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Background. Immune infiltration of lung cancer (LC) is tightly related to clinical results. Nevertheless, past researches have not
elucidated the diversities of functionally different cellular types making up the immunoresponse. Methods. In the present
research, on the foundation of a deconvolution algorithm (CIBERSORT) and clinically annotated expression profiles, our team
studied the tumor-infiltrating immune cells (TTICs) presenting in 502 LC samples and 49 normal samples in a comprehensive
way. The fraction of 22 immunocyte subgroups was assessed to identify the relationship among every cellular type and survival
and reaction to chemical therapies. Results. Consequently, profiles of immunity infiltration change remarkably between paired
tumor and precancerous tissues, and the change can describe the diversity of individuals. Of the cellular subgroups studied,
cancers without dendritic resting cells or with a decreased quantity of follicular helper T (Tth) cells were related to the poor
prognosis. Correlation analysis between different stages of LC and 22 immune cell subpopulations revealed that the amount of
14 immune cells in LC was remarkably related to tumor stage. The high expression of resting dendritic cells and follicular
helper T cells predicted better prognostic value, and univariate analyses proved that two TIICs were significantly associated
with patients’ prognosis. Conclusions. To sum up, the data herein reveal that there may be subtle differences in the cell
constituents of the immune infiltrate in LC, and those diversities may be vital determinating factors of prognostic results and
reactions to therapies.

1. Introduction

Tumor-infiltrating immune cells (TIICs) are remarkably
associated with prognostic results and determination of
immune therapy targets in lung cancer (LC) [1]. LC is the
major cause of tumor-related death across the globe and
causes 1.6 million deaths each year [2]. Metastasis is respon-
sible for the high death rate in LC While significant progress
in treatment choices for LC sufferers was developed, patients
suffered from LC have worse prognosis and limited treat-
ment options [3, 4]. Moreover, LC is often diagnosed with
terminal stage cancer, which makes only palliative treat-
ments acceptable. The genome variations in carcinoma are

deeply studied to distinguish sufferer subtypes with diverse
prognostic results [5]. Accumulating evidence proved that
the abnormal phenotypes of carcinoma are determined by
the sophisticated mutual effects of a variety of cellular types
in the TME, especially TIICs [6, 7].

As an immune sensitive cancer, LC infiltrated by an
inhomogeneous immune cell subpopulation of TIICs, such
as T cells, DCs, macrophagus, neutrophils, mast cells, and
the type, density, and site of TIICs in LC contains significant
prognostic value [8]. Previous studies mainly relied on immu-
nohistochemistry and flow cytometry to assess the profile of
TIICs subtypes. However, flow cytometry requires precise
and careful processing of samples, and immunophenotyping
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cannot identify enough immune populations [9, 10]. After
Newman developed a bioinformatic tool-CIBERSORT algo-
rithm, offer a speculation of the quantity of member cell
types in a blended cellular population with genetic expres-
sion data [11, 12]. The CIBERSORT has the advantage in
accurately evaluating the defined fraction of the 22 closely
related type immune cells by only applying signature gens of
bulk tumor samples. CIBERSORT enables immunocyte profil-
ing by deconvolution of genetic expression micro array data
[13]. In the present research, our team applied deconvolution
algorithm (CIBERSORT) to assess the relative proportions of
immunocytes in 49 adjacent samples and 502 LC samples.

In this research, we made use of CIBERSORT to evaluate
the 22 TIIC subtypes in LC to elucidate TIICs” dedicated
association with molecule subgroup, survival ratio, and
reaction to chemical therapies. This study explains the
association between the inhomogeneity of TIICs and illness
development in LC.

2. Materials and Methods

2.1. Data Acquisition. We acquired genetic expression pro-
files of LC (n=502) and healthy specimens (n=49) and
clinic features including medication history, histologic
grade, pathologic stage, and survival information for patients
with LC from the relevant sufferers from TCGA. In the case
of whose prognosis data were not correlated with their
expression profiles, our team went through the supplements
of these missing information. RNA sequence data were
standardized via the average-variance model at the observa-
tion level approach, which transformed enumeration data to
result more like those from microarrays, as clinic data,
excluding LC sufferers who had missing information of
age, gender, TNM stage, local invasion, survival time, and
disease-free survival. Then, LC patients (n = 463) with com-
plete information were included. We manually arranged
every expression information and corresponding clinical
data. Our study followed the instruction of profiling TIICs
with CIBERSORT [9].

2.2. Analyzation of TIICs. CIBERSORT analysis tool is a
gene expression-based arithmetic, which uses a series of
bar code genetic expression results (a “signature matrix” of
547 genes) to assess data of immunocyte constituents from
bulk cancer specimens [14]. To realize the precise quantifi-
cation of the fraction of 22 immunocyte types in LC samples,
standardized genetic expression data sets were employed
and sent to the CIBERSORT web portal (http://cibersort
stanford.edu/) and set the quantity of permutations to
1,000. An overall of 22 TIIC types and CIBERSORT metrics,
such as CIBERSORT p value, Pearson’s correlation coeffi-
cient, and root mean squared error (RMSE), was subjected
to quantification for every specimen [15]. The statistic sig-
nificance of the deconvolution results of the entire cellular
subgroups was represented by the CIBERSORT p value,
which was employed to exclude the deconvolution with less
remarkable fit precision. For the purpose of meeting the
demand of a CIBERSORT p<0.05, healthy specimens
(n=49) and LC specimens (n=520) were chosen. Every
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sample was quantified under 22 types of TIICs and CIBER-
SORT metrics as Pearson correlation coefficient, CIBER-
SORT p value, and RMSE. CIBERSORT p value offers an
identification of confidence in the outcomes. As p <0.05,
the evaluation of the inferred portion of immunocyte subsets
evaluated by CIBERSORT was regarded reliable.

2.3. Statistics. Our team completed the statistic assays by R
software 3.5.2 and IBM SPSS Statistics 20.0. The ideal prog-
nostic model was analyzed by the LASSO Cox regression to
evaluate immune cell subtypes using the glmnet package in
R [16]. The layer clustering of immunocyte fractions was
applied to reveal different immunocyte infiltrations among
diverse specimens. We valued the levels of 22 TIIC subpop-
ulations between 0 and 1 in this assessment. Applied R
packages “Corrplot,” “Pheatmap,” and “Vioplot” determi-
nate variations in the mixture of TIICs among these groups.
Wilcoxon test was employed to assess the association among
cancer grades and molecule-level subgroups of cancer and
TIICs. Log rank test and Kaplan-Meier (K-M) curve was
also applied to confirm the relationship between TIICs and
survival. Multivariate analysis was employed for in-depth
study to select independent predicting factors. AUC and
cut-oft value were acquired from ROC curve. “Limma” pack-
age was applied to analyze the differentially expressed gene
(DEG), and filters were set at [log,FC|>1.3219 and FDR <
0.05. We verified that variation between inferred levels of
TIIC cellular subset and survival was examined via Cox
regressive method. Exerted assays for patients with/without
LC to elucidate the basic difference in LC and for known vio-
lations of the Cox proportion risk hypothesis in TIIC levels
may be an inherent characteristic that can characterize the
diversities between individuals. Finally, the proportions of
immune cells from 463 LC patients’ tissues and 49 adjacent
samples displayed distinct group-bias clustering and individ-
ual differences.

3. Results

3.1. Composition Difference of Immune Cells in LC Samples
and Adjacent Samples. After the operation of manual selec-
tion, we enrolled 463 tumor tissues and 49 adjacent tissues
as the training and validation cohorts, respectively, initially,
normalizing the gene expression data with “Limma” pack-
age, followed by assessment of the difference of immune
infiltration of LC specimens in 22 subtypes of immunocytes
with the CIBERSORT algorithm and define the sum of 22
subsets immunocytes in every specimen as 1. Figure 1
depicts the fraction of the entire 22 subtypes of immuno-
cytes in each sample and as the hierarchical clustering
revealed TIICs, such as NK cell resting, monocytes, and
plasma cells displayed distinct distribution differences in
LC samples and adjacent samples (Figure 2).

3.2. Correlation Degree of 22 Immune Cell Subgroups in Each
Sample. Notably, it was the fractions of immunocytes that
changed remarkably in LC specimens and adjacent samples.
We could easily find that T cell CD 4 memory activated and
T cell CD8 exerted a remarkable positive association;
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FiGure 1: Histogram of the percentage of 22 immunocyte subgroups in LC.
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F1GURE 2: Heat map of the content of 22 immunocyte subgroups in lung cancer.

nevertheless, an obvious negative association between T cell
CD8 and macrophage M0 was showed by average linkage
clustering (Figure 3).

3.3. Expression Levels of 22 Immunocyte Subsets in LC and
Normal Groups. The violin plot indicated that obvious dif-
ferences existed in the distribution of 14 out of 22 immuno-
cytes, like T cell CD 4 memory resting (p < 0.001), plasma
cells (p <0.001), T cell CD 4 memory activated (p < 0.01),

and between LC samples and adjacent samples cohorts
(Figure 4). To sum up, all above results demonstrated that
the inhomogeneity of TIICs in lung cancer is undoubtedly
and of which might employ a crucial factor in the malignant
development of LC.

3.4. Immunocyte Comparison Responding to the Prognostic
Results of LC. The clinical data from TCGA databases was
acquired and then eliminated the samples with less than 30
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F1GURE 3: Correlation degree of 22 immunocyte subgroups in every specimen.

days’ survival time and manually organized the expression
profiles of every specimen and relevant clinic data. Total
sample was randomly separated into the experiment group
and validation group, and the ratio is 7:3 (experiment
group: validation group). Univariate analyses were used to
value immune cell infiltration and corresponding survival
time. Table 1 and Figure S1 show the survival analysis
results of 22 immune cell subpopulations. Figure 5 shows
the high expression of dendritic cells at rest (p = 0.045) and
T cell follicular helper cells (p=0.021). It has a good
predictive value for the prognosis. The univariate analysis
proves that the two TIICs are significantly related to
the patient’s prognosis and are of great significance for
postoperative immunotherapy of lung cancer.

4. Discussion

In this study, we report an extensive evaluation of LC TIICs
in 502 tumor samples and 49 adjacent tissues. The CIBER-

SORT analytical tool gives us a great advantage to specifi-
cally analyze the essential fractions of 22 subpopulations
TIICs in bulk cancer specimens. And the insight of TIICs
may be helpful to explain the initiation and development
of LC. Moreover, genes which are uniquely expressed in
LC samples could be precious predictor in diagnosis and
prognosis, but little research has highlighted the differential
distribution of immunocytes between diverse constituents.
The complex and unique communities of cell life are
called microenvironments by scientists. The microenviron-
ment has many characteristics that affect cell growth,
behavior, and how to communicate with other cells nearby
[17-19]. Different types of tumor cells interact with different
types of immune cells. These immune cells have the function
of helping or attacking tumors [20, 21]. The hierarchical
clustering revealed that TIICs, such as NK cell resting,
monocytes, and plasma cells, displayed distinct distribution
differences in LC samples and adjacent samples. The violin
plot indicated that an obvious difference existed in the
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FIGURE 4: Violin chart of the expression levels of 22 immunocyte subgroups in LC and normal groups.

TABLE 1: Survival analysis results of 22 immune cell subsets.

Gene p value

B cell naive 0.218408
B cell memory 0.961728
Plasma cells 0.738127
T cell CD8 0.962302
T cell CD4 naive 0.220519
T cell CD4 memory resting 0.138559
T cell CD4 memory activated 0.796954
T cell follicular helper 0.021364
T cell regulatory (Tregs) 0.801911
T cell gamma delta 0.215271
NK cell resting 0.45362
NK cell activated 0.257787
Monocytes 0.090153
Macrophage M0 0.934702
Macrophage M1 0.5506

Macrophage M2 0.629833
Dendritic cell resting 0.044586
Dendritic cell activated 0.313067
Mast cell resting 0.564689
Mast cell activated 0.403959
Eosinophils 0.285823
Neutrophils 0.373427

distribution of 14 out of 22 immunocytes, like T cell CD4
memory resting (p < 0.001), plasma cells (p <0.001), T cell
CD4 memory activated (p < 0.01), and between LC samples
and adjacent samples cohorts.

And we could easily find that T cell CD4 memory
activated and T cell CD8 exerted a remarkable positive
association; nevertheless, an obvious negative association
between T cell CD8 and macrophage MO was showed by
average linkage clustering. CD4+ T cells serve as a vital
immunocyte in the immunosystem of mankind. CD4 is pri-
marily expressed in Th cells, which can realize the binding to
the nonmultipeptide areas of MHC class II molecules and
participate in the recognition of antigens by T cell antigen
receptors (TCR) [22, 23]. Signal transduction was as follows:
relevant research has discovered that in tumor immunity,
CD4+ T cells can activate CD8+ T cells through a variety
of mechanisms to differentiate into cytotoxic T lymphocytes
(CTL), while maintaining and strengthening the antitumor
response of CTL [24]. In recent years, studies have found
that macrophages account for 50% of the total weight of
tumors. These cander-related macrophagus not only stop T
cells from eliminating oncocytes but excrete growth factors
to facilitate oncocytes and cancer angiogenic activities, caus-
ing the spread of cancer cells [25-28].

Univariate analyses were used to value immune cell infil-
tration and corresponding survival time. Highly expression
of resting dendritic cells (p = 0.045) and follicular helper T
(Tth) cells (p=0.021) predicted a better prognostic value,
and univariate analyses prove that two TIICs were signifi-
cantly associated with patients’ prognosis. Dendritic cell
(DC) is an important antigen-presenting cell (APC), which
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can strongly stimulate resting T cells [29, 30]. It is the main
APC that activates naive T cells in the body, and Tth cells are
a new CD4+ helper T cell subgroup. More and more studies
have shown that Tth cells and their cell factors are vital for
tumors and autoimmune diseases [31-33].

In conclusion, our study revealed distinct immune
phenotypes for molecular LC subclasses. Hence, our team
suggests that differences in TIIC fractions may be an inher-
ent characteristic that can characterize the difference of
individuals. Those discoveries strengthen the comprehen-
sion of immunoresponses in LC cancers and might exert
an indispensable effect on the design of effective immuno-
therapeutic strategies.
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