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Abstract

Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien

species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid

lowlands of the Galapagos National Park, but increases with elevation into unprotected

humid highlands. Two common alien plant species, guava (Psidium guajava) and passion

fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the low-

lands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quanti-

ties of seeds over long distances into environments in which they have little or no chance of

germination and survival under current climate conditions. However, climate change is pro-

jected to modify environmental conditions on Galapagos with unknown consequences for

the distribution of native and introduced biodiversity. We quantified seed dispersal of guava

and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation

gradients on Santa Cruz to assess current levels of ‘wasted’ seed dispersal. We computed

species distribution models for both taxa under current and predicted future climate condi-

tions. Assuming that tortoise migratory behaviour continues, current levels of “wasted” seed

dispersal in lowlands were projected to decline dramatically in the future for guava but not

for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas

within the Galapagos National Park where this species is currently absent. Coupled with

putative reduction in arid habitat for native species caused by climate change, tortoise driven

guava invasion will pose a serious threat to local plant communities.
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Introduction

Alien species are among the greatest threats facing global biodiversity [1, 2]. When invasive,

these species can cause huge declines in the abundance and distribution of native species and

dramatically modify community ecology and ecosystem function [3, 4, 5]. The ecological

impacts of invasive species may be particularly detrimental to biodiversity on oceanic islands

[6, 7, 8, 9] because these ecosystems often harbor a high proportion of endemic taxa of which

many are endangered and where population sizes are naturally small [10, 11]. In many cases,

anthropogenic climate change may increase the competitive advantage of invasive species over

natives, exacerbating their negative impacts [12, 13]. These impacts may include increases or

shifts in potential geographic range, as has been proposed for various invasive plants under dif-

ferent future climate scenarios [14, 15, 16, 17].

Native biodiversity of the Galapagos Archipelago, where endemism is high [18], is under

serious and increasing threat from invasive alien species [19, 20]. A total of 870 introduced

plant species are now found on Galapagos which outnumber native species by 1.6:1 [21]. Alien

plants are most abundant in humid highlands, particularly in farmland [22], but decline in the

drier lowlands, which prevail over much of the Galapagos National Park [23, 21]. According to

Trueman et al. [24], alien species invasions on Galapagos will increase as human activities

grow and because climate change will likely favour invasive over native species.

Important steps in predicting how plants spread across landscapes under climate change

are first, quantifying seed dispersal characteristics, and second estimating the survival proba-

bility of seeds and seedlings [25]. Galapagos tortoises (Chelonoidis spp.) are prodigious long

distance seed dispersers with a mean dispersal distance of 245m [26]. On Santa Cruz Island

tortoises disperse seeds from at least 64 plant species, of which 27 are introduced species. Some

20% of seeds ingested by tortoises are dispersed > 1 km. Thus, long distance seed dispersal by

tortoises is not a rare event and may confer considerable advantages for tortoise-dispersed

plant species [27, 28].

On Santa Cruz Island, most long distance movements by tortoises usually occur during sea-

sonal migrations which take them from hot, arid conditions near sea level to more humid, cool

conditions up to ca. 400 m in elevation and back [29]. Because of the wide variety of environ-

ments traversed by tortoises during their migrations, it is likely that a portion of the seed dispersal

services performed by tortoises is ‘wasted’; that is, tortoises transport seeds into environments in

which they have little or no chance of germination and survival under current climate conditions.

The proportion of tortoise seed dispersal wasted under current conditions may change

under future climate change. Scenarios for Galapagos predict an increase in the frequency and

intensity of El Niño events and increases in hot season temperature and rainfall leading to gen-

erally more humid conditions [30]. Increased moisture can be expected to favour the spread of

introduced species into the currently relatively arid lowlands, at present dominated by native

species. If tortoises maintain long distance migrations under climate change, the wasted seed

dispersal of today may, in the future, result in an opportunity for rapid range expansion of tor-

toise-dispersed plant taxa, including invasive alien species.

Here we consider this possibility for two candidate species, Psidium guajava L. and Passi-
flora edulis Sims. Psidium guajava (guava) is a small tree, which was introduced to Galapagos

by local farmers in ca. 1910 for domestic use as a food source. It has spread rapidly in humid

areas and is now naturalised on four islands [31]. Trees bear abundant small succulent drupes

containing hundreds of seeds in a sugary pulp [32]. Passiflora edulis (passion fruit) was also

brought to Galapagos as a domestic food source that quickly escaped and spread widely [33].

Passion fruit is an herbaceous climbing vine that also produces an abundance of seeds in a

thick pulp, ideally suited to animal dispersal. Guava has been introduced around the world as
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both a cash crop and a smaller scale food source [34]. Similarly, passion fruit has been intro-

duced to numerous tropical islands as a fruit source and is sometimes produced commercially

[35], The mechanism by which these species arrived in Galapagos is not known, but both spe-

cies were likely initially grown from seed on private land. Local consumption is now high and

the fruits of both are sold commercially in local markets (Blake pers. obs.). Viable seeds from

both species are dispersed by a variety of frugivores [36] including tortoises [26], mocking

birds [37], cattle (SB, pers. obs.) and humans, and both species pose serious problems to the

floras of numerous oceanic islands and archipelagos worldwide [38].

Our aims were to (1) estimate current and future habitat suitability for guava and passion

fruit based on the current climate and on future climate predictions for 2050 and 2070 (2)

quantify rates of wasted dispersal by tortoises for these species and (3) assess the role of tor-

toises in promoting the spread of these species now and in the future, under the assumption,

justified later in the paper, that tortoise migratory behaviour will continue over the temporal

scale of our climate change predictions.

Methods

Study area

The Galapagos Islands straddle the equator in the eastern Pacific ca. 1,000 km west of Ecuador.

This volcanic archipelago includes 13 large islands (>1 km2), the oldest of which are ca. 4 mil-

lion years old [39]. The climate is characterized by a hot wet season from January to May, and

a cool dry season for the rest of the year [30]. However, during the ‘dry’ season, persistent

cloud cover results in humid upland conditions on the windward (southern) slopes of the

islands [40]. Tortoises once apparently occurred on nine islands, but due to anthropogenic

extinctions are now found on just six [41]. Vegetation patterns are driven by rainfall and sub-

strate which are largely determined by aspect and elevation [33].

Our study was carried out on Santa Cruz Island (Fig 1) which rises to 860 m above sea level

and has an area of 986 km2 [42]. Five main natural vegetation zones are recognized on Santa

Cruz. The coastal zone, characterized by salt-resistant plants on sandy beaches, lava and man-

groves, is followed by the arid zone, dominated by xerophytic trees, shrubs and cacti on a

mostly lava substrate. With increasing elevation comes the transition zone where soil and

understory vegetation are more developed. The moist zone contains well-developed soil with

vegetation characterized by an abundance of shrubs, herbs, ferns, and trees. Finally, the high-

land zone is dominated by ferns, sedges and grasses with few trees [33]. On Santa Cruz, and

throughout the archipelago, the arid zone covers the greatest surface area of any vegetation

type within the national park.

Santa Cruz harbours two species of tortoise. Chelonoidis porteri (Rothschild) occurs in an area

called “La Reserva” (Fig 1C) to the south and southwest of the island. The recently described C.

donfaustoi ([43], Russello, Geist and Caccone) is found in the “Cerro Fatal” region on the island’s

eastern flank (Fig 1C) where it is imperilled with extinction [44]. The island also holds the largest

human population on the Galapagos, estimated at> 15,000 in 2010 [45]. Human occupation has

resulted in the conversion of most of the moist and highland zones to agriculture and at least

86% of these zones are now degraded by either agriculture or invasive species [46].

Estimating the potential distributions of guava and passion fruit under

current and future climates

We used correlative Species Distribution Models (SDMs) to estimate the current potential dis-

tributions of guava and passion fruit on Santa Cruz. We did so by applying a modelling
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approach in which both worldwide native and invasive presence records to assess the potential

distributions of these species. Georeferenced species presence records were obtained from the

Global Biodiversity Information Facility, GBIF (http://data.gbif.org/, accessed 17 February

2015), and processed using DIVA-GIS 7.5.0 (http://www.diva-gis.org, accessed on the 28

February 2015 of [47]. This was performed by removing locations with clearly erroneous

coordinates, such as points occurring in seas or oceans, extreme elevations, and occurrences

Fig 1. Study site. (a) The location of Santa Cruz Island in the centre of the Galapagos Archipelago, (b) field-

based sample design for vegetation plots studied on Santa Cruz, and (c) major habitats and land use types

and vegetation plots along two elevation gradients (La Reserva, and Cerro Fatal) and tracks of GPS-tagged

tortoises (black dots)

https://doi.org/10.1371/journal.pone.0181333.g001
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collected from herbariums. This resulted in a final dataset of 1,621 and 1,435 georeferenced

presence records for guava and passion fruit respectively, ranging between 32˚ N– 40˚ S, and

155˚ W—180˚ E. We then modelled the global distribution of our plant species in their respec-

tive native and introduced range at this reduced spatial extent. To modelling current climate,

we used 19 ‘bioclim’ predictors (S1 Table) for the period 1950–2000 from the WorldClim data-

base (http://www.worldclim.org, accessed 28 February 2015) at a grid resolution of 30 arc-sec-

onds, i.e. ca. 1 x 1 km [48]. These WorldClim climatic values describe climate independent

from latitude [49], which makes them biologically useful predictors in correlative modelling

and explains why they are widely used in SDMs [50].

Maxent 3.3.3k [51] was employed for SDM building (www.cs.princeton.edu/~schapire/

maxent, accessed 3 March 2015). This presence-only method operates with a machine-learn-

ing algorithm following the principle of maximum entropy. It makes predictions on a taxon’s

potential geographic distribution taking environmental data from geo-referenced species rec-

ords and random background data [51] Maxent is a widely used SDM tool and, when used

correctly [52] often provides more robust results compared to other similar methods [53]

although there may be different approaches in identifying habitat suitability gradients [54].

For each species, an average of 100 global model replicates obtained via bootstrapping was gen-

erated under default settings with 10,000 random background points [51, 55]. Background

data was sampled randomly for each species across the study area, taking the records as a base-

line and Maxent’s logistic format (ranging 0–1) was chosen for output. Thirty percent of all

species records were each randomly set aside for model testing (while all others were used for

training) by estimation of the AUC–that is the Area Under the Receiver Operating Character-

istic Curve [51]. Following the classification of Swets [56] and Araújo [57], AUC values range

between 0.5 for models with no predictive ability and 1.0 for models giving perfect predictions,

and values> 0.9 describing ‘very good’, > 0.8 ‘good’, > 0.7 ‘useable’

To avoid multicollinearity of predictors in ecological space, which could influence the

model quality [58], we reduced the number of bioclim predictors in each species to five (out of

19). For this purpose, before computing models, a preliminary Maxent analysis was run using

all 19 variables and applying a jack-knifing approach [59]. In this way, the most ‘stand-alone’

informative predictors were identified [51] which included the following predictors as suitable

for modelling: for guava, bio4 (temperature seasonality), bio7 (temperature annual range),

bio14 (precipitation of the driest month), bio16 (precipitation of the wettest quarter), bio18

(precipitation of the warmest quarter); for passion fruit, bio5 (maximum temperature of the

warmest month), bio7, bio14, bio18, bio19 (precipitation of the coldest quarter).

Maxent was also used to project current climate SDMs into anthropogenic future climate

change scenarios (cf. [60]). Of the various datasets available, we chose each of two scenarios

for the years 2050 (He45bi50, cc45bi50) and 2070 (He45bi70, cc45bi70), based on projections

of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC

[61]. These were Hadley and CCSM4 (NCAR Climate System Model 01.04) scenarios. Both

assume socioeconomic development and environmental consciousness. Both Hadley and

CCSM, as employed here, were created using a third generation Representative Concentration

Pathway (RCP) of 4.5, predicting a mean global temperature increase of 1.4˚C for the period

2046–2065 and a 1.8˚C for the period 2081–2100 [62, 63]. Additionally, Hadley (earth system)

proves to be powerful for simulations in the tropics and for predicting vegetation dynamics

[64]. Anthropogenic future climate change scenarios were obtained at resolution 30 arc sec-

onds from the WorldClim database. DIVA-GIS was used for mapping the Maxent output, i.e.

species’ potential distributions within our study area.
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Quantifying wasted seed dispersal

We defined evidence for wasted seed dispersal in terms of the difference in the geographical

distribution of living plants of each species compared with the distribution of seeds of these

species in tortoise dung piles. If the elevation range of seeds in tortoise dung piles exceeded

that of plants, we considered this as evidence that seeds are being delivered into sites in which

they are unable to germinate and survive. Evidence for wasted seed dispersal was also inferred

when dung piles containing seeds were found in areas outside the respective species’ ‘survival

limits’, as revealed in the modelling process (see below).

We quantified the distribution of seeds in tortoise dung piles by collecting fresh dung piles

on repeated linear surveys conducted on foot that traversed the elevation gradient within the

range of each tortoise species (Fig 1). Dung samples were collected during three different time

periods over five years (June 2009 to November 2009, July 2011 to May 2012 and April to Sep-

tember 2013). Surveys were repeated every one to four days by the same observers (SB, FC,

DES). In an attempt to widely sample throughout the tortoise ranges and to also avoid visually

biasing our sample (i.e. preferentially collecting piles containing many seeds), we collected the

first dung pile encountered each time we crossed an elevation level in multiples of 50 m (i.e. 50

m, 100 m, 150 m). This approach made it unlikely that we collected more than one dung pile

from the same individual. One-hundred and fifty-nine dung piles were collected in La Reserva

(LR) and 63 in Cerro Fatal (CF). All dung piles were georeferenced and their elevation was

obtained from an overlaid digital elevation model (Shuttle Radar Topography Mission, https://

lta.cr.usgs.gov/SRTM, accessed 21 July 2015). The number of seeds of each species was counted

for each dung pile by washing dung piles with rainwater and using standard soil sieves with a

final mesh of 0.5 mm. Seeds from both guava and passion fruit passing through tortoise guts

are mostly viable and tortoise ingestion does not seem to influence seed germination success

[26].

In 2010, we quantified the abundance of both guava and passion fruit plants along the

elevation gradient within the range of each tortoise species from a sample of 64 × 50m2

plots. A series of four nested plots was placed 50m apart and perpendicular to the linear

survey routes every 50m of elevation from 10–400m above sea level in LR and from 100 to

400 m above mean sea level in CF (Fig 1B). The presence and absence of guava and passion

fruit was recorded. A total of 28 and 36 vegetation plots were sampled at sites CF and LR,

respectively.

Statistical analyses

From a total of 222 dung piles, we recorded presence of guava and passion fruit in 96 and

79 dung piles, respectively. Guava was found in 25 vegetation plots while passion fruit was

found in 15 plots. We used Binomial Generalized Linear Models (GLM) to predict the pres-

ence both of guava and passion fruit plants along the current climate suitability gradient

obtained from our SDMs for each species. In order to determine whether these logistic

models fit the observed data in our vegetation plots, we calculated Hosmer Lemeshow

goodness of fit test [65]. To determine if plant distribution differed significantly between

current and future climatic conditions, we estimated the relative number of grid cells in

which suitable habitat was lost and gained using the BIOMOD_RangeSize function [66]

following methods of Thuiler et al.[67, 68]. We did so by summing up all grid cells in

which current suitable habitat became unsuitable under future climatic conditions and by

adding up all grid cells that are unsuitable under current climate conditions but become

suitable under future climates. We conducted all analysis with R 3.2.0 [69] with additional

packages ggplot2 [70], dismo [71], MASS [72] and Biomod2[66].
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Results

The potential distribution of guava and passion fruit under current and

future climate scenarios

The AUC values in the SDMs for each species exceeded 0.89, indicating that models were ‘very

good’ [56]. The standard deviation for current climate projection was 0.007 and 0.005 for

guava and passion fruit, respectively. Suitability for guava under current climate conditions

was lowest at low elevations, rising to highest at intermediate elevations before declining to

moderate values at higher elevations (Fig 2). The Hedley scenario for 2050 predicted a strong

increase in suitability in lowlands, a decline at intermediate elevations and an increase at the

highest elevations (Fig 2). The CCSM4 scenario for 2050 predicted little change in areas of cur-

rently low suitability, but a strong decline in areas of currently highest suitability, shifting the

mid and high elevations to a more homogeneous intermediate suitability. For 2070, both cli-

mate change scenarios predicted similar outcomes with island-wide increases in suitability,

with both uplands and lowlands improving in quality (Fig 2). Our quantitative assessment fol-

lowing methods of Thuiller et al. 2005, 2011 predicted gains in suitability in about 60% of

Santa Cruz Island with no significant shrinking for 2070 (S2 Table).

In the case of passion fruit, current suitability was strongly correlated with elevation, with

lowest suitability in the arid lowlands (Fig 2). Both the Hedley and CCSM4 models suggested

that suitability will decrease at intermediate elevations and in the highlands by 2050; however,

the Hedley model showed considerably greater declines in island-wide suitability than the

CCSM4 (Fig 2). For the year 2070, both CCSM4 and Hedley models suggested an increase in

areas of high suitability in the highlands, little change from current suitability in the lowlands

(Fig 2) and slight overall losses of suitability (S2 Table).

Observed distribution of guava and passion fruit plants

Guava trees were found in 21 out of 36 vegetation plots in LR and in four of 28 in CF. Passion

fruit was recorded in 14 plots in LR and in just one plot in CF. The lower elevation limit were

Fig 2. Potential distribution of guava and passion fruit on Santa Cruz Island. Derived from Maxent SDMs under current climate conditions, followed by

future climate change scenarios for the years 2050 and 2070 (see text for details). Colours represent climatic suitability for the focal species. Dark red

indicates higher climatic suitability and dark blue displays low suitability values.

https://doi.org/10.1371/journal.pone.0181333.g002
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148m and 90m, for guava and passion fruit, respectively, while the upper limits for each species

exceeded our sampling range (Table 1, Fig 3). Occurrences of plants from both species in vege-

tation plots were always in areas of high predicted suitability under current climate conditions

(Maxent suitability values > 0.5 and> 0.48 for guava and passion fruit, respectively; Table 1).

All vegetation plots with predicted suitability below this ‘survival limit’ did not contain any

passion fruit and guava plants (Fig 4). Furthermore, current habitat suitability was a strong

predictor of plant occurrences for both guava (p< 0.01) and passion fruit (p<0.08). In both

cases, a Hosmer Lemeshow goodness of fit test did not detect significant differences between

the logistic model and the observed data (guava Chi-squared = 14.09, df = 8, p-value = 0.08;

passion fruit Chi-squared = 12.51, df = 8, p-value = 0.13).

Observed distribution of seeds and wasted seed dispersal by Galapagos

tortoises under current conditions and future climate scenarios

Guava seeds were found in 71 dung piles (44.7%) in LR and in 25 (39.7%) in CF, while passion

fruit occurred in 67 dung piles in LR (42.14%) and in 12 (19.04%) in CF. Tortoises dispersed pro-

digious quantities of seeds from both plant species (Table 1). A total of 138,529 guava seeds and

19,420 passion fruit seeds were recorded from 222 dung piles (guava: mean = 1,443.01 ± 2,056.81,

maximum 8,726; passion fruit: mean 245.82 ± 510.92, maximum 3,721). Seeds in dung piles of

both guava and passion fruit were distributed over considerably larger ranges of elevations and

Maxent suitability values than were living plants (Table 1, Fig 3). Large numbers of dung piles

found in areas below the current species survival limits contained seeds from both species (16.6%

of all dung piles containing guava seeds and 13.1% containing passion fruit seeds). These dung

piles and the seeds they contain are considered as wasted seed dispersal events. In the case of

guava, some 10.6% of all seeds dispersed by tortoises were wasted. Under our assumption that

Galapagos tortoise migratory behaviour remains unchanged (discussed below), in both future cli-

mate change scenarios (Hedley, CCSM4) our results suggested a decline in wasted dispersal to ca.

4% in 2050 and 2070 (Table 2). For passion fruit, ca. 30% of seeds dispersed were wasted under

current climate conditions, which we predict will rise to> 45% and> 58% under the CCSM4

and Hedley scenarios respectively, before declining back to approximately current levels by 2070

(Table 2).

Table 1. Occurrences of plants in plots and seeds in dung piles of guava and passion fruit across elevation and suitability gradients in La Reserva

(LR) and Cerro Fatal (CF) regions of Santa Cruz Island, Galapagos.

Species Site Presence

(%)

Elevation

(m)

Suitability

(Maxent value)

Min. Mean Max. Min. Mean Max.

Plot Guava LR 58 148 284 406 0.524 0.668 0.716

Plot Guava CF 14 398 399 400 0.716 0.716 0.716

Plot Passion fruit LR 38 90 237 406 0.487 0.629 0.691

Plot Passion fruit CF 3 398 398 398 0.694 0.694 0.694

Dung piles Guava LR 45 28 172 416 0.267 0.546 0.716

Dung piles Guava CF 40 155 280 419 0.441 0.636 0.716

Dung piles Passion fruit LR 42 47 150 419 0.264 0.510 0.692

Dung piles Passion fruit CF 19 233 344 419 0.636 0.682 0.705

A total 36 and 28 vegetation plots and 159 and 63 dung piles were sampled at LR and CF, respectively. Minimum and maximum are abbreviated.

https://doi.org/10.1371/journal.pone.0181333.t001
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Discussion

The distribution of guava and passion fruit and wasted seed dispersal

under current climate conditions

Both passion fruit and guava are invasive alien species which have already significantly altered

the composition of natural ecosystems on the Galapagos Islands [33, 38, 73]. Although various

animal species, such as Galapagos tortoises, distribute viable seeds of both plant taxa over large

distances [26, 36], they have restricted distributions on Santa Cruz associated with local cli-

mactic conditions [31]. Field data on the distribution of guava occurred in areas of high cli-

matic suitability predicted by our Maxent analysis, which was parameterized with global

distribution data, indicating that guava has already reached most of its suitable range and is

likely approaching equilibrium. However, this relationship was more ambiguous for passion

fruit. The most important bioclimatic variables in restricting guava appear to be precipitation

(bioclim 14 and bioclim 18) while for passion fruit it seems to be temperature (bioclim 5 and

bioclim 7). By sampling vegetation plots and tortoise dung piles along altitudinal and species

suitability gradients, we found that for both species seeds in tortoise dung piles have consider-

ably greater geographic ranges at low elevations and low habitat suitability values than do

plants. This supports our prediction that seeds of guava and passion fruit are being transported

by tortoises into areas that are apparently unsuitable for germination and survival under cur-

rent climate conditions, and are therefore examples of wasted seed dispersal (about 10% and

30% of all tortoise dispersed seeds of guava and passion fruit respectively). Model predictions

of the potential distribution of both plants species indicated that presence is restricted to suit-

ability values well above those at which seeds in dung piles were recorded. We observed that

the maximum distance tortoises dispersed seeds into unsuitable area (i.e. dung piles collected

Fig 3. The distribution of guava and passion fruit plants in vegetation plots (white) and seeds in dung piles (grey) along the

elevation gradient on Santa Cruz Island, Galapagos. Values presented fall within the inter quartile range ranging from 25th to 75

percentile.

https://doi.org/10.1371/journal.pone.0181333.g003
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at 28 and 47 m above sea level, Table 1) was about 6 km further down-slope from the lower

limits of guava and passion fruit distribution.

The impact of future climate change

Importantly, our analysis showed that the habitat suitability modelling methodology accurately

predicted the current distribution of guava and of passion fruit, thus we were able to use two

different climate change scenarios to predict the potential future distributions of guava and

Fig 4. The probability of presence of guava and passion fruit plants predicted by current climatic suitability. Plant species occurrence

was strongly correlated with habitat suitability for guava, but less so for passion fruit.

https://doi.org/10.1371/journal.pone.0181333.g004

Table 2. The magnitude of wasted seed dispersal of guava and passion fruit by Galapagos tortoises under current climate conditions and two

future climate change scenarios each for 2050 and 2070 on Santa Cruz Island, Galapagos.

Species Dung piles found below survival

threshold of plants

Wasted seeds

Number of piles Percentage of piles Percentage of seeds

Current Guava 37 38.5 10.6

CCSM4 2050 Guava 27 28.1 4.4

Hedley 2050 Guava 17 17.7 3.2

CCSM4 2070 Guava 22 21.0 3.9

Hedley 2070 Guava 22 21.0 3.9

Current Passion fruit 29 36.7 29.3

CCSM4 2050 Passion fruit 46 58.2 45.6

Hedley 2050 Passion fruit 59 74.7 58.2

CCSM4 2070 Passion fruit 33 41.8 27.8

Hedley 2070 Passion fruit 27 34.2 24.8

https://doi.org/10.1371/journal.pone.0181333.t002
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passion fruit in 2050 and 2070. Both climate change scenarios predicted considerable increases in

habitat suitability for guava in both the lowlands and highlands of Santa Cruz. The predicted

expansion into the lowlands is of particular importance, because this species is currently restricted

to areas above 150m elevation with most of its distribution outside of the Galapagos National

Park [21, 74] while the arid, low elevations inside the park remain free from guava. As suitable

habitat creeps down the elevation gradient toward the coast over the coming years, tortoise seed

dispersal will facilitate the spread of guava further into the park.

We have assumed that under future climatic conditions Galapagos tortoises will continue

their seasonal migrations. We feel that this is likely because, firstly, the capacity for migratory

behaviour is heritable and strong selective pressure toward sedentary behaviour is necessary if

migration rates are to decline [75, 76]. Galapagos tortoise generation time (ca. 25 years) is too

long to provide a mechanism for natural selection to occur over the time scale of anthropo-

genic climate change. Secondly, though future climate change is likely to reduce the strength

of gradients in primary productivity along the elevation gradient by bringing wetter conditions

to the lowlands, a gradient will nevertheless remain, and tortoises should continue to respond

to the spatial and temporal variation in food quality and quantity (Yackulic et al. [77].

The role of tortoises as seed dispersers under climate change

The combination of climate models with distribution data for plants and seeds allow us to pre-

dict that by 2070,<4% of guava seed dispersal by tortoises will be wasted (compared to 10.6%

currently) due to an expanding front of suitable habitat moving downslope. A reduction of ca.

6% in wasted dispersal from current levels does not appear to be hugely ecologically relevant,

however if we assume that a tortoise defecates on average once per day (S. Blake, pers. obs),

that each dung pile contains an average of 624 guava seeds (this study), and that there are 4000

tortoises in the Tortoise Reserve (Galapagos National Park records), this represents an average

increase of 149,761 seeds per day (54.7 million seeds per year) falling into suitable habitat by

2070 compared to current levels. Thus tortoises are planting seeds over large swathes of the

Santa Cruz lowlands ready to germinate and establish as soon as the expanding wave of suit-

able conditions arrives. Our analysis indicates that suitability values will also increase higher

up the elevation gradient of Santa Cruz above the current range of tortoises (Fig 1). It is likely

that guava and passion fruit will spread upslope, however tortoises are unlikely to be the prin-

ciple driver. Previous data indicate that tortoises do not currently migrate above the main road

that bisects the Santa Cruz highlands at ca. 300–400m elevation. Furthermore, as conditions

become wetter it is unlikely to drive tortoises further into the highlands because they should

find greater food biomass at lower elevations than they do currently. The conservation impli-

cations of upslope invasion by guava and passion fruit are less severe than downward invasion

because the highlands of Santa Cruz are already highly transformed habitats with high abun-

dance of invasive species [21] and these areas are outside of the national park.

Key to assessing the role of tortoises in promoting the spread of invasive species under cli-

mate change is not only the number of viable seeds dispersed, but the distances over which tor-

toises disperse seeds compared to other dispersal mechanisms, and how rapidly suitable habitat

is expanding. Among other dispersal possibilities, small and medium ground finches are known

to move viable seeds through mandibulation, but these finches are usually seed predators, while

Galapagos mockingbirds can defecate viable seeds [37]. The ranging behaviour of Darwin’s

finches and mockingbirds is poorly known, however home range size is likely to be ca. 0.2 ha

(from Mace and Harvey [78]) and natal dispersal distances are likely to be� 100m (inferred

from Sutherland et al. [79]). Seed dispersal distances by birds are usually much smaller than
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their home range size, thus it is probable that these species are moving seeds over a few tens of

meters.

Introduced herbivores such as cattle are restricted to highland areas and are unlikely to con-

tribute to the downslope spread of guava and passion fruit. Invasive goats, donkeys and pigs

are also dispersers of these species and have the potential to move seeds over large areas, how-

ever their ranges and relatively rapid digesta retention times [80] suggest that they are unlikely

to disperse seeds over large vertical ranges. Humans, who on Galapagos may consume large

volumes of fruits from these species, are potential long distance dispersers [81] and may also

contribute to the spread of these species.

By 2070, the area of suitable habitat for guava in the tortoise reserve on Santa Cruz will have

moved downslope by an average of ca. 1,500m, advancing at a rate of 27m per year. Generation

times of guava are in the order of 5–8 years [32]. Taking the eight year generation time for

guava near their limits of suitability, for trees to advance downslope at the same pace as the

suitability front, seeds would need to be dispersed at least 218 m per generation time. Birds as

seed vectors would be unable to accomplish this except potentially during rare long distance

movement events. While rare long distance dispersal events may be critical for species spread

and persistence [28, 82, 83] they are by definition rare, and very few seeds would be deposited

at the leading edge of suitability under bird dispersal. In contrast, Galapagos tortoises are

already depositing millions of viable seeds every year along the advancing suitability front

ready to take advantage of improving habitat quality under climate change, accelerating the

spread of this species. The eradication of guava appears to be unfeasible under current man-

agement constrains [20], and unfortunately will become even more difficult in the future as a

combination of climate change and long distance dispersal by tortoises will drive this species

deeper into the Galapagos National Park.
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rera, Stefan Lötters.

Project administration: Diego Ellis-Soto, Stephen Blake, Stefan Lötters.

Resources: Stephen Blake.

Software: Diego Ellis-Soto, Stephen Blake, Alaaeldin Soultan, Stefan Lötters.

Supervision: Diego Ellis-Soto, Stephen Blake, Stefan Lötters.

Writing – original draft: Diego Ellis-Soto, Stephen Blake, Stefan Lötters.

Writing – review & editing: Diego Ellis-Soto, Stephen Blake, Alaaeldin Soultan, Stefan

Lötters.

References
1. Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R. Biological Invasions as Global Environmental

Change. Am Sci. 1996; 84:468–478.

2. Sakai AK, Allendorf FW, Holt JS, et al. The population biology of invasive species. Annu Rev Ecol Syst.

2001; 32:305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037

3. Mack RN, Simberloff D, Mark Lonsdale W, Evans H, Clout M, Bazzaz FA. Biotic invasions: causes, epi-

demiology, global consequences, and control. Ecol Appl. 2000; 10:689–710. https://doi.org/10.1890/

1051-0761(2000)010[0689:BICEGC]2.0.CO;2
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