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Abstract

Metastasis remains the principle cause of mortality for breast cancer and presents a critical

challenge because secondary lesions are often refractory to conventional treatments. While

specific genetic alterations are tightly linked to primary tumor development and progression,

the role of genetic alteration in the metastatic process is not well-understood. The theory of

tumor evolution postulated by Peter Nowell in 1976 has yet to be proven in the context of

metastasis. Therefore, in order to investigate how somatic evolution contributes to breast

cancer metastasis, we performed exome, whole genome, and RNA sequencing of matched

metastatic and primary tumors from pre-clinical mouse models of breast cancer. Here we

show that in a treatment-naïve setting, recurrent single nucleotide variants and copy number

variation, but not gene fusion events, play key metastasis-driving roles in breast cancer. For

instance, we identified recurrent mutations in Kras, a known driver of colorectal and lung

tumorigenesis that has not been previously implicated in breast cancer metastasis. How-

ever, in a set of in vivo proof-of-concept experiments we show that the Kras G12D mutation

is sufficient to significantly promote metastasis using three syngeneic allograft models. The

work herein confirms the existence of metastasis-driving mutations and presents a novel

framework to identify actionable metastasis-targeted therapies.

Author summary

The majority of breast cancer-associated deaths are due to metastatic disease, the process

where cancerous cells leave the primary tumor and spread to a new location in the body,

because metastatic tumors often become insensitive to the same therapies that were suc-

cessful in treating the primary tumor. To date, this complex process has been attributed to

dynamic changes in tumor cell gene expression regulated by epigenetic factors. Interest-

ingly, while genomic alterations are accepted drivers of neoplastic transformation, it is

unknown if such events contribute to metastatic spread. One reason for this is the limited

availability of matched and treatment-naïve primary tumor and metastatic tumor samples

from patients for comparative genomic testing. Here we use two pre-clinical mouse
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models of metastatic breast cancer to test if genomic alterations can drive metastatic

capacity. We identified metastasis-specific events of single nucleotide variation and gene

amplification in well-known oncogenic genes, as well as lesser known factors. We also

show that expression of these mutant factors can drive metastasis of weakly and non-met-

astatic mouse mammary cancer cell lines when implanted in mice. Crucially, by observing

and reporting this untested etiology of metastatic disease, specific genomic events can

now be included in efforts to develop targets for metastasis-specific therapies.

Introduction

Metastatic breast cancer remains the leading cause of cancer-related death among women [1,2].

Of the 1.7 million new cases of breast cancer diagnosed annually worldwide, approximately

30% of patients diagnosed with localized disease eventually present with metastatic lesions in

distant organs. While non-metastatic breast cancer has a 5-year survival rate of 99%, metastatic

disease reduces 5-year survival to only 25% [2]. Therapeutic strategies to treat localized disease,

such as molecular profiling and targeted therapy, have been increasingly successful, but patients

with disseminated disease continue to face much worse outcomes, as metastases are largely

insensitive to such treatments [3,4]. Therefore, to improve outcome for patients with advanced

cancer, specific metastasis-targeted strategies will need to be developed, as will a deeper under-

standing of the unique biological processes that occur during disease progression [4–6].

Despite the importance of this process, relatively little is known regarding somatic genomic

events that drive the metastatic cascade. The most commonly accepted hypothesis of tumor

progression postulates that mutations are acquired over time, resulting in heterogeneous pri-

mary tumor tissue composed of distinct subclones [7]. According to this hypothesis, metastatic

capability is induced when a subclone acquires all of the necessary secondary genomic alter-

ations to intravasate into the circulation, survive in circulation, arrest and extravasate at a dis-

tant site, and colonize that distant organ [7,8]. However, while the primary tumor genetic

heterogeneity predicted by this model is widely accepted, evidence of somatic metastasis-driv-

ing mutations is lacking [9–11]. Large-scale projects such as The Cancer Genome Atlas

(TCGA) [12] have provided a detailed inventory of oncogenic driver mutations, but no equiva-

lent data set currently exists for metastatic disease. Furthermore, data from our lab and the

work of others suggest that metastasis may instead be driven by dynamic epigenetic variation

of gene expression programs [13–17] and there is increasing evidence to favor a model of early

metastatic dissemination, which is inconsistent with the somatic evolutionary hypothesis [18–

20]. However, the difficulty of targeting such dynamic gene expression programs and prevent-

ing dissemination of cells from clinically undetectable tumors obliges a deeper assessment of

the existence of targetable metastasis-driving mutations. Using genetically engineered mouse

models of mammary cancer, we have shown that recurrent single nucleotide variants and copy

number variants, but not gene fusion events, occur spontaneously in the absence of therapeutic

pressures and drive breast cancer metastasis. Of note, we identified recurrent mutations in sev-

eral members of the Ras signaling pathway, and as a proof-of-concept experiment show that

such somatic events can significantly and specifically promote metastasis in vivo.

Results

Unique SNVs are enriched in metastases

To complement ongoing human tissue studies and understand the metastatic genomic land-

scape in a treatment-naïve setting, we performed next-generation sequencing on metastatic
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tissue from pre-clinical mouse models of metastatic breast cancer (S1 Fig). We focused on the

luminal-like MMTV-PyMT (PyMT) and MMTV-Her2 (Her2) genetically engineered mouse

models (GEMMs) of metastatic breast cancer, which model the PI3K activation or theHER2
amplification seen in 42% or 20% of breast cancer patients, respectively [12,21]. The PyMT

model produces palpable primary tumors with a mean latency of 60 days and pulmonary metas-

tases at 100 days in 85% of mice [22]. The Her2 model produces mammary tumors with a mean

latency of 100 days and pulmonary metastases at 200 days in 60% of mice [23–25]. We crossed

the PyMT model (FVB/NJ background) with five mouse strains (FVB/NJ, C57BL/6J, C57BL/

10J, CAST/EiJ, MOLF/EiJ) to more closely recapitulate the genetic heterogeneity of human pop-

ulations. Due to the latency and high variability of the Her2 (FVB/NJ background) model dis-

ease progression compared with PyMT, we only crossed the Her2 model with FVB/NJ for this

analysis; however, sequencing of tissues from additional strains is ongoing (S1A Fig).

To investigate whether somatic mutations might contribute to metastatic progression, we

performed exome sequencing (exome-seq) of 53 and 12 paired primary tumor (PT) and lung

metastases (LM) from the PyMT and Her2 GEMMs, respectively (S1A Fig). Single nucleotide

variant (SNV) analysis was performed using three independent SNV-calling algorithms. Genes

predicted to harbor SNVs by each algorithm were intersected to identify a common set of

potentially mutated genes. We identified 1202 exon SNVs in PT tissue and 1768 in LM tissue

compared with normal strain-specific gDNA sequence (S2A and S2B Fig).

Candidate metastasis-driving SNVs were defined by two criteria: 1) enrichment in meta-

static tissue but not in primary tumor and 2) presence within the metastatic seeding cell. To

identify SNVs likely present in the metastatic seeding cell, only those SNVs found in at least

60% of the metastatic lesion (variant allele frequency between 0.3 to 0.5) were considered as

potential metastasis-driver events. This cut-off accounts for the infiltration of non-tumor cells

but still requires a heterozygous mutation to be present in at least 60% of the cells within the

lesion. The comparison of LM sequences to matched PT identified 196 SNVs in 164 genes

common to all 3 SNV calling algorithms (Figs 1 and 2, S2C Fig and S1 Table). The 164 genes

were then screened to identify recurrently mutated codons. Five genes (Kras, Shc1, Ccni,
Mtch2, Snrk) were identified with recurrent mutations in the same codon, and again were

common to all three algorithms (S1 Table, Fig 3A–3D).

The SNV calls were then analysed for genes that were recurrently mutated in different

codons. A total of 147 genes were identified with mutations observed in only a single animal

by all three algorithms. Twelve genes were identified as having been recurrently mutated in

different codons in independent animals (S1 Table). Finally, to prioritize genes for future anal-

ysis, RNA sequencing (RNA-seq) data was examined to validate SNVs in tissues analyzed by

both analyses. An additional instance of the Shc1mutated codon was identified, and a poten-

tial recurrent mutation in Rfx8 was found (S1 Table).

Two genes, Kras and Shc1, had recurring metastasis-specific mutations in independent ani-

mals of the PyMT cohort (Fig 3A and 3C). Two PyMT animals carried the oncogenic activat-

ing KrasG12D mutations (Fig 3A), and an additional three PyMT animals carried different

nucleotide substitutions all within the codon of proline 561 or 451 (isoform a or b respectively)

of Shc1, resulting in P561S, P561T, or P561H (Fig 3C). For those samples with gDNA or RNA

still available (4 out of 7), Sanger sequencing validated the presence of Kras and Shc1 SNVs in

the original metastatic tissues analyzed by exome- and RNA-seq, and in some cases in addi-

tional metastases from the same animal (S2 Table). The presence of recurrent metastasis-

enriched SNVs in several animals in the absence of therapeutic pressures suggests that specific

coding mutations may play a fundamental role in driving metastasis.

To expand the search for additional genes with recurrent metastasis-enriched mutations,

we screened RNA-seq data from a cohort of 42 matched primary tumors and metastatic pairs
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from 40 PyMT and 2 Her2 animals (S1A Fig). The RNA-seq data included 17 PyMT animals

also analyzed by exome-seq plus an additional 25 independent animals (2 Her2 and 23 PyMT)

(S1A Fig). First, the 164 genes with high-probability SNVs identified by exome-seq were

screened against the RNA-seq data to validate exome-seq SNV predictions and identify

Fig 1. Metastasis-specific SNVs can be found at high allele frequency in the PyMT model. Circos plots showing names and chromosomal location of genes

identified by exome- and RNA-seq with metastasis-specific SNVs (orange: recurrent single strain, blue: recurrent in both strains, and black: singly mutated)

from the PyMT model.

https://doi.org/10.1371/journal.pgen.1008743.g001
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additional animals with mutations in these genes (S1 Table and S2 Table). For animals used in

both analyses, the predicted SNVs identified by exome-seq were validated by the RNA-seq

data given the gene was transcribed, suggesting that the exome-seq filtering criteria correctly

identified bona fide SNVs. One additional metastasis-enriched Kras mutation (Q61R; Fig 3B)

and an additional mutation in Shc1 P561 (P561A; Fig 3D) were observed in two animals from

the RNA-seq-only cohort. Unexpectedly, in addition to a single metastasis-enriched Ctnnb1
oncogenically-activating SNV (S45P) [26] observed in exome-seq data, RNA-seq data revealed

three more independent animals possessing metastasis-specific Ctnnb1 S45F SNVs and

another two with Ctnnb1 point mutations that are also often observed in human tumors

(K335N, N387K) (S1 Table). Sanger sequencing validated the presence of the SNVs for Ctnnb1
exome-seq S45P and RNA-seq N387K mutations (S2 Table). Insufficient sample material pre-

vented Sanger validation of the remaining RNA-seq-identified SNVs. Overall, for samples

Fig 2. Metastasis-specific SNVs can be found at high allele frequency in the Her2 model. B-Circos plots showing names and

chromosomal location of genes identified by exome- and RNA-seq with metastasis-specific SNVs (orange: recurrent single strain,

blue: recurrent in both strains, and black: singly mutated) from the Her2 model.

https://doi.org/10.1371/journal.pgen.1008743.g002
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with available material, the rate of validation by Sanger sequencing for metastasis-specific

SNVs was approximately 80% (8 out of 10) (S2 Table and S1 Fig). Finally, Sanger sequencing

of matched pairs of tumors and metastases from an additional 22 animals not used for RNA-

Fig 3. Metastasis-specific mutations are recurrent and stratify patient outcome. IGV screen shots showing allele frequency in the blue

and red boxes, representative SNV reads, mutated codon letter, tissue type, and mouse strain. A, Exome-seq identified a C (blue) to T

(red) SNV within Kras resulting in the G12D amino acid substitution in metastases from two C57BL/6J x PyMT animals. B. RNA-seq

identified a T (red) to C (blue) SNV within Kras resulting in the Q61R amino acid substitution in a metastatic lesion from one FVB/NJ x

PyMT animal. C, Exome-seq identified C (blue) to T (red) and C (blue) to A (green) SNVs in metastases from three animals (FVB/NJ,

CAST/Ei (2 mets from 1 mouse with same SNV), and C57BL/6J x PyMT) resulting in the P561S/T or H amino acid substitutions,

respectively. D, RNA-seq identified a C (blue) to G (orange) SNV resulting in the P561A amino acid substitution in one FVB/NJ x PyMT

animal. E. Kaplan-Meier plots generated using METABRIC for the top six genes identified with metastasis-driver SNVs by exome-seq in

mice that most significantly stratify patient survival when altered in primary tumor tissue (blue = no CNV, red = CNV present). PT,

primary tumor; Met, metastasis.

https://doi.org/10.1371/journal.pgen.1008743.g003
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or exome-seq was used to survey for 11 of the SNVs identified by exome- and RNA-seq. This

analysis identified yet another Shc1 P561H mutation, but no additional samples containing the

other 10 mutations were found. Taken together, these data indicate that the putative metasta-

sis-driving recurrently mutated genes are mutually exclusive, as we did not observe the pres-

ence of mutations in two or more of the recurrently mutated genes within a single metastasis.

Copy number variation drives metastasis and reduces overall survival

among human breast cancer patients

Using the METABRIC sequencing dataset of human breast cancer primary tumors, we

assessed the relevance to human disease of genes possessing metastasis-enriched SNVs identi-

fied in the PyMT and Her2 mouse models. This analysis revealed that many genes possessing

SNVs in our preclinical mouse models were amplified in human tissue, and 18% (23 out of

123 human orthologs) of such alterations were significantly associated with poor patient out-

come (Fig 3E, S4 and S5 Figs).

Since human primary tumors possessed gene amplification or deletion in addition to point

mutations, we analyzed the PyMT primary tumor/metastasis exome-seq pairs for potential

copy number variations (CNVs) that may contribute to metastatic spread. To determine allele-

specific gain or loss we used only those samples generated from progeny of the FVB/NJ-PyMT

outcross, as their genomes contained an FVB and non-FVB (C57BL/6J, C57BL/10J, CAST/EiJ,

or MOLF/EiJ) allele that could be readily differentiated. Therefore, pure FVB/NJ-PyMT and

FVB/NJ-Her2 tumor/metastasis pairs were not analyzed due to the lower confidence of CNV

calling on a homozygous genetic background. Based on these criteria, we performed CNV

analysis using exome-seq data from 30 of the primary tumor/metastasis pairs in our cohort.

We first identified CNVs in primary tumors and metastases compared to normal, and then

analyzed this data for metastasis-specific CNVs (S3–S7 Tables). Amplification and deletion

events were primarily restricted to the F1 animals of crosses with C57BL/6J and MOLF/EiJ,

with recurrent metastasis-specific CNVs on chromosomes 2, 4, 9, and 10 (Fig 4A). Examina-

tion of the putative CNVs suggested that the C57BL/6J alleles were specifically lost in the F1

hybrids, while FVB/NJ alleles were under-represented in most of the CNVs in the MOLF/EiJ

F1 hybrids. In addition, the chromosome 4 and 9 CNVs overlapped with regions of the

genome we previously demonstrated to harbor inherited metastasis susceptibility genes [27–

29], suggesting these genomic intervals may contain important metastasis-associated factors.

The Genomic Regions Enrichment of Annotations Tool (GREAT) [30] was used to identify

the genes associated with recurrent metastasis-specific CNVs. 371 genes were associated with

recurrent regions of CNV in PyMT metastatic lesions, and 46 of these genes possessed CNVs

in two or more outcross strains (S8 Table and S6 Fig). The METABRIC dataset was then

screened again to assess if CNVs within any of the 46 genes were significantly associated with

breast cancer patient survival. The amplification of approximately 17% (8 out of 46) of the

genes queried was significantly associated with worse patient outcome, including EBAG9 and

PKHD1L1, located on mouse chromosome 15, and PEX2, and ZFHX4, located on mouse chro-

mosome 2 (Fig 4B), which are all located on human chromosome 8 between q21.13 and q23.2.

This analysis reveals that in addition to metastasis driver SNVs, metastatic cells may also

acquire specific CNVs to support their spread to a secondary site.

Metastases can originate from multiple clones in the MMTV-PyMT model

Curation of the RNA-seq data revealed several instances of discordant SNVs between indepen-

dent metastases within the same animal (e.g., Ctnnb1 K335N in animal 974). The presence of a

high probability SNV in only a subset of metastatic lesions within an animal may be due to the
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Fig 4. Metastasis-specific CNVs in the PyMT and Her2 mouse models. A. Circos plot representing metastasis-specific genomic alterations. The outermost track

shows the mouse chromosomes and established G-banding. The remaining five inner tracks show deleted (and amplified for MOLF/EiJ only) genomic regions in F1

PyMT mice resulting in enrichment of the non-FVB/NJ allele (red) or enrichment of FVB/NJ allele (blue). From the outermost track the strain order is as follows:
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acquisition of the mutation early during the establishment of individual metastases or meta-

static seeding by multiple primary tumor subclones within an animal. To address this, exome-

seq was performed for primary tumors and matched metastatic tissue samples from five addi-

tional PyMT animals. Hierarchical clustering was then performed using both SNV and CNV

analysis of those sequenced tissues. This analysis revealed that the metastases from three of the

five animals (10204, 10245, and 10418) were highly related and likely originated from the same

primary tumor subclone (Fig 5A and 5B). In contrast, two of the mice (10507 and 10548) pro-

duced heterogeneous metastases (Fig 5 and 5B), indicating that these nodules may have origi-

nated from different primary tumor subclones.

Fusion genes are not enriched in metastases

In a large-scale analysis of 560 human breast cancer samples, Nik-Zainal et al. discovered fre-

quent variation in genomic structure in primary tumor tissue [31]. To identify any potential

targetable gene fusion events that may contribute to metastatic progression, we analyzed the

RNA-seq data (S1 Fig) using the deFuse algorithm to identify discordant paired-end align-

ments and thus putative gene fusion events specific to metastatic tissue [32]. To reduce false

positive results, putative alternative splice events from adjacent genes were excluded from the

MOLF/EiJ amplification, MOLF/EiJ deletion, CAST/EiJ deletion, C57BL/6J deletion, C57BL/10J deletion. B. Kaplan-Meier plots generated using METABRIC for six

out of eight genes identified as metastasis drivers by exome-seq CNV analysis in mice that significantly stratify patient survival when altered in primary tumor tissue

and reside on human chromosome 8 (blue = no CNV, red = CNV present).

https://doi.org/10.1371/journal.pgen.1008743.g004

Fig 5. Metastases can originate from multiple primary tumour subclones. Heat maps for hierarchical clustering of genomic a. CNV and b. SNV fingerprints from

five metastases isolated from five mice and compared to matched primary tumors. Chromosomes are represented along the Y axis, and sample names across the X

axis. Colored bands across the top of the heatmap indicate mouse ID (Blue: 10204, Green: 10245, Yellow: 10418, Red: 10507, burgundy: 10548). Within the heat

maps, red indicates amplification (A), or presence of an SNV (B), and blue indicates a deletion (A).

https://doi.org/10.1371/journal.pgen.1008743.g005
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analysis to eliminate rare transcriptional read-through products. Forty-four putative fusion

transcripts were detected in the primary tumors by this analysis. Seventy-one fusion tran-

scripts were detected in the metastases, with 17 fusions in common with the primary tumors

and 54 unique to the metastatic lesions. The 54 metastasis-specific putative fusion events

involved a total of 85 genes. Sixteen genes were associated with putative fusion events in more

than one animal or involved genes with multiple fusion partners (Fig 6A). However, manual

curation of the putative recurrent fusion events revealed that 7 of the 15 breakpoints occurred

in regions of repetitive elements within introns or UTRs, suggesting potential alignment arte-

facts. Moreover, for the highly expressed genes (Csn3, Trf), the variant transcripts were repre-

sented at<1% of the total read count, suggesting that these transcripts were either not

required for maintenance of the metastatic lesions, were rare aberrant transcripts, or were arte-

facts of the RNA-seq/deFuse analysis.

Additionally, we performed 10x whole genome sequencing (WGS) on 20 matched pairs of

primary and metastatic lesions from FVB/NJ-PyMT x MOLF/EiJ and FVB/NJ-PyMT x CAST/

EiJ animals. This data set was comprised of tissue from 16 of the animals represented in the

exome-seq dataset and 4 additional animals (S1A Fig). MOLF/EiJ and CAST/EiJ F1 animals

were used for this analysis as their genomes are significantly polymorphic compared to FVB/

NJ, allowing for allele-specific identification. SNVs predicted by exome-seq were confirmed in

all of those animals also included in the WGS analysis (S2 Table). Putative coding-related

structural variants such as insertion-deletions (indels), inversions, and translocations were

identified using the BreakDancer algorithm [33] by limiting the analysis to within transcripts

Fig 6. Metastasis-specific structural variants do not drive metastasis in pre-clinical breast cancer mouse models. A. Circos plots representing deFuse2 analysis of

RNA-seq data for the 41 matched primary and metastatic PyMT tumors.B. BreakDancer algorithm analysis of 10x WGS data from 20 matched pairs of primary and

metastatic lesions from FVB/NJ PyMT x MOLF/EiJ and FVB/NJ PyMT x CAST/EiJ animals. For both plots, the names of the genes associated with predicted structural

variations are listed in blue in the outermost track by their corresponding chromosome numbers, which are found in the second track. The inner loops represent

breakpoints within repetitive elements at both sites (pink loops), repetitive element at one site (tan loops), or within single copy sequence at both sites (blue loops).

https://doi.org/10.1371/journal.pgen.1008743.g006
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and requiring a minimum of three variant reads per sample (S9 Table). The resulting gene

fusions were predominantly intrachromosomal and tended to cluster within regions of gene

families, suggesting potential alignment artefacts. To reduce this potential artefact, a threshold

of a minimum of 10 kb between putative fusion partners was introduced, resulting in 18 puta-

tive fusion events involving 31 genes observed in either more than one animal or with multiple

fusion partners (Fig 6B). No overlap between the putative structural variants observed from

the deFuse and BreakDancer analysis was observed. All structural variations predicted by

BreakDancer under these conditions were intrachromosomal, and 11 of the 18 predicted

recurrent structural variants occurred between 2 members of the same gene family. Of the

remaining seven, two of the remaining predicted structural variation breakpoints were within

repetitive elements at both sites (Fig 6B, pink loops). Two additional predicted structural varia-

tions contained a repetitive element at one of the breakpoints (Fig 6B, tan loops), while three

were within single copy sequence at both sites (Fig 6B, blue loops). These results suggest that

structural variation resulting in fusion transcripts does not play a significant role in the meta-

static progression of the MMTV-PyMT mammary tumor model.

Single nucleotide variants drive metastasis

The presence of recurrent oncogenic mutations in Kras and Ctnnb1, in addition to the previ-

ously unreported recurrent mutations in Shc1, are consistent with a potential metastasis-driv-

ing function of these genes in the PyMT mouse model. Interestingly, previous analysis of a

panel of metastatic mouse mammary tumor cell lines revealed recurrent mutation of Kras in

several cell lines [34]. Moreover, SNVs within KRAS in the primary tumors of the METABRIC

data set, although rare (0.6% of patients), were significantly associated with poor survival in

human breast cancer (Fig 7A and 7B). CTNNB1 and SHC1 were amplified (0.3% and 22% of

patients, respectively), but were not included in the targeted sequencing performed on 173

cancer-related genes in METABRIC. Therefore, the mutational burden for these genes in

patient primary tumors within this data set is unknown. As METABRIC does not contain

sequencing data from metastatic tissue, differential gene expression analysis of matched PDX

primary mammary gland tumor and lung metastases from a recent study of PDX models [35]

was examined by Ingenuity pathway Analysis (IPA). This analysis revealed that in 2 out of the

3 PDX models, KRAS signalling was significantly elevated in metastatic PDX tissue relative to

primary tumor (S10–S12 Tables), consistent with the mutational activation observed in the

exome-sequence analysis described here. Furthermore, CTNNB1 signalling was also signifi-

cantly altered in 2 of the 3 PDX models, however it was elevated in 1 and decreased in another

(S10–S12 Tables). We thus focused on Kras as a potential breast cancer metastasis driver gene

and performed a proof-of-concept experiment to determine if Krasmutation in the primary

tumor alters metastatic potential. Wildtype (WT) or KrasG12D constructs were expressed in

two independent KrasWT mouse mammary tumor cell lines: 4T1, which is derived from a

spontaneous BALB/c mammary tumor, and MET1, derived from the MMTV-PyMT model

(S7A Fig) [34]. Kras WT-, KrasG12D-, or control empty vector (EV)-transduced cells were

implanted orthotopically in syngeneic mice and primary tumor weight and the number of pul-

monary metastases were assessed after four weeks. Expression of Kras WT and G12D

increased tumor burden compared to EV in the MET1 line and a small but non-significant

increase in tumor growth was also observed with the 4T1 line (Fig 7C and 7F). Therefore, to

more accurately assess metastatic capacity, the number of metastatic nodules (Fig 7D and 7G)

was normalized to primary tumor weight for each mouse. This analysis revealed a significant

increase in metastatic capacity of Kras G12D-expressing cells compared to both Kras WT and

EV cells in both lines (Fig 7E and 7H). To further test how modulation of Kras G12D affects

PLOS GENETICS The genomic landscape of metastasis in treatment-naïve breast cancer models

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008743 May 28, 2020 11 / 27

https://doi.org/10.1371/journal.pgen.1008743


Fig 7. The Kras G12D mutation drives breast cancer metastasis. A. METABRIC sample data showing that KRAS is altered in 2.6% and mutated in 0.6% of

primary tumors from breast cancer patients. B. Kaplan-Meier analysis of patients with SNVs (red) in KRAS vs (wildtype) WT (blue). C-K. Primary tumor

weights, numbers of metastases, and metastases normalized to primary tumor weight from orthotopic injection of 4T1 cells transduced with empty vector

(EV), KrasWT, or Kras G12D (C-E), MET1 cells transduced with EV, KrasWT, or Kras G12D (F-H), or 6DT1 cells transfected with siControl or siKras
(I-K). Each assay was performed twice with 10 mice per group (red and blue points), box whiskers represent min and max points, box boundaries represent

the 25th to 75th percentiles, and the horizontal line within the box represents the median. p<0.05 = significant.

https://doi.org/10.1371/journal.pgen.1008743.g007
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metastatic potential, we utilized the 6DT1 mouse mammary cancer cell line that bears an

endogenous homozygous Kras G12D mutation [34]. Despite the short-lived effects of siRNA,

knock down of Kras in 6DT1 cells reduced metastasis to the lungs in spontaneous metastasis

assays compared to a non-targeting siRNA control (Fig 7I–7K and S7B Fig). This result was

significant before controlling for primary tumor weight, and trending after normalization

(p = 0.1) (Fig 7J and 7K). These results are consistent with a function for constitutively acti-

vated Kras as a metastasis driver gene in breast cancer, as well as significant evidence for the

existence of spontaneous metastasis-driving somatic mutations.

Several studies have reported an association between oncogenic Kras expression, and a

more mesenchymal-like phenotype associated with breast cancer progression [36–38]. Using

the available RNA-seq data from two of the PyMT mice with spontaneous metastasis-specific

KrasG12D mutations, we assessed the mRNA levels of several epithelial-to-mesenchymal

transition (EMT)-related factors in the metastatic nodules [39]. There was no difference in the

expression of these factors between tissues with WT or mutant Kras (S8A Fig). Additional

RNA-seq was then performed on the 4T1 Kras WT, G12D, and EV cells. Again, no difference

in expression of EMT-related factors was observed between the three cell lines (S8B Fig).

These data suggest that a potentially novel mechanism, independent of EMT, may be responsi-

ble for the KrasG12D metastasis-driving function observed in this study.

Discussion

Breast cancer metastasis is the primary cause of breast cancer-related mortality, and due to the

disparate biology of metastatic lesions compared with the original tumor there are few options

for clinical intervention [4,5,40–43]. In this study, we hypothesized that somatic evolution of

the tumor cell genome may drive metastasis and could also provide novel therapeutic targets.

However, no robust sequencing datasets of paired treatment-naïve primary and metastatic

tumor samples that are large enough to identify recurrent mutations or genomic events cur-

rently exist. A key obstacle in this progress is the difficulty of obtaining appropriate tissue sam-

ples. Metastatic lesions are typically not surgically removed, and data obtained from resected

lesions are often confounded by the application of neo-adjuvant and adjuvant therapies, which

may select for events associated with treatment resistance rather than metastasis [44]. Our uti-

lization of mouse models in the present study overcomes these limitations and serves as a

hypothesis generation and testing platform for subsequent validation and characterization in

human experimental systems.

Here we have performed exome, whole genome, and RNA sequencing on a total of 94 pairs

of treatment-naïve primary and metastatic tumors [21,45] of the luminal-like PyMT and Her2

GEMMs. Moreover, sequencing of matched primary tumors and metastases from five addi-

tional MMTV-PyMT animals was also performed. Several important observations were made

from these studies. First, similar to human breast cancer [40,46–48], both mono- and poly-

clonal seeding of metastases was observed in MMTV-PyMT animals. MMTV-PyMT animals

develop multiple primary tumors in independent mammary glands, so it is possible that the

polyclonal metastases arise from independent tumors, rather than different tumor subclones,

as is the case in human breast cancer. Resolution of this question, however, would require

comprehensive sequencing of all of the tumors from individual animals, which is beyond the

scope of this study.

The second important observation from this study was the identification of multiple recur-

ring metastasis-enriched SNVs. The recurrence and high enrichment of these SNVs within

metastatic lesions strongly suggest roles as metastasis drivers. The vast majority of the metasta-

sis-enriched SNVs were validated by orthogonal sequencing methods, 96% (47 out of 49; S2
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Table), indicating that the analytical strategy was robust. The fact that MMTV-PyMT animals

develop multiple primary tumors is not likely to confound this interpretation, since the metas-

tasis-enriched SNVs did not appear as primary tumor drivers in any of the animals assayed.

Many of the mutated genes were also found to be associated with poor outcome in human

breast cancer data sets, consistent with a potential role in metastatic breast cancer. Moreover,

we performed a proof-of-concept experiment to show that the recurrent Kras G12D mutation

observed in metastatic lesions from two PyMT mice increases the metastatic efficiency of

mouse mammary cancer cell lines in an orthotopic implantation model.

Importantly, the samples sequenced in this study are from therapy-naïve animals. Recent

large-scale sequencing efforts focused on metastatic lesions and matched normal tissue have

become available for human breast cancer patients. However, several of these studies were per-

formed primarily with small targeted gene sets [49,50]. In addition, the vast majority of the

patient samples in these studies [49–53] had previously been exposed to systemic treatment,

which was found to be a major contributor to tumor mutational burden [51] and to metastasis

mutational burden [49]. Moreover, all of these studies have been performed on heterogeneous

human populations, with different primary tumor driver mutations on diverse genetic back-

grounds that likely select for different metastatic driver mutations. Taken together, these cave-

ats suggest that very large human sample sets may be necessary to begin to identify recurrent

metastasis-driver mutations in human patients.

The use of therapy-naïve, genetically reproducible animals with defined primary tumor

drivers provides an important complementary platform to identify somatic mutations that

contribute to metastatic progression. This may be particularly important if, as we observed in

the mouse models presented here, no single putative metastasis driver is mutated at a high fre-

quency. This result suggests that there may be many metastasis drivers, each contributing a

small fraction of the overall metastasis-driving function within a population. We did, however,

observe several SNVs located in genes functioning within the Ras signaling pathway. These

SNVs were observed in ~15% (14 (3-Kras, 5-Shc1, 6-Ctnnb1) out of 94) of the animals in this

study, which implicates the Kras pathway as an important metastasis signaling axis in this

model. The KRASG12D mutation is a well-studied oncogenic driver leading to the develop-

ment of aggressive lung and colorectal cancers [54–56]. However, KRAS is not considered a

driver of human breast cancer development and its metastasis-specific recurrence in this

model was unexpected [57]. Additionally, the exact role of the Shc1 P561X mutation is

unknown, but the localization of this mutation to the SH2 domain of Shc1 is consistent with

activating function and warrants further investigation [58].

While KRAS is not considered a major driver of breast cancer, recent work implicates this

factor as an important player for some subtypes. In 2001, D’Cruz et al. described sustained

oncogenic transformation following spontaneous mutagenesis of Kras2 in an inducible c-Myc

mammary tumorigenesis model [59]. In 2019, Campbell et al. reported spontaneous alter-

ations in Kras expression and activity in the aggressive ERα+ NRL-PRL postmenopausal

murine model, that drove neoplastic transformation [60]. Additionally, the KrasQ61H muta-

tion was identified in primary tumors from a triple negative murine model by Liu et. al, who

also report mutations and amplifications of KRAS and the KRAS pathway in 11% and 93%,

respectively, of triple negative breast cancer patients in the TCGA data set [61]. Hollern et al.

recently reported that murine mammary tumors with EMT histopathology, which are similar

to human claudin-low breast tumors, also showed increased activity of KRAS signaling [38].

Interestingly, we did not observe any mesenchymal shift in gene expression in any of the

mutant Kras tissues analyzed. However, we did also observe KRAS activation using pathway

analysis of RNA-seq data collected from metastatic PDX lung tumors compared to matched

primary mammary gland tumors [35], suggesting that KRAS pathway activation may be an
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important mechanism for at least some breast cancer patients. While these studies bring to

light a potentially important role for KRAS signaling in breast cancer initiation, the work pre-

sented herein describes the first instance of Krasmutagenesis as a spontaneous driver of mam-

mary tumor metastasis.

The SNV data reported here also suggest that there may be many ways within metastasis-

associated pathways to activate a pro-metastatic function. Again, the identification of Kras and

Ctnnb1 as recurrently mutated metastasis drivers was unanticipated due to the lack of associa-

tion with primary tumour biopsies of human breast cancer. The presence of known, well-stud-

ied activating mutations in these genes within metastasis-founding cells, however, strongly

implicates the KRAS-CTNNB1 signaling axis as a critical component of metastatic progres-

sion, at least in the PyMT model system. The activation of the CTNNB1 pathway has been pre-

viously linked to breast cancer progression, and thus our data corroborates the importance of

this network [62] and suggests an additional therapeutic opportunity to intervene in metastasis

establishment and progression.

We have also identified recurrent metastasis-specific regions of CNV that may contribute

to metastatic spread. Several studies have shown divergent CNV between primary and meta-

static tissue from small patient cohorts [63–66], and through our use of the treatment-naive

PyMT animal model we have further shown that these genomic alterations occur through nat-

ural tumor progression and can drive metastasis. Additionally, our data identified several

genes associated with metastasis-specific CNV that, while distributed across the mouse

genome, are all localized within human chromosome 8q. Amplifications on chromosome 8q

are associated with tumor progression and worse outcomes in many cancer types, suggesting

that our analysis appropriately captures genetic alterations observed in human patients [67–

72]. This association suggests that our strategy for the identification of metastasis-driving

CNVs aligns with human biology, revealing a robust tool for the identification of clinically rel-

evant metastatic drivers. We anticipate that with additional pairs, strain-specific and driver-

specific metastasis-driver CNVs will be distinguished.

Understanding the etiology of metastasis has been an important goal in cancer research for

many decades. The accumulation of chromosomal aberrations during tumor progression led

Nowell to propose the progression model, where tumor cells evolve over time until a subclone

acquires all of the somatic events necessary to confer metastatic potential [7]. However, cells

derived from metastatic lesions were found to be no more efficient at metastasizing than pri-

mary tumor cells, suggesting that additional, potentially transient events are critical for acqui-

sition of metastatic capacity [73]. More recently, the finding that bulk primary tumor gene

expression can stratify breast cancer patient outcome [74] has led to the suggestion that meta-

static capacity is encoded by the primary tumor drivers [75]. The results of our study are most

consistent with the progression model originally proposed by Nowell [7], although it does not

rule out important combined contributions of the transient epigenetic effects, microenviron-

ment, and selection as proposed by Weiss in 1979 [73]. The presence of metastasis-specific

driver mutations may also, in part, contribute to the difference in response to therapeutics

observed between primary tumors and metastases, both in animal models [76] and in the

clinic, and suggests different therapeutic strategies targeting metastasis drivers may improve

patient outcomes.

In summary, by performing a survey of the genomic landscape of metastatic progression in

two preclinical mouse models, we have for the first time identified recurrent, clinically relevant

spontaneous mutations in genes and pathways that drive metastasis. Breast cancer patients

with metastatic disease have an average 5-year survival of only 25%, underscoring the urgent

need for more comprehensive molecular analyses of metastases. By using the strategy outlined

here, the continued characterization of preclinical mouse models of metastasis will provide
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further insight into the associations between clinical subtypes, primary tumor drivers, and the

now newly confirmed metastasis-driving genomic alterations, ultimately creating new oppor-

tunities for the generation of metastasis-targeted therapies.

Methods

Ethics statement

The research described in this study was performed under the Animal Study Protocol LCBG-

004 and LPG-002, approved by the National Cancer Institute (NCI) Animal Use and Care

Committee. Animal euthanasia was performed by cervical dislocation after anaesthesia by

Avertin.

Genetically engineered mouse models

FVB/N-Tg(MMTV-PyVT)634Mul/J (PyMT) and FVB/N-Tg(MMTVneu)202Mul/J (Her2)

male mice were obtained from Jackson Labs. Male PyMT mice were crossed with female wild

type FVB/NJ, MOLF/EiJ, CAST/EiJ, C57BL/6J, and C57BL10/J mice also obtained from Jack-

son Labs. Male Her2 mice were crossed with female wild type FVB/NJ mice. All female F1

progeny were genotyped by the Laboratory of Cancer Biology and Genetics genotype core for

the PyMT or Her2 gene and grown until humane endpoint. Mice were euthanized using intra-

peritoneal Avertin to anesthetize followed by cervical dislocation. All primary tumors gener-

ated by one animal were isolated weighed, randomly sampled, and combined into a single

cryovial. Metastatic nodules, and normal (tail) tissue were also isolated immediately following

euthanasia and snap frozen in liquid nitrogen. Tissue samples were then stored at -80˚C.

gDNA isolation

The combined primary tumor tissue from one mouse was ground on dry ice and small frag-

ments were taken for gDNA isolation. Whole metastases were used for gDNA isolation. Tissue

was lysed using Tail Lysis Buffer (100 mM Tris-HCl pH 8.0, 5 mM EDTA, 0.2% SDS, 200 mM

NaCl, 0.4 mg/ml proteinase K) at 55˚C overnight. Samples were then placed in a shaking

(1400 rpm) heat block for 1 hour at 55˚C. RNaseA (Thermo Fisher Scientific) was added (2

mg/ml final) and lysates were incubated on the bench for 2 minutes. gDNA was then isolated

using the ZR-Duet DNA/RNA MiniPrep kit (Zymo Research).

Sequencing and analysis

All analyses were carried out on the NIH Biowulf2 high performance computing environment.

All analyses were performed using software default parameters if not otherwise specified.

Exome sequencing

Exome sequencing was performed by the NCI Center for Cancer Research (CCR) Genomics

Core and the NCI Illumina Sequencing Core. Exome libraries were prepared by the Genomics

Lab using Agilent SureSelectXT Mouse All Exon target enrichment kit. Libraries were bar-

coded and pooled before sequencing on an Illumina HiSeq3000 or HiSeq4000 to an average

depth of 40x. Samples were trimmed of adapters using Trimmomatic software. The trimmed

reads were aligned to the mm10 reference mouse genome using BWA (0.7.17) or Bowtie (2–

2.3.5.1) mapping software. SAMtools (1.9) Mpileup, GATK (3.8–1) Mutect2, and Strelka

(2.7.1) were used to identify potential variants and the variants were filtered for known poly-

morphisms from mgp.v5 (http://ftp-mouse.sanger.ac.uk/current_snps/mgp.v5.merged.snps_

all.dbSNP142.vcf.gz) and variants with Phred-scaled quality scores of< 30 were removed.
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Annotation was performed by Annovar (2018-04-16). High probability SNVs were identified

after manual curation of the data and select SNVs were validated by Sanger sequencing at the

NCI CCR Genomics Core. Copy number variation was performed for the F1 tumors using the

R (3.6.0) packages BubbleTree (2.15.0) and cn.mops (1.31.0), followed by filtering for metasta-

sis-specific events and manual curation. We used BubbleTree to do allele-specific and strain-

specific copy number analysis, which required genotype data, and cn.mops for general copy

number analysis, which doesn’t require F1 cross experiment data. The recurrent CNVs were

defined as CNVs present in multiple samples.

Whole genome sequencing

Library preparation was performed using the TruSeq DNA Sample Prep kit FC-121-1001.

Samples were barcoded, pooled, and sequenced on an Illumina HiSeq4000 to a depth of ~10x

per sample. Samples were trimmed of adapters using Trimmomatic (0.39) software before the

alignment. The trimmed reads were aligned with the mm10 reference mouse genome using

BWA alignment. SNV calls were performed as described for exome sequencing. Structural var-

iation analysis was performed using BreakDancer (1.4.5), followed by filtering for metastasis-

specific events and manual curation. For breakpoints located within or near a gene, we filtered

structural variations (SVs) by limiting the breakpoint within 10 kb of a gene. CNV analysis

was performed using cn.mops as described for exome sequencing.

RNA sequencing

RNA fusion transcripts were identified using deFuse (0.8.1) software. We used the filtered

fusion transcripts. The putative fusion transcripts were further analyzed by comparing with

WGS BreakDancer data to identify fusion transcripts that were supported by genomic changes.

Mutant alleles from RNA-seq data were identified using SAMtools (1.9). The sequence reads

in pileup format were generated using SAMtools mpileup for BAM files spanning the SNVs.

We extracted the reference allele and mutant allele counts for each sample using a custom-

built Perl (v5.24.3) script and R (3.6.0) script.

Comparative expression analysis of EMT transcripts

Using Partek Flow Genomic Analysis Software, normalized RNA-seq counts for EMT factors

were compared between Kras WT and KrasG12D metastatic nodules, or between 4T1 cells

transduced with empty vector, KrasWT, or KrasG12D using gene-specific analysis (GSA).

Within the Partek Flow GSA report each factor was identified individually by searching with

the official gene symbol, and then dot plots were created. Gene symbols used in search

included Kras (for GEMM metastatic nodules only), Fn1, Epcam, Cdh1, Vim, Zeb1, Snai1, and

Snai2. Factors that were not expressed did not produce dot plots following the Partek Flow

GSA report search. Only those factors that were expressed produced dot plots that were then

included in the final figure.

Hierarchical clustering/heatmap and PCA analysis

CNV data were generated from cnmops as described in the exome sequencing section and

were further processed using the DiffBind R package to generate a data matrix for the 25 lung

metastases. Each genomic region is 4000 bp, which is coded as -1, 0, or 1 for CN loss, neutral,

or gain, respectively. Genomic regions were filtered by the CN alterations presented in at least

2 samples. Similarly, SNV data were also filtered by the presence of SNVs in at least 2 samples.
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SNVs are coded as 0 or 1 for the absence for presence of mutations. Heatmap plots were gener-

ated using the ComplexHeatmap package.

Sanger sequencing

Polymerase chain reaction (PCR) was performed using AmpliTaq Gold polymerase

(Thermo Fisher Scientific) according to the manufacturer’s instruction. PCR products were

then purified by gel electrophoresis using the QIAquick Gel Extraction Kit (Qiagen). The

Sanger reaction and electrophoresis for the forward and reverse sequences of each purified

amplicon was performed by the NCI CCR Genomics Core. Sequences were manually assessed

for single nucleotide variations using Geneious software. If the original sample was RNA,

then cDNA was synthesized by reverse transcription using the iScript cDNA Synthesis Kit

(Bio-Rad).

Genomic Regions Enrichment of Annotations Tool (GREAT) analysis

BED files containing the recurrent regions of genomic gain or loss for each mouse non-FVB

mouse strain were loaded into the GREAT tool website using the default settings for gene

assignment. GREAT calculates statistics by associating genomic regions with nearby genes and

applying the gene annotations to the regions.

Ingenuity Pathway Analysis

RNA sequencing DESeq2 results of mammary tumors compared to lung metastases was down-

loaded from the 2019 Alzubi et.al article Additional File 10 [35]. Pathway analysis was per-

formed using Ingenuity Pathway Analysis (IPA) (Qiagen). Differentially regulated gene lists

from each paired comparison (HCI01, HCI02, WHIM2) were uploaded into IPA for Core

Expression Analysis of expression data. The Ingenuity Knowledge Base was chosen as the ref-

erence set of genes, and both direct and indirect relationships were considered. No other anal-

ysis parameters were specified, and the default settings were selected.

Cell culture

Mouse mammary carcinoma cell lines 6DT1, 4T1, and MET1 were a generous gift from Dr

Lalage Wakefield (NCI, Bethesda, MD). All cell lines were cultured in Dulbecco’s Modified

Eagle Medium (DMEM), supplemented with 10% Fetal Bovine Serum (FBS), 1% Penicillin

and Streptomycin (P/S) (complete DMEM), and 1% L-Glutamine (Gibco), and maintained at

37˚C with 5% CO2. Short interfering RNA (siRNA)-mediated knockdown and overexpression

cells were cultured in the same conditions with an addition of 10 μg/ml puromycin and 5 μg/

ml blasticidin, respectively.

Plasmid constructs

Lentiviral pDEST Gateway Entry clones expressing Kras WT or Kras G12D with a C-terminal

myc tag, and under the control of the Pol2 promoter were obtained from the NCI Ras Initia-

tive. An empty lentiviral pDEST Gateway Entry clone (Thermo Fisher Scientific) was used as

the empty vector control.

Virus transduction

1 x 106 293T cells were plated in 6 cm dishes 24 hours prior to transfection in P/S-free 10%

FBS DMEM media. Cells were transfected with 1 μg Kras or control expression plasmid and

1 μg of viral packaging plasmids (250 ng pMD2.G and 750 ng psPAX2) using 6 μl of X-
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tremeGENE 9 transfection reagent (Roche). After 24 hours of transfection, media was

refreshed with complete DMEM. The following day, virus-containing supernatant was passed

through a 45-μm filter to obtain viral particles, which were then transferred to 100,000 4T1 or

MET1 cells. The viral media was removed and fresh complete DMEM was added 24 hours

post-transduction. Finally, the cells were selected with 10 μg/ml puromycin- or 5 μg/ml blasti-

cidin-containing complete DMEM beginning 48 hours after transduction.

siRNA transfection

6DT1 cells were plated in in P/S-free 10% FBS DMEM media. 24 hours after plating, cells were

transfected with AllStars Mouse Negative Control siRNA (Qiagen) or siKras (siKRAS_234 as

described by Yuan et al. [77]) using RNAiMAX (Invitrogen).

In vivo metastasis experiments

Female virgin FVB/NJ or BALB/cJ mice were obtained from Jackson Laboratory, and athymic

NCI Nu/Nu from NCI Frederick at 6–8 weeks of age. Two days prior to in vivo experiments,

cells were plated at 1 x 106 cells/condition into T-75 flasks (Corning) in non-selective DMEM.

A total of 100,000 cells per mouse was injected into the fourth mammary fat pad of FVB/NJ

(MET1 and 6DT1 cells), BALB/cJ (4T1 cells) mice. The mice were euthanized between 28–30

days post-injection. Primary tumors were resected, weighed, and lung metastases counted. Sta-

tistical significance was calculated with a Kruskal-Wallis test followed by Conover Inman test.

All animal experiments were performed in compliance with the National Cancer Institute’s

Animal Care and Use Committee guidelines.

Western blotting

Protein lysate from 1 x 106 cells were extracted on ice using Golden Lysis Buffer (10 mM Tris

pH 8.0, 400 mM NaCl, 1% Triton X-100, 10% Glycerol+Complete protease inhibitor cocktail

(Roche), phosphatase inhibitor (Sigma)). Protein concentration was measured using a BCA

Protein Assay Kit (Pierce) and analyzed on the Versamax spectrophotometer at a wavelength

of 560 nm. Appropriate volumes containing 20 μg of protein lysates combined with NuPage

LDS Sample Buffer and NuPage Reducing Agent (Invitrogen) were run on 4–12% (or other-

wise indicated) NuPage Bis-Tris gels in MOPS buffer. Proteins were transferred onto a PVDF

membrane (Millipore), blocked in 5% milk (TBST + dry milk) for 1 hour and incubated in the

primary antibody (in 5% milk) overnight at 4˚C. Membranes were washed with 0.05% TBST

(TBS + 5% Tween) and secondary antibody incubations were done at room temperature for 1

hour. Proteins were visualized using Amersham ECL Prime Western Blotting Detection Sys-

tem and Amersham Hyperfilm ECL (GE Healthcare).

The following primary antibodies were used: mouse anti-Actin (1:10,000; Abcam), mouse

anti-myc-tag (1:1000; Cell Signaling Technology), mouse anti-KRAS (1:1,000; Sigma). Second-

ary antibodies, including goat anti-rabbit (Santa Cruz) and goat-anti-mouse (GE Healthcare),

were used at a concentration of 1:10,000.

Statistics

Statistical significance between groups in in vivo assays was determined using the Mann-Whit-

ney unpaired nonparametric test using Prism (version 5.03, GraphPad Software, La Jolla, CA).

Statistical significance between samples in RT-qPCR analysis was determined by an unpaired t

test, also using Prism.
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Supporting information

S1 Fig. Sample collection and analysis workflow. A. Schematic of sample collection for analy-

sis. Preclinical mouse model development followed by sample collection from 14 FVB x

MMTV-Her2 and 80 outcrossed MMTV-PyMT mice. Overlapping analyses performed on

paired samples, numbers in Venn diagram represent number of animals. B. Schematic of anal-

ysis workflow. Next generation sequence data was analyzed for single nucleotide variants, copy

number variants, and structural variants. The results were then filtered for those events

enriched in metastatic tissue only.

(TIF)

S2 Fig. Overlap of three SNV calling algorithms, Strelka (purple), Mpileup (yellow), and

Mutect2 (green), used with exome-seq data collected from primary tumor (PT) and lung

metastases (LM) from 65 mice. A. SNVs called in PT tissue when compared to normal (strain-

specific) gDNA. B. SNVs called in LM when compared to normal (strain-specific) gDNA. c.

SNVs called in LM when compared to paired PT tissue using 0.3 allele frequency cutoff.

(TIF)

S3 Fig. Sanger sequencing spectra showing the validation of SNVs in metastatic gDNA. A.

C (blue trace)-T (green trace) SNV within the Kras gene resulting in the G12D amino acid sub-

stitution, Y indicates ambiguity in calling T or C. B. G (yellow trace)-T (green trace) substitu-

tion within the Shc1 gene resulting in the P561S amino acid substitution. K indicates

ambiguity in calling T or G.

(TIF)

S4 Fig. Kaplan-Meier plots generated using METABRIC for 23 genes identified with metasta-

sis-driver SNVs by exome-seq in mice that significantly stratify patient survival when altered

in primary tumor tissue (blue = no CNV, red = CNV present).

(TIF)

S5 Fig. Oncoprint schema from the METABRIC human primary tumor dataset showing copy

number variation rates of the A. 17 genes with recurrent SNVs and B. 147 singly mutated

genes identified by exome-seq as putative metastasis-driver mutations (red = amplification,

blue = deletion, green = SNV).

(TIF)

S6 Fig. Venn diagram of the genes associated with CNV in each mouse strain. Numbers

represent the number of genes, and numbers in overlapping regions represent the number of

common CNV-associated CNVs.

(TIF)

S7 Fig. A. Western blot showing expression of MYC-tagged KRAS and total KRAS in 4T1 and

MET1 transduced with empty vector (EV), Kras wildtype (WT), and Kras G12D (G12D). B.

Western blot showing knock down of KRAS in 6DT1 cells 24 hours after transfection siCtrl or

siKras.
(TIF)

S8 Fig. A. Dot plots showing normalized Kras and EMT gene transcript counts by RNA-seq

of metastatic nodules from PyMT and Her2 animals with Kras wildtype (blue) or Kras muta-

tions (red). B. Dot plots showing normalized EMT gene transcript counts by RNA-seq of 4T1

cells stably transduced with empty vector (purple), Kras wildtype (blue), or Kras G12D (yel-

low) expression vectors. 4.

(TIF)
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S1 Table. PyMT and Her2 exome-seq high probability metastasis-specific SNVs Sheets: 1.

Instances of Her2 metastasis-specific (met. spec.) SNVs, 2. Instances of PyMT met. spec.

SNVs, 3. Singly mutated genes, 4. Recurrently mutated genes. Abbreviations: Chr (Chromo-

some number), Position (mm10 genomic position of mutated SNV), type (mutation type: syn-

onymous, nonsynonymous, or stop gain), alt.fraction (allele fraction within the metastatic

tissue), Transcript (NCBI accession number for isoform), Exon (exon harbouring SNV within

designated transcript), Codon (codon harbouring SNV within designated transcript), Nuc sub

(nucleotide position within designated transcript and substitution), AA sub (amino acid posi-

tion within gene isoform and resulting substitution)

(XLSX)

S2 Table. Sequencing validation and overlap Sheets: 1. Sanger sequencing (seq.) summary,

2. All seq. summary. Abbreviations: Y (yes), N (no), “/ “(and), E (exome seq), R (RNA-seq), W

(whole genome seq)

(XLSX)

S3 Table. PyMT regions of CNV in PT and metastatic tissue compared to normal. Number

of CNV events observed in PT and metastases compared to normal tissue. This table stratifies

CNVs by mouse chromosome number and mouse strain. Also listed is the number of animals

used in this study per stain, as well as the number of PT or metastatic samples collected from

that strain total. Blue cells represent deletion events termed “loss,” and red cells represent

amplification events termed “gain.”

(XLSX)

S4 Table. PyMT regions of CNV and associated genes specific to MOLF/Ei metastatic tis-

sue. Sheet1: “Strain” loss/gain associated (assoc.) genes, 2. “Strain” loss/gain assoc. pathways.

Abbreviations: Name (gene symbol), ID (Term identifier from GREAT ontology), Rank (ordi-

nal rank of the p-value compared to the p-values of other annotations), Raw p-value (uncor-

rected p-value from the binomial test over genomic regions), FDR q-Value (False discovery

rate q-value), Fold Enrichment (fold enrichment of number of genomic regions in the test set

with the annotation), Observed Region Hits (actual number of genomic regions in the test set

with the annotation), Region Set Coverage (the fraction of all genomic regions in the test set

that lie in the regulatory domain of a gene with the annotation, Sheet 2: “Strain” recurrent

regions of loss or gain. Abbreviations: chr (chromosome), start (position of amplification or

deletion start), end (position of amplification or del end), overlap.region (length in bp of over-

lap in recurrent region of amplification or deletion), freq. (number of individual animals with

overlapping region of amplification or deletion), s1 / s2 (region identified in individual ani-

mals 1 and 2).

(XLSX)

S5 Table. PyMT regions of CNV and associated genes specific to CAST/Ei metastatic tis-

sue. Sheet1: “Strain” loss/gain associated (assoc.) genes, 2. “Strain” loss/gain assoc. pathways.

Abbreviations: Name (gene symbol), ID (Term identifier from GREAT ontology), Rank (ordi-

nal rank of the p-value compared to the p-values of other annotations), Raw p-value (uncor-

rected p-value from the binomial test over genomic regions), FDR q-Value (False discovery

rate q-value), Fold Enrichment (fold enrichment of number of genomic regions in the test set

with the annotation), Observed Region Hits (actual number of genomic regions in the test set

with the annotation), Region Set Coverage (the fraction of all genomic regions in the test set

that lie in the regulatory domain of a gene with the annotation, Sheet 2: “Strain” recurrent

regions of loss or gain. Abbreviations: chr (chromosome), start (position of amplification or
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deletion start), end (position of amplification or del end), overlap.region (length in bp of over-

lap in recurrent region of amplification or deletion), freq. (number of individual animals with

overlapping region of amplification or deletion), s1 / s2 (region identified in individual ani-

mals 1 and 2).

(XLSX)

S6 Table. PyMT regions of CNV and associated genes specific to C57BL10/nJ metastatic

tissue. Sheet1: “Strain” loss/gain associated (assoc.) genes, 2. “Strain” loss/gain assoc. path-

ways. Abbreviations: Name (gene symbol), ID (Term identifier from GREAT ontology), Rank

(ordinal rank of the p-value compared to the p-values of other annotations), Raw p-value

(uncorrected p-value from the binomial test over genomic regions), FDR q-Value (False dis-

covery rate q-value), Fold Enrichment (fold enrichment of number of genomic regions in the

test set with the annotation), Observed Region Hits (actual number of genomic regions in the

test set with the annotation), Region Set Coverage (the fraction of all genomic regions in the

test set that lie in the regulatory domain of a gene with the annotation, Sheet 2: “Strain” recur-

rent regions of loss or gain. Abbreviations: chr (chromosome), start (position of amplification

or deletion start), end (position of amplification or del end), overlap.region (length in bp of

overlap in recurrent region of amplification or deletion), freq. (number of individual animals

with overlapping region of amplification or deletion), s1 / s2 (region identified in individual

animals 1 and 2).

(XLSX)

S7 Table. PyMT regions of CNV and associated genes specific to C57BL6/nJ metastatic tis-

sue. Sheet1: “Strain” loss/gain associated (assoc.) genes, 2. “Strain” loss/gain assoc. pathways.

Abbreviations: Name (gene symbol), ID (Term identifier from GREAT ontology), Rank (ordi-

nal rank of the p-value compared to the p-values of other annotations), Raw p-value (uncor-

rected p-value from the binomial test over genomic regions), FDR q-Value (False discovery

rate q-value), Fold Enrichment (fold enrichment of number of genomic regions in the test set

with the annotation), Observed Region Hits (actual number of genomic regions in the test set

with the annotation), Region Set Coverage (the fraction of all genomic regions in the test set

that lie in the regulatory domain of a gene with the annotation, Sheet 2: “Strain” recurrent

regions of loss or gain. Abbreviations: chr (chromosome), start (position of amplification or

deletion start), end (position of amplification or del end), overlap.region (length in bp of over-

lap in recurrent region of amplification or deletion), freq. (number of individual animals with

overlapping region of amplification or deletion), s1 / s2 (region identified in individual ani-

mals 1 and 2).

(XLSX)

S8 Table. PyMT strain summary for CNVs associated genes specific to metastatic tissue.

Genes associated with metastasis-specific CNVs and found in more than one mouse strain.

Table associated with S5 Fig.

(XLSX)

S9 Table. Fusion events for primary tumor and metastatic tissue compared to normal. This

table shows the data generated from BreakDancer algorithm analysis of 10X WGS from 20

matched pairs of primary and metastatic lesions from FVB/NJ PyMT x MOLF/EiJ and FVB/

NJ PyMT x CAST/EiJ animals. We show here the metastasis specific gene fusion data used as

input data for Fig 3B. We also she here primary tumor tissue and metastatic tissue gene fusion

events versus normal strain specific tissue. Sheet1:Met. spec gene fusion events circos plot

input. Sheet2: PT v Norm gene fusion events. Sheet 3: Met v Norm gene fusion event. Abbrevi-

ations: Sample (mouse ID and tissue type), Chr1 (chromosome where gene 1 is located), Pos1
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(position within Chr1 where fusion event break point is located), Chr2 (chromosome where

gene 2 is located), Pos2 (position within Chr2 where fusion event break point is located), Type

(intra-chromsome events with different strands (ITX) inversion (INV), deletion (DEL), num_-

Reads (number of reads).

(XLSX)

S10 Table. Pathway analysis of CHI01 PDX mammary gland tumor vs. lung met RNA-seq

comparative analysis. Pathway analysis of RNA sequencing DESeq2 results of PDX mammary

gland tumors compared to spontaneous lung metastases downloaded from the 2019 Alzubi et.

al article Additional File 10 [35]. Sheet1: Pathway analysis. Sheet2: Upstream regulator analysis

(XLSX)

S11 Table. Pathway analysis of CHI02 PDX mammary gland tumor vs. lung met RNA-seq

comparative analysis. Pathway analysis of RNA sequencing DESeq2 results of PDX mammary

gland tumors compared to spontaneous lung metastases downloaded from the 2019 Alzubi et.

al article Additional File 10 [35]. Sheet1: Pathway analysis. Sheet2: Upstream regulator analysis

(XLSX)

S12 Table. Pathway analysis of WHIM2 PDX mammary gland tumor vs. lung met RNA-

seq comparative analysis. Pathway analysis of RNA sequencing DESeq2 results of PDX mam-

mary gland tumors compared to spontaneous lung metastases downloaded from the 2019

Alzubi et.al article Additional File 10 [35]. Sheet1: Pathway analysis. Sheet2: Upstream regula-

tor analysis

(XLSX)
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57. Sánchez-Muñoz A, Gallego E, de Luque V, Pérez-Rivas LG, Vicioso L, Ribelles N, et al. Lack of evi-

dence for KRAS oncogenic mutations in triple-negative breast cancer. BMC Cancer. 2010; 10: 136.

https://doi.org/10.1186/1471-2407-10-136 PMID: 20385028

58. Wills MKB, Jones N. Teaching an old dogma new tricks: twenty years of Shc adaptor signalling. Bio-

chem J. 2012; 447: 1–16. https://doi.org/10.1042/BJ20120769 PMID: 22970934

59. D’Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, et al. c-MYC induces mam-

mary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat

Med. 2001; 7: 235–239. https://doi.org/10.1038/84691 PMID: 11175856

60. Campbell KM, O’Leary KA, Rugowski DE, Mulligan WA, Barnell EK, Skidmore ZL, et al. A spontaneous

aggressive erα+ mammary tumor model is driven by kras activation. Cell Rep. 2019; 28: 1526–1537.e4.

https://doi.org/10.1016/j.celrep.2019.06.098 PMID: 31390566

61. Liu H, Murphy CJ, Karreth FA, Emdal KB, White FM, Elemento O, et al. Identifying and Targeting Spo-

radic Oncogenic Genetic Aberrations in Mouse Models of Triple-Negative Breast Cancer. Cancer Dis-

cov. 2018; 8: 354–369. https://doi.org/10.1158/2159-8290.CD-17-0679 PMID: 29203461

62. Jeong W-J, Ro EJ, Choi K-Y. Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-

cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway. npj Pre-

cision Onc. 2018; 2: 5. https://doi.org/10.1038/s41698-018-0049-y PMID: 29872723

63. Malek JA, Mery E, Mahmoud YA, Al-Azwani EK, Roger L, Huang R, et al. Copy number variation analy-

sis of matched ovarian primary tumors and peritoneal metastasis. PLoS One. 2011; 6: e28561. https://

doi.org/10.1371/journal.pone.0028561 PMID: 22194851

PLOS GENETICS The genomic landscape of metastasis in treatment-naïve breast cancer models

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008743 May 28, 2020 26 / 27

https://doi.org/10.1200/JCO.2011.38.2994
https://doi.org/10.1200/JCO.2011.38.2994
http://www.ncbi.nlm.nih.gov/pubmed/22665543
https://doi.org/10.1016/S0002-9440(10)63568-7
http://www.ncbi.nlm.nih.gov/pubmed/14578209
https://doi.org/10.1016/j.celrep.2019.04.098
http://www.ncbi.nlm.nih.gov/pubmed/31141692
https://doi.org/10.1038/s41467-018-07406-4
https://doi.org/10.1038/s41467-018-07406-4
http://www.ncbi.nlm.nih.gov/pubmed/30498242
https://doi.org/10.1016/j.ccell.2018.08.008
https://doi.org/10.1016/j.ccell.2018.08.008
http://www.ncbi.nlm.nih.gov/pubmed/30205045
https://doi.org/10.1016/j.ccell.2017.07.005
https://doi.org/10.1016/j.ccell.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28810143
https://doi.org/10.1038/s41588-019-0507-7
http://www.ncbi.nlm.nih.gov/pubmed/31570896
https://doi.org/10.1038/s41586-019-1056-z
http://www.ncbi.nlm.nih.gov/pubmed/31118521
https://doi.org/10.1038/s41588-018-0287-5
http://www.ncbi.nlm.nih.gov/pubmed/30531871
https://doi.org/10.1038/bjc.2014.619
https://doi.org/10.1038/bjc.2014.619
http://www.ncbi.nlm.nih.gov/pubmed/25535726
https://doi.org/10.1155/2010/150960
http://www.ncbi.nlm.nih.gov/pubmed/20617134
https://doi.org/10.1158/0008-5472.CAN-06-0191
https://doi.org/10.1158/0008-5472.CAN-06-0191
http://www.ncbi.nlm.nih.gov/pubmed/16618717
https://doi.org/10.1186/1471-2407-10-136
http://www.ncbi.nlm.nih.gov/pubmed/20385028
https://doi.org/10.1042/BJ20120769
http://www.ncbi.nlm.nih.gov/pubmed/22970934
https://doi.org/10.1038/84691
http://www.ncbi.nlm.nih.gov/pubmed/11175856
https://doi.org/10.1016/j.celrep.2019.06.098
http://www.ncbi.nlm.nih.gov/pubmed/31390566
https://doi.org/10.1158/2159-8290.CD-17-0679
http://www.ncbi.nlm.nih.gov/pubmed/29203461
https://doi.org/10.1038/s41698-018-0049-y
http://www.ncbi.nlm.nih.gov/pubmed/29872723
https://doi.org/10.1371/journal.pone.0028561
https://doi.org/10.1371/journal.pone.0028561
http://www.ncbi.nlm.nih.gov/pubmed/22194851
https://doi.org/10.1371/journal.pgen.1008743


64. Behring M, Shrestha S, Manne U, Cui X, Gonzalez-Reymundez A, Grueneberg A, et al. Integrated land-

scape of copy number variation and RNA expression associated with nodal metastasis in invasive duc-

tal breast carcinoma. Oncotarget. 2018; 9: 36836–36848. https://doi.org/10.18632/oncotarget.26386

PMID: 30627325

65. Kutilin DS, Leyman IA, Lazutin YN, Chubaryan AV, Anistratov PA, Stateshny ON, et al. Genes copy

number variation in tumor cells of patients with metastatic and non-metastatic lung adenocarcinoma. J

Clin Oncol. 2019; 37: e14502–e14502. https://doi.org/10.1200/JCO.2019.37.15_suppl.e14502

66. Van Loo P, Nordgard SH, Lingjærde OC, Russnes HG, Rye IH, Sun W, et al. Allele-specific copy num-

ber analysis of tumors. Proc Natl Acad Sci USA. 2010; 107: 16910–16915. https://doi.org/10.1073/

pnas.1009843107 PMID: 20837533

67. El Gammal AT, Brüchmann M, Zustin J, Isbarn H, Hellwinkel OJC, Köllermann J, et al. Chromosome 8p
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