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Abstract

To define the neural networks responsible of an epileptic seizure, it is useful

to perform advanced signal processing techniques. In this context,

electrophysiological signals present three types of waves: oscillations, spikes, and

a mixture of both. Recent studies show that spikes and oscillations should be

separated properly in order to define the accurate neural connectivity during the

pre-ictal, seizure and inter-ictal states. Retrieving oscillatory activity is a sensitive

task due to the frequency overlap between oscillations and transient activities.

Advanced filtering techniques have been proposed to ensure a good separation

between oscillations and spikes. It would be interesting to apply them in real time

for instantaneous monitoring, seizure warning or neurofeedback systems. This

requires improving execution time. This constraint can be overcome using

embedded systems that combine hardware and software in an optimized architecture.

We propose here to implement a stationary wavelet transform (SWT) as an adaptive

filtering technique retaining only pre-ictal gamma oscillations, as validated in
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previous work, on a partial dynamic configuration. Then, the same architecture is

used with further modifications to integrate spatio temporal mapping for an early

recognition of seizure build-up.

Data that contains transient, pre-ictal gamma oscillations and a seizure was

simulated. the method on real intracerebral signals was also tested. The SWT

was integrated on an embedded architecture. This architecture permits a spatio

temporal mapping to detect the accurate time and localization of seizure build-

up, while reducing computation time by a factor of around 40. Embedded

systems are a promising venue for real-time applications in clinical systems for

epilepsy.

Keywords: Biomedical engineering, Neurology

1. Introduction

One of the important techniques for the diagnosis of neurological diseases is the

analysis of electrophysiological signal. These signals can be acquired either through

electrical potentials (electroencephalography, EEG) or though magnetic fields (mag-

netoencephalography) in a non-invasive way. Epilepsy is one of the most frequent

neurological diseases, and can be either controlled by medication or a surgical

removal of epileptic regions. Thus, analyzing scalp electrophysiological signal

(EEG, MEG) allows delineating the “epileptogenic zone” (EZ). The EZ is character-

ized by excessive excitability that may generate seizures; these discharges start from

specific sources and propagate, involving large cortical areas forming networks [1,

2]. During pre surgical evaluation, the decision can be made to implant invasive elec-

trodes in order to define the pathological tissues that need to be removed by surgery.

Intracerebral EEG, electrocorticography (ECoG), and Foramen ovale EEG can thus

be used to confirm the EZ localization before surgery. The success of surgery

crucially depends on the signal-based biomarkers of the EZ. Two types of activities

have been used: spikes (transient activities with high amplitude as defined by Gloor

in 1975 [3]) and oscillations. For example, Oishi and his colleagues have relied on

epileptic spikes localization [4], whereas Hiari and his colleagues proved the impli-

cation of different epileptic oscillations in the beta alpha theta and gamma bands [5].

Bragin proved that high frequency oscillations HFO could be also considered as

markers of the EZ [6, 7, 8], which was confirmed by. Urrestarazu and colleagues

who confirmed that fast oscillations are the best hallmark of epileptogenic region.

In order, to detect and characterize seizure onset, Ropun and his colleagues used a

multi scale analysis of gamma-band oscillations [9]. Another separation method

was proposed by Xiaoli based on empirical mode decomposition. This latter allowed

showing that gamma oscillations are dominant during the pre-ictal state of an

epileptic hippocampus in vivo [10]. Rojas confirmed that pre-ictal gamma oscilla-

tions are detectable from scalp EEG signal, and studying their network dynamics
on.2018.e00530
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may be useful in predicting seizure and novel seizure [11]. Meanwhile, B�enar and

colleagues demonstrated that oscillatory and transient activities are difficult to sepa-

rate as they overlap in the frequency domain. In particular, using simple filters may

generate spurious oscillations that are simply the filter impulse response [12]. This

potentially impacts the definition of epileptic networks, which can be a mixture of

filtering spike and real oscillations.

In a previous work, several techniques were proposed to improve the separation such

as Matching Pursuit (MP), Stationary Wavelet Transform (SWT) and adaptive

models (“despiking”, i.e. removing transient activities). Their efficiency was evalu-

ated on simulated data and real signals (IEEG, EEG foramen ovale and MEG), vary-

ing several parameters (signal to noise ratio, rate of overlap and occurrence,

frequency range of oscillations, transient amplitude and width). However, these

filtering techniques are expensive in computation time [13], and need to be improved

for real time applications. In [10, 11], the importance of defining and studying pre-

ictal gamma oscillations space and time presentation for early recognition and detec-

tion of seizure build up was emphasized. Nowadays, embedded systems have

invaded large fields from industrial to health and healthcare area [14]. These

embedded systems were dedicated to overcome time execution cost; hence much

intelligent architecture were developed for preprocessing of physiological signal

such as ECG MEG, EEG. The codesign techniques are very crucial in embedded

system, providing the link between platforms (SoC, FPGA, ARM, ASIC) and

coherent software. The design of embedded systems is a compromise between

several constraints (cost, chip area, power consumption, and real-time) [15], thanks

to a combination of hardware (processors, sensors, memories) and software (hidden

intelligent routines). They allow achieving in real times many applications as highly

secure neurologist decision support, autonomy and automatic intervention.

In this work the integration of SWT and spatio temporal mapping was proposed us-

ing a dynamic partial reconfiguration. Our goal was to implement real-time process-

ing to predict seizure build-up, in order to construct in further work a new alerting

device for detecting the early onset of seizures. The SWT was implemented [13]

on an embedded system to separate in a convenient way pre-ictal gamma oscillations

from transient spikes, with a minimum time of execution. In a second phase, the spa-

tio temporal mapping of pure pre-ictal gamma oscillations for early seizure recogni-

tion was integrated.
2. Materials and methods

2.1. Materials

The simulated data and all signal processing were done using the Matlab software

(Mathworks, Natick, MA) and the EEGlab toolbox [16]. The implementation of
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mixed architecture was embedded on a Xilinx Virtex 5 ML 505 platform, using Mat-

lab and HDL toolbox, as presented in Fig. 1.

2.1.1. Simulations

Our simulated data was inspired from real intracerebral EEG signal of a pharmaco

resistant epileptic patient. Three channels were simulated with a 256 Hz sampling

frequency, depicting three types of occurrence between transient and pre-ictal

gamma oscillations: activities separated, partially overlapping and fully overlapping.

Pre-ictal gamma oscillations frequency was set to 45, 55 and 85 Hz for channel 1, 2

and 3 respectively, and a colored noise, was added as in [17]. The time occurrence of

transient activity was each 0.8 s with a jitter<40 ms: 200 realizations were generated

varying the noise.

2.1.2. Real signal

A pre surgical intracerebral EEG signal from a pharmaco resistant subject with a

symptomatic focal cortical dysplasia in the right occipito-temporal junction was

investigated. The implantation technique was Stereotaxic EEG (SEEG), consisting
Fig. 1. Materials for implementation procedure.
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in depth electrodes. The acquisition and preprocessing phases were applied in the

Clinical Neurophysiology Department of ‘La Timone hospital’ in Marseille as in

[13] studied and validated by an expert neurologist. This particular IEEG recording

was chosen because it presented clear pre-ictal patterns with regular spiking and

visible epileptic oscillations as validated by the expert. Accurate position of depth

electrodes was defined upon a non-invasive phase that allows defining a putative

epileptogenic zone (ZE). The IEEG data was recorded on a Deltamed System,

sampled at 256 Hz, with anti-aliasing low-pass analog filter set to 100 Hz. Eight

multi-contact depth electrodes of 0.8 mm diameter, 10e15 contacts, each 2 mm

longwith an inter-contact distance of 1.5mm,were positioned in the right hemisphere,

implanted according to Talairach’s stereotaxicmethod (Talairach andBancaud 1973).

Our data set is composed of 3 min 20 second with 96 channels and 4 events.

Patients signed informed consent, and the Institutional Review board

(IRB00003888) of INSERM (IORG0003254, FWA00005831 has approved the

study.
2.2. Methods: SWT as a case study

The stationary wavelet transform SWT is a filtering technique that relies on time and

scale signals representation. The stationary property ensures time invariance: a trans-

lated version of a signal X leads to a translation of its transformation. This is thus an

effective tool for spontaneous signals representation, separation, detection and

filtering processes [18]. In fact, The redundancy of SWT leads to translation-

invariance, which is an interesting property as spontaneous oscillations are not al-

ways aligned to the same ’tiles’ of the time-frequency plane. This, it facilitates

salient signal features identification, as in continuous wavelet transform, as oscilla-

tions are more easily separated from the high frequency part of the transient spikes.

Interestingly, and contrary to the continuous wavelet transform, the SWT is a revers-

ible technique, as the discrete wavelet transform DWT, which allow to reconstruct

the inverse function ISWT (from selected coefficient to a filtered dataset).

SWTwas chosen among several decomposition techniques because of its demonstrated

advantages for overcoming the frequency overlap between gamma rhythms and tran-

sient activities [13]. Other techniques such empirical mode decomposition ([19]),

and even variational mode decomposition are based essentially on defining the central

frequency of each eventswhichwouldn’t be effective in separating activities sharing the

same central frequency, this hypothesis is in contradiction with our study [20].

Although, Tunable -Q wavelet transform has been proved as a powerful tool for

EEG oscillatory signal analysis, since it controls the oscillation of the used wavelet

for a sub band frequency, but it remains effective only for separated sub band activities.

Hence, Tunable -Q wavelet transform would not separate our studied activities since

these activities have common component in the same sub band frequency [21].
on.2018.e00530
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The SWTwas derived from the discrete wavelet transform DWT (obtained through a

step of convolution followed by a decimation) but without down sampling the scales

[22]. The SWT of a signal X is the convolution product of X and filters (a lowpass

then a highpass) that procures the approximation Cj;k and detail coefficients Wj;k

consecutively at the j level. These coefficients are obtained by adapting two scale

functions 4k and Jk fitted in time (by translation, compression and dilatation) as

expressed in the following Eqs. (1) and (2):

Cj;k ¼
�
XðtÞ4kðtÞ

�
Wj;k ¼

�
XðtÞJkðtÞ

� ð1Þ

4kðtÞ ¼ 2�j4
�
2�jðt� kÞ�

JkðtÞ ¼ 2�jJ
�
2�jðt� kÞ� ð2Þ

After a decomposition step, the transient components were selected from oscillatory

ones. In this study, the separation between pre-ictal gamma oscillations and transient

activities in order to perform an early recognition of seizure build up was investi-

gated. More precisely, non contaminated pre-ictal gamma oscillations spatio tempo-

ral representation were carried out as in [17]. A thresholding step based on a

rectangular mask with a time spread equal to gamma oscillatory length (200 ms

for 45 Hz, 180 for 55 Hz and 150 ms for 85 Hz) and 3 to 2 scales of width (3 scales

for 45 Hz and 2 scales for the rest) was used as in [13]. The last step of separation is

the reconstruction of thresholded coefficients (masked approximation and detail co-

efficients) using the inverse function ISWT on matlab.

The SWT performance for separating transient and oscillatory activities was studied

in previous work [13]. For simulated data the SWT goodness of fit (match between

separated recovered activities and simulated ones) was shown to be above 80%, and

it depends of the frequency range of oscillations (in our case the separation is above

90%: gamma rhythms), and signal to noise ratio. For electrophysiological signal

SWT provided the best results in terms of consistency across peaks of oscillatory

source localization compared with FIR and MP filtering techniques, also for auto-

matic gamma oscillations detection, SWT F score measure is between 0.83 for 45

Hz and 0.93 for 85 Hz on 4 hours of simultaneous Foramen Ovale and scalp EEG

recordings, hence SWT have been evaluated as a robust and a promoting technique

in separation between transient and oscillatory activities with minor false alarm in

order to predict a seizure build up.
3. Theory/calculation

SWT can be implemented based on a convolution step, which is heavy in computa-

tion. the use of two filters in parallel (a high pass and low pass), would ensure 50%

gain in time cost execution [22]. The results of filtering step are thresholded to detect
on.2018.e00530
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only pure oscillatory components. Firstly, the adapted architecture was studied for

SWT integration, then the chosen platform was described and finally our proposed

embedding architecture of gamma reconstruction and spatio temporal mapping in or-

der to predict seizure build-up was demonstrated.
3.1. Embedded architecture

An adaptive architecture based on a partial dynamic reconfiguration was applied

[23]. This reconfiguration approach has been shown to overcome the complexity

of spatial mapping routines [15] with a minimum hardware even for multiple imple-

mentations [24].

Integrating a filtering technique requires both local and large scale infrastructures

with many constraints that affect the actual separating results. The adopted architec-

ture used in our case (a static and dynamic bloc) is characterized by a high level of

flexibility (further modifications could be applied even after execution), and less

temporal dissipation during the execution process [25]. In this work, two accelera-

tors on VHDL were used, (to control static and dynamic blocs), linked via a Macros

Bus. Memory rings were associated to these processors to save the separation results

(Filtering, thresholding results), sent back to processor via FSL, and finally, saved in

an external memory unit [26]. The separated activities will be displayed in the future

on a terminal screen connected to the used FPGA. A control unit for start was used

(to generate accurate address among memory units) and for finish (to store output

signals of separation algorithm). A Microblaze processor (32-bit embedded micro-

processor) was integrated to overview the separation data path units and the results

transfers. On the other hand, for dynamic bloc, two bits streaming were used as in

[27], with a power PC hardcore processor, which can reach 150 MHz (a reconfigur-

able module that operates at the static module frequency ¼ 150 MHz), then a mono-

core was added to handle the multiple iteration of our separation routine [23].
3.2. Chosen platform

The hardware/software codesign approach of our application was applied on Xilinx

Virtex-5ML505 (an Embedded Development Kit EDK software and FPGA

XC5VLX50T-1FFG1136). The Xilinx Virtex-5ML505 features a large numbers

of Input/Output peripherals and an important memory storage that allows a high

level of smart development of connected, and differentiated systems.
3.3. Demonstration

For simulated data the SWT is iterated 3*200¼ 600 times and for real signal 96*4¼
384 (number of channel by realizations/events) times. Our algorithm could be ex-

plained through two rings: a data vector, and a correlation process, proceeding in
on.2018.e00530
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a parallel way. A data vector contains a window of 5000 samples: 20 s, for both

simulated and real IEEG signal with an amplitude range of [-20 30] mv, which

lead to 50 values stored in a multi IO memory [28]. Our original signal was

convolved with two filters 4k and Jk , followed by a thresholding step using a rect-

angular shape transfer function (see Eq. (3)). The final results were added and stored

in a memory bloc using MATLAB Simulink with Xilinx system generator library for

VHDL files generation and required netlist.

thred ¼ hCd; recti;
threa ¼ hCad; recti ð3Þ

With thred and threa are the SWT details and approximate coefficients in our rect-

angular mask adopted for oscillatory activities.
3.4. Spatio temporal representation

The Morlet wavelet transform was used to depict a spatio temporal map of pure pre-

ictal gamma oscillations. The Morlet wavelet is the classical one used in neurosci-

ence [12]. These wavelets provide a good compromise between time and frequency

resolution. Other wavelets could be used (see [29]).

In fact, convolving IEEG signals with Morlet wavelets (Gabor atoms with oscillation

parameter x ¼ 5 parameters) gives condensed activities in the time-frequency

domain and a good adjustment between time and frequency resolution.

Morlet wavelets are obtained from translating and dilating (time and scale shifting)

the mother wavelet function [30] (a complex exponential modulated by a Gaussian

envelop) defined in Eq. (4):

JðtÞ ¼ expðiw0tÞexp
�
� t2

2s2

�
ð4Þ

W0 denotes the frequency and s is a measure of spread,J is shifted in time and scale

by (a,b) values as expressed in Eq. (5)

Jðb;aÞ
�
tÞ ¼ 1=aðexp

�
iw0

�
t� b

a

��
exp

 
�
�
t�b
a

�2
2s2

!
ð5Þ

As in [13], a convolution between pure pre-ictal gamma oscillations and a moving

average function with 256 width was applied [31] to smooth the pure gamma oscil-

lations envelope fluctuation [32]. Finally a normalization step was implemented by

the lower frequency band as in [2].
on.2018.e00530
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3.5. Integrating spatiotemporal analysis

The integration of spatio temporal map on an embedded architecture, was proceed as

for the SWT integration; using a dynamic partial reconfiguration (Section 3.3),

manipulated by the FPGA Xilinx Virtex-5ML505. The data vector bloc was kept

and further modifications were made for the correlation bloc. Three blocks were im-

plemented: one to compute the Morlet transform in cascade with a second unit which

treats the smoothing operation and the last ring is dedicated for normalization. The

results will be saved in a memory bloc, and then delivered to a terminal screen where

time and space seizure build up was recognized.

These processes are described by the following equations:

Cða;bÞðnTeÞ ¼ XðnTeÞ*Jðb;aÞðnTeÞ
Sða;bÞðnTeÞ ¼ Cða;bÞðnTeÞ*sinð2pnTeÞ
Zða;bÞðnTeÞ ¼ Sða;bÞðnTeÞ*HðnTeÞ

ð6Þ

With C is Morlet transform, S denotes smoothing the C transform via a sinusoidal en-

velope, H is the transfer function of a band pass filter and Z is the normalized signal.

4. Results and discussion

Our simulated data is inspired from a focal epileptic IEEG signal, which presents a

pre-ictal and a seizure state. Three channels are generated with a mixture of transient

and pre-ictal gamma activities at 45, 55 and 85 Hz. Signals are depicted in Fig. 2,

along with real IEEG signal for a 20 s window.

In Fig. 3, the processing steps to separate transient spikes and pre-ictal gamma os-

cillations were illustrated using SWT filter technique. Then the pure pre-ictal gamma

oscillations were shown in a spatio temporal mapping.

Firstly, SWT was applied for each channel, then thresholding step was used and

finally, pure pre-ictal gamma oscillations were recovered. Processing was applied

both to simulations and real IEEG signals. For spatio temporal mapping, the energy

of all the involved channels (for both simulated data and real IEEG signal) were

computed before and after retrieving all transient activities to define build up of

pure pre-ictal gamma oscillations.

The reconstruction of pre-ictal gamma oscillations among original signal, using two

different masks shapes was depicted in Fig. 4. A rectangular mask was adopted

(length and width are function of frequency range) for oscillations and a pyramidal

mask for transients.

In Fig. 5 pre-ictal 55 Hz gamma oscillations reconstruction was demonstrated. The

original IEEG signal and the recovered gamma oscillations during pre-ictal and

seizure states were illustrated.
on.2018.e00530
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The spatio temporal maps were depicted in Fig. 6, for 85Hz pre-ictal gamma oscil-

lations, across all channels of our IEEG signal. A time window of 20 s (15s pre-ictal

state 5 s of seizure) normalized (by dividing with energy of band-passed signal at

80e90 Hz) and smoothed was used. The seizure build-up is clearer for signal

with only pre-ictal gamma oscillations (no transient activities overlapping with

gamma oscillations) which indicates that large energy of spikes hampers the charac-

terization of pre-ictal states. Several channels present high energy in the chosen fre-

quency band during seizure build up. Hence, pre-ictal oscillations may be considered

as a complementary biomarker of the epileptogenic zone.

Fig. 7 depicts the integration of dynamic partial reconfiguration for our adopted sep-

aration technique (SWT plus thresholding). Partial reconfiguration contains two
on.2018.e00530
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Fig. 3. Steps for separating between transient spikes and gamma oscillations by SWT and producing spa-

tio temporal mapping of pure gamma oscillations.

Fig. 4. A) line 1: Mixture of a simulated spike and a gamma oscillation of 45 Hz with full temporal over-

lap, line 2: masks used for thresholding transient among oscillations, line 3 recovered gamma oscillations

and transient spikes by SWT. B) SWT approximation coefficients for 45, 55, 85 Hz oscillations: a rect-

angular mask to recover only oscillatory components.
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gamma oscillations by SWT.
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blocks, a static and a dynamic one, connected to a Microblaze and an external mem-

ory unit via a Macros Bus.

Fig. 8 presents our adopted architecture for integrating the separating technique. It is

composed of a data vector block and a correlation block. The correlation unit is the

most important part of the adopted architecture. It is independent of the other blocks;

translating three convolution operations to keep only oscillatory components from

an original signal. Thus, 3 sets of addition and multiplication operators were used.

Each set is dedicated to a convolution operation (down-sampling scale functions,

decomposition and thresholding). Multiplication and addition operations are set in

a parallel way: the first operation deals with down-sampling scale function, second

operation is dedicated for convolution between pre-ictal signal (simulated and real

IEEG) and two adopted filters transfer functions (scale function) which results in

two types of coefficients (approximation and detail coefficients). The last operation,

the thresholding process, performs multiplication of the SWT coefficients by rectan-

gular Masks. These convolution operation Blocks will be executed in parallel since

we integrated 2 accelerators as in [28]. The preprocessing results will be stored in

two separated internal memory (Msd/Msa for scaling function, Md/Ma: approxima-

tion and detail coefficient and Mat/Mdt for thresholded approximation and detail co-

efficients). Then, the oscillatory components will be added and saved in an external
on.2018.e00530
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Fig. 6. A) IEEG spatio temporal mapping: no clear pattern in the pre-ictal period (before t ¼ 13s).

B) IEEG spatio temporal map of pure gamma oscillations: a clear ‘build-up’ of oscillatory activity

can be seen in channels Li, L and B (black arrows and red rectangle).
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Memory block, which will store only pure pre-ictal gamma oscillatory components

for simulated data or real IEEG signal, incoming firstly from the data vector bloc, in

order to be ruled by the correlation unit described above.
Fig. 7. Partial reconfiguration: a static and dynamic bloc connected to a Microblaze and external mem-

ory. The static block is handled by accelerators and memory for instantaneous saving; the dynamic unit

contains two accelerators and memories.
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Fig. 8. Integration of adopted architecture of separating technique: a data vector to receive and save input
signal and correlation bloc which contains 3 operations sets: multiplication/addition, 3 internal memories

and an external memory to restore only pure pre-ictal oscillations.
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Our algorithm was profiled to recover pure pre-ictal gamma oscillations without ac-

celerators, then with the integration of 2 accelerators (as described in the section

above). A stimulation test in Xilinx ISE was run; Table 1 depicts our algorithm

time consumption. Adding 2 accelerators has alleviated execution consumption by
on.2018.e00530
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Table 1. Time consumption of integrating SWT.

SWT Integration Time per Tics

Software 420

No Accelerator 45

2 Accelerators 23
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about 400 times per tics comparing with SWT software, and 22 tics of time gain was

obtained in comparison to a solution without accelerator.

Fig. 9 illustrates the integration of pre-ictal gamma oscillations spatio temporal map-

ping. Our adopted platform is composed of three blocks, each one involving three

sets of convolution (Morlet transform, smoothing and normalization). Each block
Fig. 9. Integration of spatio temporal mapping: a data vector, a correlation block with three convolution

sets. The resulting data will be incorporated into a comparator to display the highest energy in space and

time (in order to detect the seizure build up in real time).
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Table 2. Time consumption of spatio temporal mapping STM.

Embedding STM Time per Tics

Software 320

No Accelerator 35

2 Accelerators 16
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is composed of addition and multiplication operators, linked to an internal memory

unit to store the results (Mw for wavelet transform, Ms for smoothing and Mn for

normalization). The input J, H, sin and Z denote the used transfer functions. After

compiling, a comparator was used to detect the sensors’ maximum energy. Final

output result would be stored in an external memory unit then mapped on a screen.

Embedding spatio temporal mapping was profiled using the same architecture for

SWT integration: a dynamic partial reconfiguration on Xilinx platform, composed

of a data vector bloc to access the input signal (original signal/pure gamma) and a

correlation block with three multiplication/addition rings, 3 memory units and an

external memory bloc to store the highest energetic component of the involved sen-

sors during seizure build-up.

Table 2, collects time consumption for embedding pre-ictal gamma oscillations spa-

tio temporal mapping (STM). As demonstrated in the first table, it is clear that using

2 accelerators made about also 20 tics of time gain compared without accelerators

and about 304 times per Tic in comparison with classical software.

Table 3, represents the time consumption in slices/flip flop slices and BRAM for

the entire integration procedure (from separating pre ictal gamma oscillations to

spatio temporal mapping) using Xilinx ML 505 Platform Studio. This allowed

us to define the proposed embedding system exploitation rate for our proposed

system.

Logic uses rate is about 70% of the available capacity, which demonstrates a good

exploitation of our proposed embedded architecture for the integration of an early

recognition system of seizure build up.

Finally, Table 4 presents the embedding system power consumption used for inte-

grating our application. The required energy for this procedure is acceptable for
Table 3. Integration of recognition seizure build up: Logic uses.

Logic study Available Hold Rate %

Slices 7616 11200 68

Flip Flops Slices 28224 44800 63

BRAMS 144.5 228 63.5
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Table 4. Power consumption for integrating the recognition of seizure build-up.

Integrating procedure Power consumption

No accelerator 1480 mW

Two accelerators 3000 mW
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embedding systems and Xilinx platform, even after adding two accelerators. A sim-

ple battery is sufficient to supply power to our used algorithm.

Although the power consumption of integrating our algorithmwith two accelerators is

about twice the power required without accelerator, the consumption is still low and

acceptable among the integration field. Hence, using two accelerators seems to be

the best compromise for integrating our algorithm since they have an important impact

on time gain consumption and did not set too much pressure on power supply.
5. Conclusion

Early recognition of epileptic seizure is an important task in epilepsy diagnosis, espe-

cially for pharmaco-resistant patients. The analysis of electrophysiological (EEG,

MEG, EEGFo, IEEG, ECoG) is fundamental in this field. Importantly, these signals

show a mixture of activities (transient waves and oscillations) which potentially imply

different cortical regions. In a previous work, the difficulty of separation between these

activities was emphasized and reliable filtering techniques was suggested, evaluated

against several constraints [1, 12, 13, 17, 33]. Among these techniques, SWT was

shown to be a convenient tool for the separation between transient and oscillations.

The capacities of SWT filtering technique in separating gamma oscillation and tran-

sient activities has been tested using the ROCmethod.We have shown that the F score

measure (combining true and false alarms) ranged between 0.83 for 45Hz and 0.93 for

85 Hz on 4 hours of simultaneous Foramen Ovale and scalp EEG recordings. In this

study, SWT was applied to remove transient activities and keep only pure pre-ictal

gamma oscillations in simulated and IEEG signal. The recovering of non contaminated

pre-ictal gamma oscillation was firstly validated on simulated data inspired from

epileptic IEEG signal, then on focal epileptic IEEG data. Pure gamma activities spatio

temporal mapping lead to a better characterization of accurate time and localization of

excessive discharges. Hence, the responsible regions and the dynamic time of seizure

build-up would be predicted (in agreement with previous work, [17]). However these

pre processing steps are heavy in computation, which called for integrated systems, to

perform real time processing. SWT was embedded on a dynamic partial reconfigura-

tion based on a static and a dynamic block, which improved drastically time execution.

The same results of separation were maintained with almost 400 times acceleration

than classical implementation. Our proposed embedded system is based on a data vec-

tor block and a correlation unit. The correlation block is made of 3 memory units (to
on.2018.e00530
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store results of convolution) and 3 sets of addition and multiplication operators to pro-

file the convolution operation. In a second step, a spatio-temporal mapping of non

contaminated pre-ictal gamma oscillations was implemented using the same adopted

architecture and reconfiguration as those exploited for the SWT integration. An

external memory unit was linked to the FPGA to save the pre-ictal gamma oscillations

energy and, finally, mapped on a screen. Two accelerators weremanaged for each inte-

gration process to reduce time consumption and to increase the logic manipulation in

our adopted architecture. Our proposed architecture reaches almost 70% of the avail-

able capacity and 700 tics gain in total computation costs. The power consumption

is also convenient for Xilinx platform, even when two accelerators were added; a sim-

ple battery can handle the power supply of our proposed system. These results could

help neurologists in an early seizure recognition and detection, and could be also im-

plemented in a portable device for epileptic subjects to alarm them about seizure build

up, in order to take necessary precautions to reduce risks before seizure state. Another

application would be in a real time neurofeedback system.

Although promising, our proposed study still has some limitations and need further

improvement. Further work will evaluate SWT automatic pre-ictal gamma oscillation

detection on multiple data sets for checking robustness. A comparison between the

robustness of recovering pre-ictal gamma oscillations by SWT against despiking as

developed in [17] is suggested to evaluate the performances in terms of time

consumption and power supply. The dynamics network activations of pre-ictal gamma

oscillations in order to define precisely the best markers of seizure build-up should be

also investigated. All the resulting routines should be in second step integrated

to propose both neurofeedback and monitoring devices. These devices are expected

to help reducing immediate danger arising from seizure, and improving patient care.
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