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SARS-CoV-2 continues to evolve and the vaccine efficacy against variants is
challenging to estimate. It is now common in phase III vaccine trials to pro-
vide vaccine to those randomized to placebo once efficacy has been demon-
strated, precluding a direct assessment of placebo controlled vaccine efficacy
after placebo vaccination. In this work, we extend methods developed for esti-
mating vaccine efficacy post placebo vaccination to allow variant specific time
varying vaccine efficacy, where time is measured since vaccination. The key idea
is to infer counterfactual strain specific placebo case counts by using surveil-
lance data that provide the proportions of the different strains. This blending
of clinical trial and observational data allows estimation of strain-specific time
varying vaccine efficacy, or sieve effects, including for strains that emerge after
placebo vaccination. The key requirements are that the surveillance strain distri-
bution accurately reflects the strain distribution for a placebo group throughout
follow-up after placebo group vaccination, and that at least one strain is present
before and after placebo vaccination. For illustration, we develop a Poisson
approach for an idealized design under a rare disease assumption and then use
a proportional hazards model to address staggered entry, staggered crossover,
and smoothly varying strain specific vaccine efficacy. We evaluate these meth-
ods by theoretical work and simulations, and demonstrate that useful estimation
of the efficacy profile is possible for strains that emerge after vaccination of the
placebo group. An important principle is to incorporate sensitivity analyses to
guard against misspecification of the strain distribution.

K E Y W O R D S

clinical trial, Cox regression, SARS-CoV-2, sieve analysis, vaccine

1 INTRODUCTION

Multiple COVID-19 vaccine trials have demonstrated substantial short term efficacy, though the durability of vaccina-
tion is, at this time, unknown. Recent work has developed methods to assess waning vaccine efficacy for vaccine trials
where the placebo group is vaccinated.1-4 By assuming the effect of vaccination is the same over calendar time, the
placebo-controlled vaccine efficacy profile is recoverable long after all placebo volunteers received vaccine. This work
assumed that the vaccine efficacy, at any given time since vaccination, was similar for all circulating strains. However,
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multiple new strains or variants have emerged with improved transmissibility, and the vaccine efficacy for new strains
may be less than for the original strains.5,6

In this article, we develop approaches for settings where new virus strains emerge over time and the vaccine may have
efficacy that varies by strain and time since vaccination. Differential vaccine efficacy by strain is known as sieve analysis.7,8

The simplest and most robust approach to sieve analysis is to apply the methods given above separately to each strain.
However, this approach fails for strains that emerge after the placebo group is vaccinated and with little overlap of strains
pre and post placebo vaccination, sieve effects may be poorly estimated. For such strains, new approaches are needed. In
this work, we develop a new method that leverages strain surveillance data.9 It requires that the distribution of strains in
the placebo trial participants (whether actual or counterfactual) matches the proportions observed in the community and
that at least one strain is present before and after placebo vaccination. This allows imputation of strain specific case counts
for a counterfactual placebo group that recovers placebo controlled vaccine efficacy, in a fashion similar to Reference 1.

We extend this strain-specific analysis to a mark-based approach,10,11 where the vaccine efficacy of a virus is assumed
to vary smoothly with a quantitative phenotype of the virus, for example, from a neutralization assay which measures
the in vitro efficacy of a vaccine against specific strains. These approaches allow for time-varying placebo controlled
strain-specific vaccine efficacy profile to be recovered for strains that emerge after the placebo group is vaccinated.

We develop a basic Poisson approach for an idealized setting under a rare disease assumption and carefully delineate
how bias is introduced if the surveillance strain distribution differs from the placebo group. Simulations are performed
to illuminate key features. We then develop a Cox regression approach which seamlessly accommodates the complexities
of phase III vaccine trials. The method is computationally intensive and can require up to E near copies of the dataset
where E is the number of cases, though standard software can be used to fit the model. We evaluate the Cox approaches
via simulation and analyze example datasets meant to approximate the Moderna and Pfizer Phase III efficacy trials over
the period September 2020 to September 2021.

2 SURVEILLANCE ANCHORED SIEVE ANALYSIS

2.1 Preliminaries

We begin by reviewing the idealized development of Reference 1. Suppose we have a large placebo controlled vac-
cine trial with simultaneous entry and follow-up over a fixed period of time [0,T]. For simplicity, we assume equal
randomization to the two arms; this assumption is relaxed in the supplementary materials. The trial is a deferred vac-
cination design and all placebo volunteers are vaccinated halfway through the trial. Thus period 1 [0,T∕2) allows a
contrast of vaccine vs placebo while period 2 [T∕2,T] allows a contrast of immediate vs deferred vaccination. Let A = 0, 1
denote randomization to the placebo and vaccine, respectively, and define XAK as the total number of cases in arm A
in period K. We assume XAK is approximately Poisson with mean 𝜔AK which follows from a rare disease assumption.
We define 𝜃K as the expected placebo case count in period K whether actual (K = 1) or counterfactual (K = 2). Note
that in period 1, 𝜃1 = 𝜔01 but in period 2, the placebo group is vaccinated so 𝜃2 ≠ 𝜔02. We define vaccine efficacy in
period K as

VEK = 1 − 𝜔1K

𝜃K

thus VE1 is the early effect of vaccine immediately after vaccination and VE2 the late effect of vaccine after one period
has elapsed. We can directly estimate the early vaccine efficacy as ̂VE1 = 1 − X11∕X01, but in period 2, we have no placebo
group and 𝜃2 is not directly estimable.

Nonetheless, we can recover the placebo controlled late vaccine efficacy by assuming portability of the immediate
effect of vaccination, as shown in Reference 1. Under this assumption E(X02) = 𝜔02 = 𝜃2(1 − VE1). Thus 𝜃2 = 𝜔02∕(1 −
VE1) which is estimated by X02∕(X01∕X11). We can estimate the late placebo controlled vaccine efficacy over period 2 as

̂VE2 = 1 − X12

X02X01∕X11
= 1 − X11

X01

X12

X02
.

For a more elegant development involving Cox regression with smoothly varying VE that allows for staggered entry trials,
dropout, covariate adjustment, etc. see References 2-4. These approaches work fine if a single strain circulates in periods.
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But if a new strain emerges in period 2, and the efficacy profile differs for this new strain, this approach will not work.
The problem is that the newly vaccinated in period 2, who face the new strain, will have different vaccine efficacy than
the newly vaccinated did in period 1, who faced the old strain. Thus new methods are needed.

2.2 New strains after placebo vaccination

Suppose that in period 1, only a ancestral strain S = 0 circulates, while in period 2 a new variant strain, S = 1, emerges.
To accommodate two strains S = 0, 1, we define XAKS, 𝜔AKS, and VEKS to be the strain-specific counts, means, and
vaccine efficacies of the previous section. We want to recover the early and late strain specific placebo controlled
vaccine efficacies VE1S, VE2S, respectively, but have no placebo arm for S = 1. Suppose that community surveillance
of the circulating strains is done. Let pKS be the proportion of strain S = 0, 1 in period K = 1, 2 in the community.
Under the assumption that the distribution of infecting strains in the community, that is, pKS, matches that of the
placebo group in the trial, whether actual or counterfactual, we can recover time-varying placebo controlled vaccine
efficacy. Note that since pK0 + pK1 = 1 the ratio pK0∕pK1 determines pK0, pK1 so only the ratio need to be correctly
specified.

To illustrate key concepts, we provide a schematic in Figure 1. The key idea is to infer strain specific case counts for
a period 2 counterfactual placebo group. We do this in two stages. The early vaccine efficacy over period 1 for S = 0 or
ancestral virus is estimated as ̂VE10 = 1 − 2∕10 = 0.80. In period 2, this estimated ̂VE10 is applied to the newly vaccinated
placebo arm, that is, deferred vaccination arm, thus inferring 5 ancestral cases under the assumption of portability of
vaccine efficacy for the newly vaccinated. The community surveillance ratio of 2:1 for S = 1:S = 0, is then applied to the
inferred 5 ancestral cases, thus inferring 10 variant cases. This follows from assuming the surveillance strain distribution
matches the exposure distribution for the trial. With these counterfactual placebo cases for ancestral and variant strains,
placebo controlled variant vaccine efficacy for the newly vaccinated can be estimated as ̂VE11 = 1 − 4∕10 = 0.60. For
those vaccinated one period earlier, the variant and ancestral VEs are estimated as ̂VE21 = 1 − 5∕10 = 0.50 and ̂VE20 =
1 − 3∕5 = 0.40, respectively.

Period 1                                     Period 2 

Vaccine

Placebo

Immediate Vaccine

Deferred  Vaccine

Counterfactual Placebo

Strain Propor�ons via Community Surveillance
2/3              1/3 

1

2

Placebo
Vaccina�on

Person Infected with Ancestral Virus

Person Infected with Variant Virus

F I G U R E 1 Imputation of strain specific cases for a counterfactual placebo group in period 2. Imputation #1 of 5 ancestral (green) cases
follows from portability of ancestral VE of 0.80 for the newly vaccinated which is estimated in period 1. Imputation # 2 of 10 variant (red)
cases follows from the 2:1 variant:ancestral case split seen in the surveillance cohort. With ancestral and variant placebo case counts, early
and late vaccine efficacy for ancestral and variant strains is easy to calculate. For example, early vaccine efficacy for the variant strain (VE11)
is estimated as 1 − 4∕10 = 0.60. Using the notation of Table 1, we have period 1 counts of X110 = 2,X010 = 10, and period 2 counts of
X121 = 5,X120 = 3,X021 = 4,X020 = 1
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T A B L E 1 The relationship between mean case counts 𝜔, period 2 surveillance strain proportions p20, p21, overall placebo mean cases
𝜃K , and time varying strain specific vaccine efficacy VEKS for a two period deferred vaccination design

Group Period 1 Period 2 Strain

Immediate vaccination 𝜔110 = 𝜃1(1 − VE10) 𝜔120 = 𝜃2p20(1 − VE20) S = 0 Ancestral

Immediate vaccination - 𝜔121 = 𝜃2p21(1 − VE21) S = 1 Variant

Deferred vaccination 𝜔010 = 𝜃1 𝜔020 = 𝜃2p20(1 − VE10) S = 0 Ancestral

Deferred vaccination - 𝜔021 = 𝜃2p21(1 − VE11) S = 1 Variant

Note: Only ancestral strain S = 0 is observed in period 1 but a new variant strain S = 1 emerges in period 2.

Table 1 provides the parameterization for the Poisson counts XAKS whose mean E(XAKS) = 𝜔AKS, depends on the
surveillance based probabilities pKS, and the overall expected placebo cases counts in period K, 𝜃K , and VEKS. Here
𝜃K = 𝜃K0 + 𝜃K1 and 𝜃KS = 𝜃KpKS. We call this approach surveillance anchored sieve analysis (SASA) as the surveillance pro-
portions pKS “anchor” the mean of the Poisson model with log(pKS) serving as offsets to the mean. We assume they are
based on a large sample relative to the trial and treat them as constants. With these as fixed constants, we can estimate the
six parameters (𝜃1, 𝜃2,VE10,VE11,VE20,VE21) using the six counts (X010,X110,X020,X021,X120,X121). For details, see the sup-
plementary materials “GLM analysis for the Poisson model” which additionally allows Poisson error for the surveillance
data.

2.3 Bias evaluation

The key assumption of SASA is that the surveillance distribution of strains matches what we would see in an unvaccinated
placebo group, whether actual or counterfactual. The matching can be directly examined during the placebo controlled
era of the trial. In the post placebo vaccination era, it is an unexaminable assumption. We next explore the potential bias
in VE1 from a surveillance system that is somewhat different from a counterfactual placebo group.

The expected ratio of cases for S = 0 to S = 1 in period 2 for the recently vaccinated placebo group is

R = 𝜔020

𝜔021
=
𝜃2p20(1 − VE10)
𝜃2p21(1 − VE11)

, (1)

which can be solved for VE11, the VE for the variant strain S = 1 in the newly vaccinated:

VE11 = 1 −
p20(1 − VE10)

p21R
. (2)

To estimate VE11 we can plug in p20, p21 from the surveillance distribution, VE10 estimated from period 1, and R estimated
from period 2 data into (2). Suppose that the surveillance proportions are incorrectly specified as p∗20 and p∗21. Then the
RHS of (2) is not VE11 but VE∗11

VE∗11 = 1 −
p∗20(1 − VE10)

p∗21R

= 1 − (1 − VE11)
p∗20

p∗21

p21

p20
, (3)

where the second line follows by replacing R with the RHS of (1). An analogous result obtains for VE21, the late vaccine
efficacy for the new strain following 1 period of vaccination, with VE21 replacing VE11 in Equation (3).

We can evaluate (3) to explore the extent of the bias. For example if the truth is VE11 = 0.90 and p21 = 0.50 but we use
p∗21 = 0.60 (0.40) then VE∗11 = 0.93 (0.85) both of which are within 6% of the true value. On the other hand, if VE11 = 0.50
then the VE∗11s are 0.67 (0.25) which are substantially biased. The potential bias increases with decreasing VE11. Another
feature is that bias can be substantial for rare variants. Suppose VE11 = 0.70 with true p21 = 0.05 but we use p∗21 = 0.01
Then VE∗11 = −0.56. Thus in applying these methods one should be cautious about rare variants.
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For the ancestral strain, there is no bias for VE20 with misspecification of the ps as the proportion p∗20 cancels out of
the ratio

R′ = 𝜔120

𝜔020
=

p∗20(1 − VE20)
p∗20(1 − VE10)

= (1 − VE20)
(1 − VE10)

,

and we obtain VE20 by plugging in VE10 and R′

VE20 = 1 − (1 − VE10)R′

= 1 − (1 − VE10)
1 − VE20

1 − VE10
.

Effectively, the early and late VEs of the ancestral strain are estimated by restricting to ancestral data in periods 1 and 2,
thus durability of vaccine efficacy, that is, VE10 = VE20 does not depend on the pkss.

2.4 Simulation

To evaluate the statistical performance of the SASA estimates of vaccine efficacy, we conducted a small simulation meant
to loosely track a simplified version of the Pfizer or Moderna Phase III Trials of mRNA vaccines. To generate the data, we
set the placebo mean number of cases or 𝜃1 = 𝜃10 + 𝜃11 = 1000 with an early vaccine efficacy of 90% for ancestral virus.
During period 2, a new variant emerges and accounts for half of the infections as determined by surveillance sampling.
This is meant to approximate the emergence of a new variant in the US with an expectation it will dominate in the summer
(see the supplementary materials). We set the period 2 counterfactual placebo group mean case count as 𝜃2 = 𝜃20 + 𝜃21 =
500. We consider five scenarios, the last two where the strain distribution is misspecified.

1. Vaccine efficacy is 90% throughout follow-up for ancestral and variant strains with p20, p21 = 0.50, 0.50.
2. Vaccine efficacy wanes from 90% to 80% for ancestral and from 80% to 60% for variant with p20, p21 = 0.50, 0.50.
3. Vaccine efficacy is 90% throughout follow-up for ancestral and variant strains with p20, p21 = 0.20, 0.80.
4. Vaccine efficacy is 90% throughout follow-up for ancestral and variant strains with p20, p21 = 0.50, 0.50, but incorrect

offsets of 0.60,0.40 are used.
5. Vaccine efficacy is 90% throughout follow-up for ancestral and variant strains with p20, p21 = 0.50, 0.50, but incorrect

offsets of 0.40,0.60 are used.

For each trial, we simulate Poisson counts (X010,X110,X020,X021,X120,X121) and estimate 𝜃1, 𝜃2 and the VE parameters
using Poisson regression with parameterization given by Table 1 and correct (cases 1-3) or biased (cases 4 and 5) offsets.
We also test for waning efficacy H(W)

0 ∶ VE1S = VE2S, and for sieve effects, H(S)
0 ∶ VEK0 = VEK1.

Each row in Table 1 is based on 10 000 simulated trials. Code is provided in the supplementary materials and
results are provided in Table 2 which demonstrates that we can accurately recover ancestral strain VEs for period 1 and
period 2 for all scenarios. We accurately recover the variant VE under cases 1 to 3 and with moderate bias for cases
4 and 5.

Under case 1, the ratio of variances for estimates that are indirectly estimated (VE20, VE21,VE11) compared to the
directly estimated VE10 is about (0.033∕0.01)2 ≈ 11. This is partly due to having about 4 times more expected placebo
cases in period 1 compared to period 2, and partly due to VE10 being directly estimated. Nonetheless, a confidence inter-
val for an indirectly estimated VE is still fairly tight at about (0.84, 0.96) for a “typical” trial where XAKS = E(XAKS).
The probability of rejecting at 𝛼 = 0.05 no waning efficacy (ie, no change in early vs. late efficacy), H(W)

0 ∶ VE1S =
VE2S, or rejecting no sieve effect, H(S)

0 ∶ VEK0 = VEK1 for K = 1, 2, are appropriately about 0.05 under their respective
nulls.

Under case 2 with waning VE, the estimates are again unbiased, and with greater standard deviations, due to the VEs
being farther from 1.00. The power to detect waning efficacy is high for ancestral strain (a contrast of 4 random variables)
and very high for variant (a contrast of 2 random variables). Power to a sieve effect matches the powers for waning efficacy
under case 2 because the expected Wald statistics for strain-specific waning efficacy equals the expected Wald statistics
for period specific sieve effects.
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T A B L E 2 Simulated performance of surveillance anchored sieve analysis for an idealized two period deferred vaccination design

Ancestral strain Variant strain Test H(W)
0 Test H(S)

0

Scenario VE10 VE20 VE11 VE21 S = 0 S = 1 Period 1 Period 2

1. Reference 0.8998 0.8955 0.8955 0.8958 0.0499 0.0451 0.0475 0.0460

(0.0105) (0.0336) (0.0337) (0.0337)

2. Waning VE 0.9000 0.7909 0.7902 0.5814 0.8235 0.9856 0.8055 0.9709

(0.0105) (0.0598) (0.0609) (0.1143)

3. p20 = 0.80 0.8999 0.8868 0.8868 0.8870 0.0415 0.0496 0.0373 0.0438

(0.0105) (0.0626) (0.0540) (0.0546)

4. p20∕p21 = 1.50a 0.8998 0.8954 0.8429 0.8425 0.0469 0.0477 0.2856 0.2840

(0.0104) (0.0332) (0.0519) (0.0513)

5. p20∕p21 = 0.67a 0.9000 0.8952 0.9298 0.9298 0.0454 0.0470 0.2793 0.2804

(0.0105) (0.0336) (0.0230) (0.0228)

Note: During period 1 (period 2) the expected actual (counterfactual) placebo case count is 1000 (500). The true VEKS = 0.90 except for scenario 2 with VE11,
VE20, VE21 = 0.80, 0.80,0.60. The VE columns report the Monte Carlo means and (standard deviations). The right columns report the rejection rates for
H(W)

0 ∶ VE1S = VE2S and H(S)
0 ∶ VEK0 = VEK1, respectively, based on a Wald test. 10 000 trials are simulated per row.

aTrue ratio is as given but offsets incorrectly use ratio of 1.00.

Under scenario 3 with the variant dominant in period 2, the estimates again appear unbiased but with an increase in
the standard deviation by about 50% compared to reference case 1 for the indirectly estimated parameters. The standard
deviation for VE11 is unchanged.

Under scenarios 4 and 5 with misspecification of the proportions in period 2, the ancestral estimates are unbiased
and there is no inflation of the type I error rate for testing of waning efficacy for the ancestral or variant strains. There
is substantial inflation of the type I error rate for a test of sieve effect, but moderate bias of about −6% (Scenario 4)
and +3% (Scenario 5), for the VEs of the variant strain. The inflation of the type I error rate for a test of sieving is
noticeable.

The Poisson approach is useful for conceptual understanding and high-level evaluation of an idealized situation
with a rare disease. However, this approach does not easily accommodate nonconstant strain specific vaccine effi-
cacy that can vary smoothly across the pre and post crossover eras. Cox modeling handles this easily and is discussed
next.

3 COX MODELS

The Cox model can seamlessly accommodate staggered entry and crossover, dropout, covariate adjustment, placebo
event rate varying with calendar time, stratification by site, strains coming and going, and strain specific VE varying
smoothly with time. The Cox model can recover the per-exposure vaccine efficacy provided (1) the exposures to each
infecting strain are the same in the placebo and vaccine arm, which should be achieved in a blinded trial which is
a small portion of the population and (2) the per-exposure disease probabilities are correctly specified (eg, as a func-
tion of time or covariates).7,12,13 Furthermore, the bias evaluation of Section 2.3 applies approximately to the Cox model
given the connection between the two, see Reference 14. The main disadvantage of the Cox approach is computational
complexity.

Following the parameterization of Reference 4, let t be the time since study initiation, 𝜏 (e)i , 𝜏

(v)
i be the enrollment and

vaccination times for person i, and Zi(t) be the indicator of whether person i is vaccinated at time t. To clarify the time
index, if the first person is enrolled on September 1, 2020, then this is t = 0; t = 2 is September 3, 2020, and a person who
enrolls on September 4, 2020 has t(e) = 3. As an example parameterization that allows for a smoothly declining vaccine
efficacy, suppose that the cause-specific hazard for the risk of first infection by strain s is given by

hs(t) = h0s(t) exp[Zi(t){𝛽0s + 𝛽1s(t − 𝜏 (v)i )}]I(𝜏
(e)
i > t), (4)
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where h0s(t) is the placebo baseline hazard (whether actual or counterfactual) for infection by strain s, and I() is the indi-
cator function. This formulation (4) reduces to the Prentice approach to competing risks.15 However, vaccine efficacy for
strains that emerge after the placebo group is vaccinated cannot be estimated with this approach as Z(t) = 1 for every-
one after placebo vaccination. To see this, note that the partial likelihood contribution for a strain S = 4 case at calendar
time t is

h04(t) exp{𝛽04 + 𝛽14(t − 𝜏 (v)i )}
∑

k∈(t) h04(t) exp{𝛽04 + 𝛽14(t − 𝜏 (v)k )}
, (5)

where (t) is the set of volunteers who are still at risk at time t. Because S = 4 emerges after placebo vaccination, 𝛽04
cancels out for all partial likelihood contributions, so 𝛽04 and VE4(t) = 1 − exp(𝛽04 + 𝛽14t) are not estimable. However, 𝛽14
and thus whether VE4(s) is constant, can be assessed. We call this the strain specific sieve approach (SSSA).

For Cox regression, the key idea of Figure 1 is rendered as an assumption that the cause-specific hazards have a
relationship anchored by the strain distribution of the surveillance data. Let P(t, s) be the true proportion of strain s viruses
at time t in the surveillance cohort, and let h0(t) be the hazard of infection by any strain at calendar time t. We write

hs(t) = h0(t)P(t, s) exp[Zi(t){𝛽0s + 𝛽1s(t − 𝜏 (v)i )}]I(𝜏
(e)
i > t), (6)

where we have substituted h0s(t) from (4) with h0(t)P(t, s), a nuisance parameter times a known function.
To illustrate how the estimation works, consider the partial likelihood contribution for a person i who is infected with

strain S = 4 at calendar time t after all have been vaccinated. The likelihood contribution is

P(t, 4) exp{𝛽04 + 𝛽14(t − 𝜏 (v)i )}
∑

k∈(t)
∑

s∈ P(t, s) exp{𝛽0s + 𝛽1s(t − 𝜏 (v)k )}
, (7)

where  is the set of circulating strains observed over follow-up. Note that 𝛽04 remains in the likelihood throughout
follow-up. So even if strain S = 4 emerges after all have been vaccinated, we recover the immediate post vaccination
vaccine efficacy for S = 4 as 1 − exp(𝛽04). This recovery is analogous to what we saw in Figure 1 which demonstrated
recovery of period 1 VE for a strain that emerged in period 2.

We can also apply SASA to the setting where we have a phenotypic mark V(s) for strain s, and vaccine efficacy depends
on V(s). This builds on work by Juraska and Gilbert,10,11 and is illustrated for HIV by Corey et al.16 To fix ideas, suppose that
V(s) is the readout from a neutralization assay using pseudo-virus s with pooled sera collected shortly after vaccination.
An example mark-based parameterization with time constant vaccine efficacy is given by

hs(t) = h0s(t) exp[Zi(t){𝛽0 + 𝛽2V(s)}] (8)

= h0(t)P(t, s) exp[Zi(t){𝛽0 + 𝛽2V(s)}]I(𝜏 (e)i > t). (9)

With this model, we have the vaccine efficacy vary smoothly with the mark but constant in time as

VE{V(s)} = 1 − exp{𝛽0 + 𝛽2V(s)}. (10)

Due to the potential for bias due to misspecification of P(t, s), it is appealing to apply the mark-based approach with
h0s(t) unspecified. For strains that are present in the pre-crossover era, h0s(t) can be left unspecified. Indeed each infecting
virus can be viewed as a different strain so that there are as many strains as cases. Effectively, each strain defines a stratum
in the Cox model. However for strains that emerge post-crossover, there is a subtlety. Post crossover data provides no
information about 𝛽0 or 𝛽2. To see this note that in the post-crossover era the partial likelihood contribution reduces to a
constant

h0s(t) exp{𝛽0 + 𝛽2V(s)}
∑

k∈(t) h0s(t) exp{𝛽0 + 𝛽2V(s)}
= 1

∑
k∈(t) 1

. (11)

As a consequence of this subtly, suppose there are two strains with different marks V(0),V(1) in the pre-crossover era, and
a new strain with yet another V(2) mark in the post-crossover era. One can estimate (9) with h0s(t) unspecified, using a
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data set with all the pre and post crossover data, but the post-crossover data is not used and it is a bald extrapolation to
plug in V(2) into (10) to estimate VE for the emergent strain.

We note that one can view (8) as a kind of smoothly parameterized Method B Lunn-McNeil approach to competing
risks17 where V(s) = s for s = 0, 1.

4 ESTIMATION

Estimation of the SASA Cox model is nonstandard due to the presence because of the surveillance data, multiple variants,
and multiple sites. To allow for multiple sites let PL(t, s) be the true surveillance proportion for strain s at time t at site
L. In this section, we use pL(k, s) a piecewise constant approximation which averages PL(t, s) over discrete intervals, for
example pL(k, s) = ∫

k14
(k−1)14PL(t, s)dt∕14, for 2-week intervals.

4.1 Specification of pL(k, s)

We estimate pL(k, s) using the GISAID database (https://www.gisaid.org), which contains the genetic sequences of infect-
ing SARS-CoV-2 strains from around the globe starting in January 2020.18 The sequences used for this article are from the
corpus of whole-genome sequences made available be GISAID, and they were downloaded on 08 July 2021. All sequences
in the GISAID database from the United States (n= 539 812) and from Mexico (n= 13 557) were used. The GISAID acces-
sion numbers, which uniquely identify each sequence, are available in the supplementary materials. We determine their
lineages and WHO variant status using the Phylogenetic Assignment of Named Global Outbreak LINeages (PANGOLIN)
(https://github.com/cov-lineages/pangolin) software. Additionally, each sequence has information about its country of
origin and the date of submission, and for the United States, the state of the submitting lab is also included.

Specification of pL(k, s) depends on the granularity needed for analysis, the abundance of the different strains, the
similarity of the strain distribution over location, and assumptions or data about which variants/lineages have similar
vaccine efficacy over time. A coarse analysis might be to group lineages/variants into two or three strains, say Delta,
Alpha, and otherwise. Or a set of 4 or 5 variants might be initially examined and then pooled into a smaller num-
ber of strains with similar vaccine efficacy. The location L could be regional and pL(k, s) would apply to all clinical
trial sites in the region. If pL(k, s) is close to 0 and a strain s case occurs in week k at location L, it will have sub-
stantial influence. We thus recommend examining the influence of cases for which pL(k, s) is small, say <0.05. This
can be accomplished by comparing parameter estimates with and without such cases. Figure 2 shows the weekly dis-
tribution of WHO lineages over time for 10 regions of the contiguous United States from January 2020 through June
2021.

A mark-based analysis is more complex as in principle each infecting virus might yield a unique mark V(s). If each
infecting virus were classified as a different strain then pL(k, s) is zero except the one k when a case of type s occurs and
pL(k, s) becomes 1. Such a strain distribution implies that post-crossover data provide no information about time-constant
sieve effects. Thus to glean information post-crossover, we are led to defining pL(k, s) as fairly coarse as described above.

4.2 Estimation of Cox model parameters

The partial likelihood is the product of contributions like that of (7). For each two-week period, we create a dataset of
all volunteers who have not had an event before that period. For each event within the 2-week period, we determine
each individual’s vaccination status and time since vaccination at the time of that event. For a dataset of M strains, we
make M copies of the information for each person for period k but with an offset which equals log{p(k, s)} for strain s
and an indicator of an event. Once an individual has an event within period k she is removed from the risk set for that
period and subsequent periods. So for a study with 100 periods and 4 strains, we make 400 copies, each of which includes
approximately N individuals, where N is the number randomized.

Stratification by site is especially important when using SASA. To see this, suppose only one site is accruing cases in
June and has a 50:50 split of ancestral strain to variant while all other sites have a 90:10 split ancestral strain to variant.
Consider a model with time-constant VEs and a variant case that occurs after the placebo group has been entirely vacci-
nated. The site stratified partial likelihood is proportional to exp(𝛽1)∕{0.50 exp(𝛽0) + 0.50 exp(𝛽1)} while the unstratified

https://www.gisaid.org
https://github.com/cov-lineages/pangolin
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F I G U R E 2 The plots of the moving averages (±7 days) of proportions of different variants out of those not missing variant information.
The Delta variant (including Delta+K417N) is orange, the Alpha variant is blue, and all other nonmissing variants are green. Values are
plotted from March 15, 2021 to June 30, 2021, but some regions do not have data all the way until June 30 (eg, Northwest). Underneath the
main figure are gray regions which are proportional to the sample size of the averages, with the bottom of the color plot at the value
n = 20 000. For example, the largest sample size is 16 469 for the Mid-West region on April 8, 2021, but most have much smaller sample sizes
especially in late June. Regions defined at https://fortune.com/2021/07/07/the-delta-variant-is-now-dominant-in-the-u-s-see-the-states-
where-its-most-prevalent

partial likelihood is approximately proportional to exp(𝛽1)∕{0.90 exp(𝛽0) + 0.10 exp(𝛽1)}. The latter likelihood is tanta-
mount to substantially misspecifying the offsets which, as has been shown, leads to bias. Details with a simple example
dataset and SAS code are provided in the supplementary materials.

5 SIMULATION

In this section, we apply the Cox model approach to a scenario that loosely approximates the Moderna and Pfizer vaccine
trials. A simulated trial enrolls 30 000 subjects uniformly in September 2020 and randomizes equally to vaccine or placebo.
The placebo event rate is constant from September 1, 2020 through March 31, 2021, with a mean number of placebo
cases of about 1000. All placebo volunteers receive vaccine on April 1, 2021 and from April to September 1, 2021, the
mean counterfactual placebo case count is about 750. There are three strains S = 0, 1, 2 with strains 1 and 2 emerging in
February and June, respectively, and strain 0 disappearing in July (see the supplementary materials). We define a period
as one month and specify a mark V(s) = s for s = 0, 1, 2. We generate data under two scenarios using a mark model with
hazard function for person i given by

h0s(t) = h0p{k(t), s} exp[Zi(t){𝛽0 + 𝛽2V(s)}]I(t > t(e)i ),

where t is the time since September 1, 2020, ti(e) the time of enrollment for volunteer i, Zi(t) is 0 before vaccination and
1 after vaccination. There is only one site and p{k(t), s} is constant within each calendar month. The baseline h0 is a
constant. Vaccine efficacy varies smoothly with V(s), but does not depend on time since vaccination.

VEs = 1 − exp{𝛽0 + 𝛽2V(s)}.

Under scenario 1 (𝛽0, 𝛽1) = (log(0.1), 0) so VE0,VE1,VE2 = (0.90,0.90,0.90) while under scenario 2 (𝛽0, 𝛽1) = (−2.5, 1.0) so
VE0,VE1,VE2 = (0.92, 0.78, 0.39).

https://fortune.com/2021/07/07/the-delta-variant-is-now-dominant-in-the-u-s-see-the-states-where-its-most-prevalent
https://fortune.com/2021/07/07/the-delta-variant-is-now-dominant-in-the-u-s-see-the-states-where-its-most-prevalent


FOLLMANN et al. 3085

We estimate three different models with time-constant VE which are reported in the left half of Table 3.

• Constant VE SSSA

hs(t) = h0s(t) exp(𝛽0s).

• Constant VE SASA

hs(t) = h0(t)p{k(t), s} exp(𝛽0s).

T A B L E 3 Monte Carlo estimates and (standard deviations) of vaccine efficacy for 100 simulated deferred vaccination trials

Constant VE Time-varying VE

VE0 VE1 VE2 𝜷10 𝜷11 𝜷21

No sieve effects

TRUTH 0.90 0.90 0.90 0.00 0.00 0.00

SSSA 0.901 0.899 - 0.007 −0.001 −0.004

(0.0099) (0.0245) - (0.0431) (0.0268) (0.0533)

SASA 0.901 0.900 0.900 0.006 −0.001 −0.002

(0.0093) (0.0176) (0.0250) (0.0403) (0.0274) (0.0516)

SASA Mark 0.901 0.901 0.899

(0.0091) (0.0138) (0.0250)

SASA* 0.904 0.879 0.877 −0.011 −0.008 0.016

(0.0091) (0.0228) (0.0287) (0.0405) (0.0272) (0.0518)

SASA Mark* 0.902 0.891 0.876

(0.0089) (0.0147) (0.0288)

SASA** 0.904 0.882 0.920 −0.004 −0.010 0.011

(0.0094) (0.0171) (0.0167) (0.0374) (0.0287) (0.0516)

SASA Mark** 0.899 0.908 0.915

(0.0093) (0.0112) (0.0174)
Sieve effects

TRUTH 0.92 0.78 0.39 0.00 0.00 0.00

SSSA 0.918 0.776 - −0.000 −0.001 −0.007

(0.0098) (0.0436) - (0.0504) (0.0194) (0.0194)

SASA 0.917 0.778 0.390 −0.003 −0.000 −0.002

(0.0090) (0.0296) (0.1039) (0.0468) (0.0193) (0.0181)

SASA Mark 0.917 0.776 0.387

(0.0079) (0.0234) (0.1034)

SASA* 0.919 0.738 0.271 −0.0127 −0.0146 0.010

(0.0088) (0.0376) (0.1256) (0.0482) (0.0190) (0.0183)

SASA Mark* 0.916 0.758 0.300

(0.0080) (0.0260) (0.1211)

SASA** 0.922 0.774 0.596 −0.015 −0.014 0.008

(0.0088) (0.0249) (0.0584) (0.0412) (0.0196) (0.0183)

SASA Mark** 0.914 0.821 0.626

(0.0082) (0.0183) (0.0583)

Note: Estimates are provided both for strain specific and mark parameterized vaccine efficacy models. The left half fits models with a time constant VE, while
the right half fits models with a log-linear decline in VE. The rows without asterisk denote correct specification of p(k, s) while * (**) denote misspecifications.
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• Constant VE Mark-based SASA

hs(t) = h0(t)p{k(t), s} exp{𝛽0 + 𝛽2V(s)}.

To examine durability of vaccine efficacy, we additionally fit two non-mark models. These are reported in the right
half of Table 3.

• Time-varying VE SSSA

hs(t) = h0s(t) exp{𝛽0s + 𝛽1s(t − 𝜏 (v))}.

• Time-varying VE SASA

hs(t) = h0(t)p{k(t), s} exp(𝛽0s + 𝛽1s(t − 𝜏 (v))}.

To illustrate sensitivity analyses, we fit models where the most common strain in any given month is specified as
p +

√
p(1 − p)∕25 instead of p, while the other strains are proportionally reduced so that the remaining p(t, s) sums to

one. We analogously reduce the most common strain by (p −
√

p(1 − p)∕25). Note that for p0 = 0.50 with two strains
perturbs to p0 = 0.60, p1 = 0.40 or p0 = 0.40, p1 = 0.60, respectively, as was done in the Poisson simulations. We denote
these perturbations by * and **, respectively. In practice, misspecified offsets are likely to be too high sometimes and
too low sometimes, which should tend to cancel out and reduce bias. So these consistent perturbations may be more
consequential than would be expected in practice.

The fitted estimates for vaccine efficacy from the constant VE models are given in the left half of Table 3 while the
right half provides the slope estimates from the time-varying VE models. The top half corresponds to scenario 1 with
constant 90% VE for all strains. The first three pairs of rows are for correctly specified models. All approaches are unbiased
for all VE estimates and all methods have similar standard deviations for VE0. For VE1 SASA-Mark is more efficient
than SASA which is more efficient than SSSA with substantial efficiency gains (ratio of squared standard deviations) of
(0.0245∕0.0138)2 = 3.15 for SASA Mark compared to SSSA. VE2 is not estimable using SSSA and has the same estimated
standard deviation for SASA and SASA Mark. Both SSSA and SASA provide unbiased estimates of 𝛽1s = 0.

Looking at the next four pairs of rows, we see that the SASA results are fairly robust to misspecification of the
strain distribution with mean VEs estimates ranging from 0.88 to 0.92 for SASA and SASA-Mark. The estimates of the
slope are robust to misspecification of pL(k, s) and their standard deviations are very similar to when pL(k, s) is correctly
specified.

The bottom panel reports results for scenario 2 with a strong sieve effect. Under correct specification (first three
pairs of rows) all methods appear unbiased for VE though with larger standard deviations for ̂VE1 and ̂VE2 com-
pared to VE1,VE2 = (0.90, 0.90). The efficiency gain for VE1 under SASA Mark is (0.0234∕0.0436)2 = 3.47 compared
to SSSA which is similar to the setting with VE1 = 0.90. Under misspecification, we see modest bias for VE1 = 0.78
ranging from (0.74 to 0.82) for the various approaches, and more substantial bias for VE2 = 0.39 ranging from 0.27 to
0.63 for the various approaches. As before, all approaches appear unbiased for 𝛽1S so vaccine durability is accurately
assessed.

In summary, the SSSA approach, which treats each strain completely separately and is free of concerns about p(k, s)
misspecification, is the most robust approach for estimating VES and also provides reliable inference about strain specific
waning or 𝛽1S. For strains that are unreliably estimated with SSSA, or emerge post crossover, SASA can add useful infor-
mation. For high VE, SASA is fairly robust while for low VE it is less so. Nonetheless, even for strains with lower VE, the
analysis is informative. In scenario 2, we could conclude that strain 2 has lower efficacy than strain 0 and nonzero effi-
cacy. Such conclusions are not possible without employing SASA. Use of the mark parameterized approach can result in
greater efficiency in some scenarios with just three strains. With a large number of strains, a mark-based approach should
be even more efficient.

In the supplementary materials, we provide additional simulations with a much lower event rate with an expected
number of placebo cases in the pre-crossover and post-crossover eras of 130 and 100, respectively. This lower event rate
is meant to roughly approximate the Novavax phase III clinical trial. The behavior of the different methods is relatively
similar, though the standard deviations are larger.
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In practice, we recommend reporting the confidence intervals for different perturbations of the p(k, s)s, along with
the unperturbed p(k, s)s to fully convey uncertainty. The specific perturbation would depend on the trial being analyzed.
A summary could report the minimum lower bound and maximum upper bound of all confidence intervals. Because of
the potential for rare variants to have substantial impact, for example, an explicable variant case when p(t, s) is near zero,
sensitivity analyses such as rerunning the model after removing individual cases can assess influence. In our development,
we used a linear function of time to describe waning vaccine efficacy. In practice splines or polynomials may provide a
better fit and should be evaluated.

6 EXAMPLE

To illustrate the use of these approaches, in this section, we analyze a simulated dataset from the bottom scenario of
Table 3 with VE0,VE1,VE2 = (0.92,0.78,0.39). Cases counts for the simulated data set are given in Table 4 along with the
average placebo community proportion:

�̂�ks =

∑

i∈R(k,s)
p(k(i), s)

#R(k, s)
,

where R(k, s) is the set of indices of subjects with events in period k of type strain s = 0, 1, 2. The statistic �̂�ks averages the
p(k, s)s at the times of events. This average should match that of a placebo group if the VEs are the same across strains
and constant over time. We see that the observed placebo counts in the pre-crossover period of 871 and 118 align with the
averages of 0.86 and 0.14.

Table 5 presents estimates from the SSSA and SASA models. Both approaches are close to the true generating values
and both estimate slope terms close to zero. The standard errors for the slopes are similar between SSSA and SASA as is the
standard error for ̂VE0. The ratio of variances for ̂VE1, (0.047∕0.053)2, is about 20% less for SASA . Of course SSSA cannot

T A B L E 4 Case counts by arm, strain, and period for a simulated COVID-19 trial along with the average p(k, s)

Pre-crossover Post-crossover

Strain �̂�1S Z = 0 Z = 1 �̂�2S Z = 0 Z = 1

0 0.86 871 93 0.06 7 8

1 0.14 118 34 0.60 137 130

2 0.00 0 0 0.34 132 142

T A B L E 5 Estimates and standard errors of vaccine efficacy and 𝛽1 for a simulated COVID-19 trial

Constant VE Time-varying VE

Method VE0 VE1 VE2 𝜷10 𝜷11 𝜷12

SSSA 0.90 0.73 - −0.019 −0.020 −0.001

(0.011) (0.053) - (0.049) (0.019) (0.019)

SASA 0.90 0.75 0.50 −0.011 −0.026 0.004

(0.011) (0.047) (0.087) (0.048) (0.018) (0.018)

SASA* 0.90 0.70 0.39 −0.027 −0.041 0.019

(0.011) (0.047) (0.108) (0.048) (0.018) (0.017)

SSSA** 0.91 0.74 0.65 −0.028 −0.041 0.017

(0.010) (0.036) (0.055) (0.045) (0.019) (0.018)

Note: Models with h0s unspecified (SSSA) or based on surveillance data (SASA) are estimated. The left panels are for models with constant VE while the right
panels estimate a time-varying VE. Two sensitivity analyses are run where the dominant strain is over-reported* and under-reported**.
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F I G U R E 3 SASA estimates of time-varying strain specific vaccine efficacy using a log-linear function of time since vaccination. Strains
0 and 1 are colored green and blue, respectively, and circulate before and after crossover. Strain 2 is colored red and circulates after crossover.
Pointwise 95% confidence intervals are given by dashed lines

estimate the VE for strain 2 which emerges post-crossover and SASA estimates a VE2 of 0.50 with a 95% confidence interval
of (0.33,0.67) which includes the true value of 0.39. The sensitivity analyses have little impact on the slope estimates,
and little impact on the estimates of VE0 and VE1,but the VE2 estimate ranges from 0.39 to 0.65, which aligns with the
evaluation of Table 2.

We provide the estimated VE curves from the SASA model with time-varying VE in Figure 3, along with pointwise
95% confidence intervals. The estimated vaccine efficacies are fairly flat with the largest confidence intervals for strain
S = 2, which has a relatively low VE and no placebo group, both of which increase confidence interval width.

7 DISCUSSION

Naively applying existing methods for estimating vaccine durability after placebo group vaccination results in an unin-
terpretable estimate of vaccine effect as the impact of waning efficacy is hopelessly confounded with differential vaccine
effect on different strains. This confounding was recognized as an important limitation with the existing methods.1-4

This provides methods that permit estimation of time-varying strain specific vaccine efficacy. The simplest and most
robust is to apply the deferred vaccination methods separately to each strain. However this approach is only viable for
strains that occur while there is still a placebo group. The major contribution of this article is to demonstrate how to
use vaccine trial data coupled with strain surveillance data to estimate strain-specific placebo controlled vaccine effi-
cacy profiles for variants that emerge after all are vaccinated. The key requirement is that the distribution of strains for
a counterfactual placebo group matches that within the community. This assumption might be violated for several rea-
sons, for example, the trigger for including individuals in the surveillance dataset is different from the case definition
of disease in the trial and this changes the distribution of variants, or the surveillance data might draw from a differ-
ent sublocation than the trial participants and the distribution of variants differs. This assumption can be examined
during placebo controlled periods of a trial, but post crossover it cannot be directly examined. In practice, we advo-
cate sensitivity analyses where the estimated placebo strain distribution is realistically varied to provide a range of VE
estimates.
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