERb
expression can partly ameliorate prenatal MPA exposure-
mediated social deficits in mouse offspring, while postnatal
RORA expression has no effect. The results indicate that the
effect of ERb expression overcomes the effect of RORA
expression, which can be explained with the hypothesis that
ERb expression-mediated SOD2 up-regulation (25) diminishes
progestin exposure-mediated oxidative stress and epigenetic
modifications (26), subsequently restoring the binding ability of
both ERb and RORA on the OXT promoter. In addition, it has
been previously reported that OXT expression is regulated by
estrogen and ERb (57, 58). Sharma et al. has shown that ERb
forms a functional complex with cAMP response element-binding
protein (CBP) and steroid receptor coactivator-1 (SRC1) in the
presence of ERb ligand, and subsequently regulating the OXT
expression through ERE binding site on the OXT promoter (57).
On the other hand, our results show that MPA treatment induces
histone modification on the OXT promoter, resulting in ERb
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FIGURE 7 | Postnatal injection of OXT partly ameliorates prenatal MPA exposure-mediated social deficits in mouse offspring. The pregnant dams were treated with
either control (CTL) or MPA, and the subsequent offspring received either vehicle (VEH) or OXT peptide injection through the third ventricle. The animals were then
used for analysis. (A) The hypothalamic tissues were used for mRNA analysis, n=4. (B) OXT levels in CSF, n=5. (C) OXT levels in serum, n=5. (D–I) Offspring were
used for animal behavior tests. (D) MBT tests, n=9. (E) EPM tests, n=9. (F) Ultrasonic vocalization, n=9. (G) Social interaction (SI) test, n=9. (H, I) Three-chambered
social tests for sociability (H) and social novelty (I), n=9. *P < 0.05, vs. CTL/P-VEH group; ¶P < 0.05, vs. MPA/P-VEH group; #P < 0.05, vs. CTL/P-OXT group. Data
were expressed as mean ± SD.
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dissociation from ERE binding motif on the OXT promoter,
triggering OXT suppression. Furthermore, the progestin-
responsive ERE binding motif identified in this work is different
with previous study (57), and the progestin exposure-mediated
OXT suppression is epigenetic modification-based persistent
suppression. In this study, a novel mechanism for progestin-
mediated OXT suppression through ERb and RORA is reported.

Role of OXT and Social Deficits
OXTR is expressed in a variety of human tissues and is highly
expressed in limbic regions such as the amygdala (12, 20). It has
been reported that the OXT/OXTR signaling pathway plays a
role in regulation of a variety of social behaviors (11, 16) as well
as ASD etiology (18, 19, 59) and is involved with anxiety-like
behaviors (13, 14). Our results showed that OXTR expression
does not change in response to progestin treatment, while OXT
expression is reduced persistently. Furthermore, prenatal OXT
deficiency in OXT knockdown mice partly mimics prenatal MPA
exposure-mediated social deficits, including impaired social
interaction and social ability, but showed no effect on anxiety-
like behaviors, as measured in MBT and EPM tests. Furthermore,
postnatal expression of ERb in the PVN area or through
postnatal OXT peptide injection in the third ventricle partly
ameliorates prenatal MPA-exposure-mediated social deficits;
again, there is no effect on anxiety-like behaviors. This can be
partly explained through the hypothesis that postnatal OXT
manipulation is only effective in certain OXT-responsive areas,
but cannot mimic the whole endogenous OXT-responsive area
(60). However, it is clear that OXT peptides do have some effect
on modulating social behaviors in mouse offspring. On the other
hand, recent placebo-controlled trial using intranasal OXT
therapy showed no significant effect on ASD children and
adolescents, which can be explained because intranasal OXT
administration may not reach sufficient OXT concentrations in
OXT-responsive areas of the central nervous system (61).
CONCLUSIONS

Transient progestin treatment induces epigenetic changes,
triggering persistent OXT suppression. Postnatal ERb
expression in hypothalamic regions or postnatal OXT peptide
injection partly ameliorates postnatal MPA exposure-mediated
impaired social interaction and social abilities in mouse
offspring. We conclude that maternal progestin exposure-
mediated oxytocin suppression contributes to social deficits in
mouse offspring.
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