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Abstract

For the purpose of elucidating the neural coding process based on the neural excitability mechanism, researchers have
recently investigated the relationship between neural dynamics and the spike triggered stimulus ensemble (STE).
Ermentrout et al. analytically derived the relational equation between the phase response curve (PRC) and the spike
triggered average (STA). The STA is the first cumulant of the STE. However, in order to understand the neural function as the
encoder more explicitly, it is necessary to elucidate the relationship between the PRC and higher-order cumulants of the
STE. In this paper, we give a general formulation to relate the PRC and the nth moment of the STE. By using this formulation,
we derive a relational equation between the PRC and the spike triggered covariance (STC), which is the covariance of the
STE. We show the effectiveness of the relational equation through numerical simulations and use the equation to identify
the feature space of the rat hippocampal CA1 pyramidal neurons from their PRCs. Our result suggests that the hippocampal
CA1 pyramidal neurons oscillating in the theta frequency range are commonly sensitive to inputs composed of theta and
gamma frequency components.
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Introduction

A neural system can be considered to be an encoder which

transforms specific external stimuli into neural spikes. One of the

main goals of neuroscience is to identify the stimuli from the

observed spikes. Spike triggered analysis is a powerful way to

achieve this goal. In this analysis, we give stochastic stimuli to a

neural system and identify the set of stimuli that induce the

neurons to spike [1]. This set is called the spike triggered stimulus

ensemble (STE) [2–4]. For example, the linear receptive field

components in V1 simple cells can be discerned from the spike

triggered average (STA), which is the average of STE [5,6].

Additionally, the spike triggered covariance (STC) which is the

covariance of the STE helps to clarify the receptive field structure

of complex cells representing the nonlinear response [7,8].

The traditional spike-triggered analysis with sensory stimuli can

extract the receptive field properties of sensory neurons. Using

direct current injection stimuli instead of sensory stimuli, the spike-

triggered analysis can extract the set of presynaptic inputs encoded

by individual neurons. The big advantage of the spike-triggered

analysis with direct current injection stimuli is that it enables us to

capture the coding properties of neurons in higher brain regions,

such as the hippocampal regions, which are far away from the

lower order sensory regions.

This spike triggered analysis can be formulated in terms of

Bayes’ rule,

P½j(tvts)D spike at ts�!P½spike at tsDj(tvts)�P½j(tvts)�, ð1Þ

where ts is spike time and j(tvts) is a stimulus which has been

applied to neurons before ts. P½j(tvts)D spike at ts� is the

probability density function (PDF) of the STE; it is the conditional

PDF of the stimulus j(tvts) given the spike timing ts.

P½spike at tsDj(tvts)� represents the spike generation process of

the neural systems and is the PDF of the spike timing ts given the

stimulus j(tvts), and P½j(tvts)� is the PDF of the stochastic

stimulus applied to the neural systems. The PDF of the STE or

statistics can be identified in two ways. One is the indirect way, in

which P½spike at tsDj(tvts)� is determined and then

P½j(tvts)D spike at ts� is obtained from Eq. (1). The other way

is to obtain the distribution directly by measuring spike timings of

neural systems in response to the stochastic stimulus P½j(tvts)�.
The direct way is almost always used for the spike triggered

analysis in vivo experiments.

To clarify the relationship between neural dynamics and neural

coding, several groups have recently tried to identify the STE

statistics (i.e. STA and STC) in the indirect way [9–12].

Ermentrout et al. related neural dynamics to neural coding when

regularly firing neurons are disturbed by sufficiently small white

noise [13]. They analytically proved that the STA is proportional

to the temporal differentiation of phase response curve (PRC),

which represents an impulse response of an oscillatory system and
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captures the essence of the neural dynamics. Furthermore, they

performed whole cell recording from olfactory bulb mitral cells

and showed that their theory holds true for real cells. They made

progress in relating the neural dynamics to the neural coding for

real oscillating neurons. However, the STA is the first cumulant of

the STE. To better understand the neural encoder function, it will

be necessary to elucidate the relationship between the PRC and

the higher-order moments of the STE.

In this paper, we focus on the neurons spiking almost

periodically on the same assumption as Ermentrount et al. We

propose a general formulation to relate the PRC and the nth

moment of the STE (MSTEn) based on the Bayes’ rule in Eq. (1)

[14]. In fact, we derive two relational equations. One relates the

PRC to the STA, and the other relates the PRC to the STC. The

relational equation between the STA and PRC coincides with the

equation derived in [13]. This consistency shows that our

formulation method includes Ermentrout et al.’s framework and

is an extension of their theory. Additionally, the relational

equation between the PRC and the STC allows us to determine

the feature space, which is a low-dimensional subspace of the full

stimulus space and characterizes the stimulus encoded by neurons

[3,10,11]. We apply the relational equation to identifying the

feature space of hippocampal CA1 pyramidal neurons oscillating

in the theta frequency range (4–14 Hz) [15–17] from the estimated

PRCs [18]. We show that the first principal component

representing the feature space is the suppressive eigenfunction

mainly composed of theta frequency components, whereas the

second principal component is the excitatory eigenfunction mainly

composed of gamma frequency components [19,20].

Methods

Phase Description of Spike Generation Process
We will begin by describing the spike generation process of the

oscillating neurons. Let us consider regularly firing neurons

perturbed by sufficiently small white Gaussian noise stimulus.

This neural behavior can be described by

dX

dt
~F (X)zsj(t), ð2Þ

where X is the state of the neuron, F (X) the vector field of neural

dynamics, j(t) the white Gaussian noise stimulus, and s the

stimulus intensity. dX=dt~F (X) has a stable limit cycle solution

X0(t) with period T . When the stimulus intensity is sufficiently

small (s%1), we can apply the phase reduction method [21] to Eq.

(2) and obtain the following Langevin phase equation (LPE)

[18,22–25]:

dw

dt
~1zsZ(w):j(t): ð3Þ

Here, w(t) represents the phase defined along the limit cycle

solution X0(t) and Z(w) represents the PRC that corresponds to

the impulse response function quantifying the phase response of

the neural oscillator to the small perturbations. By introducing a

slow phase variable y(t) as w(t)~tzy(t), Eq. (3) can be

transformed into

dy

dt
~sZ(tzy):j(t): ð4Þ

Let ts be the spike time after the first spike at t~0. Since w(ts)~T ,

ts is given by

ts~T{y(ts): ð5Þ

By integrating both sides of Eq. (4) from t~0 to t~ts, we can

describe y(ts) in terms of the PRC as follows:

y(ts)~s

ðts

0

dtZ(tzy(t)):j(t), ð6Þ

where y(0)~0. Since y varies slowly when s%1, we can expand

the right-hand side of Eq. (6) [23,26]:

y(ts)~s

ðts

0

dt1 Z(t1)j(t1)

zs2

ðts

0

dt1

ðt1

0

dt2 Z
0
(t1)Z(t2)j(t1)j(t2)z � � �

~sy1(ts)zs2y2(ts)z � � � :

ð7Þ

This is now in the form of a Volterra series, which is widely used in

analyzing oscillators driven by noise. Here, y1(t) corresponds to a

linear convolution term, which is derived under the assumption

that y stops during a change of j(t). y2(ts) corresponds to the

noise-induced drift in the Stratonovich definition [27]. It stems

from the fact that y(t) also changes when j(t) changes.

General Formulation for the nth Moment of STE
Next, let us describe the nth moment of STE (MSTEn). MSTEn

is defined as the nth time correlation of the current input

sj(ts{ti), which represents the input preceding the spike time ts

by ti(i~1,2, � � � ,n). On the basis of Hong et al.’s formulation [14],

MSTEn for the neural oscillators can be described with Bayes’ rule

in Eq. (1):

MSTEn(t1, � � � ,tn)~

sn

ð?
{?

dtsd ts{Tzy(ts)ð Þ P
n

i~1
j(ts{ti)

� �
j

,
ð8Þ

where d(ts{Tzy(ts)) is the probability density of spike timings

corresponding to P½spike at tsDj(tvts)� in Eq. (1) and h ij
represents

Ð
dj(tvts)P½j(tvts)�. Because Eq. (8) represents

integrals of the probability density of Eq. (1) over all stimulus

inputs and all spike times ts, this equation gives MSTEn as the

expected value of Pn
i~1 j(ts{ti) integrated over all spike times ts.

Here, we shall denote the m-th order derivative of the delta

function as d(m)(x), and write the Taylor expansion of the delta

function as d(xzDx)~
P?

m~0 d(m)(x)(Dx)m=m! (Dx%1), where

d(0)(x)~d(x) and 0!~1. Since s%1, the right-hand side of Eq. (8)

can be expanded as follows:

MSTEn(t1, � � � ,tn)~

sn

ð?
{?

dts

X?
m~0

d(m)(ts{T)

m!
y(ts)

m P
n

i~1
j(ts{ti)

* +
j

:
ð9Þ

This is the relational equation between the MSTEn and the PRC,

because y(ts) is represented by the PRC in Eq. (7).

Higher-Order Spike Triggered Analysis
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Relating STA and STC to the PRC
We can analytically derive the STA or the STC from Eq. (9)

when j(t) is zero-mean Gaussian white noise. In this case, higher

correlation functions are given by hj(t1)j(t2) � � � j(t2n{1)ij~0 and

hj(t1)j(t2) � � � j(t2n)ij~
P

d(ti1{ti2 )d(ti3{ti4 ) � � � d(ti2n{1
{ti2n

).

Here, the sum has to be performed over those (2n)!=2nn!
permutations in which 2n elements are separated into n pairs

[27]. The correlation of the raw stimulus input is

Craw(t1,t2)~hs2j(ts{t1)j(ts{t2)ij~s2d(t1{t2) ð10Þ

We shall first derive an approximate equation relating the STA to

the PRC. The STA is defined as the first moment of the STE:

STA(t1)~MSTE1(t1). Substituting Eq. (7) into Eq. (9) and

evaluating the lowest order, we obtain the approximated equation

relating the STA to the PRC as

STA(t1)~MSTE1(t1)

& s2

ð?
{?

dtsd
(1) ts{Tð Þy1(ts)j(ts{t1)

� �
j

~s2

ð?
{?

dts

ðts

0

dt1d(1) ts{Tð ÞZ(t1)vj(t1)j(ts{t1)wj

~s2

ð?
{?

dts

ðts

0

dt1d(1) ts{Tð ÞZ(t1)d(t1{tszt1)

~s2

ð?
{?

dtsd
(1) ts{Tð ÞZ(ts{t1):

~{s2Z
0
(T{t1):

ð11Þ

To obtain the last line, we used the delta function property,ð?
{?

d(n)(x{a)f (x)dx~({1)nf (n)(a). This result is consistent

with the equation derived by Ermentrout et al. [13].

Next, we derive the approximated equation relating the STC to

the PRC. The STC is defined as the second moment around the

STA: STC(t1,t2)~MSTE2(t1,t2){STA(t1):STA(t2). Similarly,

substituting Eq. (7) into Eq. (9) and evaluating the O(s2) and

O(s4), we obtain

MSTE2(t1,t2)& s2

ð?
{?

dtsd ts{Tð Þj(ts{t1)j(ts{t2)

� �
j

zvs4

ð?
{?

dtsd
(1) ts{Tð Þy2(ts)j(ts{t1)j(ts{t2)wj

zv

s4

2

ð?
{?

dtsd
(2) ts{Tð Þy1(ts)

2j(ts{t1)j(ts{t2)wj:

ð12Þ

Note that the O(s2) term of MSTE2 is equivalent to the

variance of the raw stimulus ensemble Craw and the O(s3) term

disappears since hj(t1)j(t2)j(t3)ij~0; therefore, we should

evaluate O(s4) term including the fourth order correlation

hj(t1)j(t2)j(t3)j(t4)ij. The second term in the right-hand side of

Eq. (12) is

s4

ð?
{?

dtsd
(1) ts{Tð Þy2(ts)j(ts{t1)j(ts{t2)

� �
j

~s4

ð?
{?

dts

ðts

0

dt1

ðt1

0

dt2d(1)(ts{T)Z
0
(t1)Z(t2)

|(d(1)(t1{tszt1)d(t2{tszt2)

z d(1)(t1{tszt2)d(t2{tszt1)z d(1)(t1{t2)d(t1{t2)),

ð13Þ

and the third term is

s4

2

ð?
{?

dtsd
(2) ts{Tð Þy1(ts)

2j(ts{t1)j(ts{t2)

� �
j

~
s4

2

ð?
{?

dts

ðts

0

dt1

ðts

0

dt2d(2)(ts{T)Z(t1)Z(t2)

|(2d(t1{tszt1)d(t2{tszt2)z d(t1{t2)d(t1{t2)):

ð14Þ

By using the delta function property again, we finally obtain the

approximate equation relating the STC to the PRC as follows:

STC(t1,t2)~s2d(t1{t2)z
1

2
s4Z

0
(T)Z(T)d(t1{t2)

zs4H1=2(t2{t1)Z
00
(T{t2)Z(T{t1)

zs4H1=2(t1{t2)Z
00
(T{t1)Z(T{t2),

ð15Þ

where H1=2(x) represents a Heaviside function which takes 1=2 at

x~0.

Feature Space Extraction
Although the input stimulus space is of high dimensionality, the

feature space, which is spanned by the stimuli encoded by neurons,

is a low-dimensional subspace of the full stimulus space. The

feature space can be extracted by conducting an eigenvalue

analysis of the difference between the STC and the correlation of

the raw stimulus input:

DC(t1,t2)~STC(t1,t2){Craw(t1,t2) ð16Þ

The matrix of the STC represents the variance of a collection of

samples in all possible directions within the space of spike-

triggered stimuli, and DC captures the relative change of the

variance of the ensemble of input stimuli due to the rearrangement

of stimuli in the time window preceding each spike. The

eigenvalue of DC, which is equal to the relative change of the

variance in the direction of the corresponding eigenfuction,

characterizes the sensitivity of neuron in response to the

corresponding eigenfuction. The eigenfunctions with positive

eigenvalues are referred to as the excitatory eigenfunctions, which

enhance neural activity, whereas those with negative eigenvalues

are called the suppressive eigenfunctions, which suppress neural

activity. In the case of neural oscillators analyzed here, the stimuli

in the subspace spanned by excitatory eigenfunctions cause shorter

interspike intervals (ISIs) than the average period T , while the

stimuli in the subspace spanned by suppressive eigenfunctions

cause longer ISIs. Here, as in previous studies on spike triggered

analyses for neural oscillators [28], we extract the feature space of

Higher-Order Spike Triggered Analysis
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neurons by computing the set of eigenfunctions with the large

nonzero eigenvalues of DC in absolute value.

PRCs of Hippocampal CA1 Pyramidal Neurons
We used PRCs obtained from hippocampal CA1 pyramidal

neurons by performing whole-cell patch-clamp recordings in vitro

in our previous work [18]. In our protocol for measuring PRCs,

we inject DC depolarizing currents into somata of CA1 pyramidal

neurons to evoke periodic firing. Using the dynamic clamp, the

mean ISI is adjusted to the target period of T by tuning the DC

depolarizing current. Next, a one-shot rectangle perturbation

superimposed on the DC depolarizing current is evoked using

various timings relative to the spike, and we measure how the

perturbation current disturbs the timing of the succeeding spike.

Spike times are randomly fluctuated by intrinsic noise in neurons.

To extract PRCs from stochastic data of phase responses, we apply

the maximum a posteriori (MAP) estimation algorithm that we

proposed [29,30] to the in vitro data. As described in the

Numerical experiments section of the Methods, the notable

feature of this algorithm is its use of a detailed PRC measurement

model formulated as an LPE, which is the same as the one used in

the current study. The effectiveness of the measurement model

and the reliability of the estimated PRCs were verified by testing

whether the LPEs with the estimated PRCs could predict the

stochastic behaviors of the same neurons, whose PRCs had been

measured, when they were perturbed by various periodic stimulus

currents. Detailed explanations of experimental conditions and the

MAP estimation algorithm can be found in [29–31].

Numerical Experiments
Conductance-based model. To verify the algorithms by

using numerical simulations, we use the Morris-Lecar (ML) model

[32] in the form of

C
dV

dt
~{gCam? V{VCað Þ{gK w V{VKð Þ

{gleak V{Vleakð ÞzIext,

ð17Þ

where each ion channel has the following activation profile:

dw

dt
~w:

w?{w

t
,

m?~0:5½1z tanh ((V{v1)=v2)�,

w?~0:5½1z tanh ((V{v3)=v4)�,

t~1= cosh ((V{v3)=(2:v4)):

Depending on the parameters, the ML model has different

bifurcation structures, classified as Type I and Type II [32]. In

Type I model, oscillations emerge through a saddle-node

bifurcation on an invariant circle. The parameters for the Type

I model used in the simulations are C~20 mF , VK~{84 mV ,

gK~8 mS, VCa~120 mV , gCa~4 mS, Vleak~{60 mV ,

gleak~2 mS, v1~{1:2 mV , v2~18 mV , v3~12 mV ,

v4~17:4 mV and w~0:066. In the Type II model, oscillations

emerge through a Hopf bifurcation. The parameters for the Type

II model used in the simulations are C~20 mF , VK~{84 mV ,

gK~8 mS, VCa~120 mV , gCa~4:4 mS, Vleak~{60 mV ,

gleak~2 mS, v1~{1:2 mV , v2~18 mV , v3~2 mV ,

v4~30 mV and w~0:04.

The extra current Iext used in each numerical experiment is

defined as follows.
Numerical calculation of STA and STC. By employing the

Euler method, we numerically solved the ML model with the extra

current Iext in the form of

Iext~Iczsj(t),

where Ic is the depolarizing constant current for inducing

rhythmical firing with an average period T . j(t) is the white

Gaussian noise stimulus satisfying vj(t)w~0 and

vj(t)j(t’)w~2d(t{t’). s is the intensity of the stimulus used

in the numerical simulations. In the Type I model, Ic~41mA for

T~195:83 msec and s~1:0 mA. In the Type II model,

Ic~95 mA for T~91:17 msec and s~6:0 mA.

In the numerical simulation, we measured the spike time, ts

while we stored the noise stimulus j(t). Here, we denote the time

of the ith spike as tsi, and the time sequence of the noise stimulus

that were presented over an averaging interval T preceding the ith

spike as j(tsi{t), (0vtvT ).

We numerically calculated the first moment of STE, MSTE1 by

taking the sample average of the stimuli [3,8]:

MSTE1(t)~
1

Ns

XNs

i~1

j(tsi{t),

where Ns indicates the number of samples. As described above,

the first moment of STE is called the STA. In a similar fashion, we

numerically obtained the second moment of STE, MSTE2 by

calculating the covariance of the stimuli [3,8]:

MSTE2(t1,t2)~
1

Ns

XNs

i~1

j(tsi{t1)j(tsi{t2):

Then, according to the definition of the STC [3,8], we can obtain

the sample STC from the first and second moments:

STC(t1,t2)~MSTE2(t1,t2){MSTE1(t1)MSTE1(t2):

Adjoint method for calculating infinitesimal PRCs. We

numerically calculated the infinitesimal PRCs of the ML model by

using the adjoint method [21,33]. In this numerical calculation, we

used the extra current in the form of Iext~Ic (i.e., without noise).

In the same manner as above, Ic is the depolarizing constant

current for inducing rhythmical firing with the period T . In the

Type I model, Ic~41mA for T~195:83 msec, and in the Type II

model, Ic~95 mA for T~91:17 msec.

Generally, the adjoint to the linearization of the unperturbed

oscillator, dX=dt~F (X ) in Eq. (2) on a limit cycle orbit W(t)
satisfies:

dZ

dt
~{JF (W(t))T Z(t),

where JF (W(t))T is the transpose of the Jacobi matrix of F on the

orbit. Due to the stability of the system in the orbit, the Jacobi

matrix JF (W(t)) only has nonpositive eigenvalues. Hence, the

above adjoint system is unstable, and it has an unstable limit cycle

orbit. This unstable limit cycle orbit corresponds to the

Higher-Order Spike Triggered Analysis
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infinitesimal PRCs. By reversing the time in the numerical

calculation, we can stably obtain the unstable limit cycle orbit.

Estimation of PRCs from artificial data. To check the

applicability of the theory to real neurons, we used a PRC

estimated from a finite sample of artificial phase responses

generated with the Type I ML model. In the numerical simulation

for generating artificial phase response data, we used an extra

current Iext in the form of

Iext~IczGp(t{t0)zcn(t),

where Ic is the depolarizing constant current for inducing

rhythmical firing with an average period T , and Gp(t{t0) is the

rectangle pulse current whose t0 represents the timing of its

appearance. n(t) is white Gaussian noise satisfying vn(t)w~0
and vn(t)n(t’)w~2d(t{t’), and c is the intensity of the noise.

The parameters we used are Ic~41 mA for T~195:83 msec,

c~0:45 mA, amplitude of Gp~20 mA, and duration of

Gp~1:0 msec.

By employing the Euler method, the phase response were

sampled as a sequence of equidistant points,

t0~Dtj(j~0, � � � ,L{1), whose sampling period was Dt~T=L,

and N samples of phase responses were measured at each

sampling point t0~Dtj. Thus, the total number of data was LN.

In the numerical experiment of this paper, L~20 and N~10.

We used the maximum a posteriori (MAP) estimation algorithm

that we proposed in our previous papers to estimate the PRCs

from the artificial data. The notable feature of this algorithm is its

use of a detailed PRC measurement model formulated as the LPE,

which is the same as the one used in this work. Moreover, our

algorithm enables one to estimate hyperparameters including the

smoothness of the PRCs, whereas in previous studies, the

smoothness was selected in an ad-hoc way. A detailed explanation

of the MAP estimation algorithm can be found in [29,30].

Results

Simulation
In order to confirm our theory, we compared the STC

calculated from Eq. (15) and the STC obtained in a numerical

experiment. Figure 1 (A1) and (B1) show the numerically

simulated STCs for Type I and Type II Morris-Lecar (ML)

model [32], respectively. Figure 1 (A2) and (B2) illustrate the

analytically derived STCs, where the PRCs for each ML model

are derived with the adjoint method [21,33]. These analytically

derived STCs are in good agreement with the numerically

simulated ones. This result indicates that the STC can be

computed accurately with our theory.

We conducted an eigenvalue analysis of the neural oscillators.

Figure 2 compares the eigenvalue analyses of the theoretically

derived DC and numerical simulation. The theoretically derived

eigenfunctions with the maximal and minimal eigenvalues (E1 and

E100) are consistent with the numerically simulated eigenfunctions

(Fig. 2 (A2) and (B2)). The theoretical result also matches the

numerical results for the eigenfunctions with second maximal and

minimal eigenvalues (E2 and E99) (data not shown). These results

suggest that our theory can identify the neural feature space of

neurons firing periodically if we know only the PRC.

When applying the theory to extracting the feature space of real

neurons, we have to use the PRCs estimated from a finite sample

of noisy phase responses measured in vitro. Here, we verified how

estimation errors of the PRCs affect the reliability of the STCs. We

numerically generated artificial noisy phase response data using

Figure 1. Numerically simulated STC (A1, B1) and theoretically derived STC (A2, B2). Here the delta-peak at the point t1~t2 is replaced
with the average of the nearest matrix elements values. (A) Type I ML model, s~1:0 (mA). (B) Type II ML model, s~6:0 (mA). The DC input current
used in (A) and (B) is 41:0 (mA) and 95:0 (mA) respectively, which induces regular spikes with intervals of about 195:83 msec and 91:17 msec. In all the
experiments, the numerically simulated STC were computed using a sample of 109 spikes and the matrix size of the STC was 100|100.
doi:10.1371/journal.pone.0050232.g001
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the Type I ML model, and we estimated the PRC from the

artificial data with the maximum a posteriori (MAP) estimation

algorithm that we previously proposed [29]. After that, we

compared the STC, the eigenvalue spectra and the eigenfunctions

calculated from the estimated PRC with those from the PRC

derived with the adjoint method (Fig. 1(A2) and Figs. 3(B)-(D)). As

shown in Fig. 3(A), the estimated PRC with finite noisy samples

conforms to the PRC derived with the adjoint method in the first

half of the period, but is different in the second half of the period.

As shown in Figs. 1(A2), 3(B) and 3(D), the STC and the

eigenfunctions calculated with the estimated PRC are in good

agreement with ones derived by the adjoint method at earlier

times relative to the spike, but they have few differences at later

times relative to the spike.

Feature Space of the Hippocampal CA1 Pyramidal
Neurons

We identified the feature space of rat hippocampal CA1

pyramidal neurons oscillating in the theta frequency range (4–

14 Hz) [15–17]. Figure 4 (A) shows the PRCs of pyramidal

neurons, which have been measured in vitro in previous works

[18,30,31].

Figure 4 (B) shows the STCs calculated from the PRCs and

Fig. 4 (C) the eigenvalue spectra for the STCs arranged in order of

absolute magnitude. Note that it was impossible to accurately

distinguish between a zero and nonzero eigenvalue because of the

numerical precision limitation. Instead, we evaluated the cumu-

lative contribution ratio of the magnitude of the eigenvalues (Fig. 4

(D)). Figure 4 (E) shows the top 4 eigenfunctions highly

contributing to the representation of the feature spaces for each

neuron. Those phasic relationships to the neuron firing (i.e.,

positive and negative parts of the eigenfunctions) are different from

each other. Here, to elucidate the common characteristics of those

eigenfunctions representing highly sensitive inputs of those

neurons, we calculated power spectra of the eigenfunctions

(Fig. 4(F)).

Here we checked a total of five samples including two other

samples of pyramidal neurons not shown in Fig. 4. E1 in all five

samples, including the three samples in Fig. 4, has negative

eigenvalues, and the power spectra of E1 in all samples except for

neuron 2 have peaks in the theta frequency range. For neuron 2,

the power spectrum of E1 has a peak at zero frequency and is

relatively large in the theta frequency range. On the other hand,

E2 in all samples except for neuron 1 has positive eigenvalues, and

the power spectra of E2 in all of five samples have the first peaks at

zero frequency and second peaks in the gamma frequency range

(20–80 Hz). Therefore, we can conclude that the first principal

component of the feature space is the suppressive eigenfunction

mainly composed of theta frequency components, whereas the

second principal component is the excitatory eigenfunction mainly

composed of DC and gamma frequency components. This result

suggests that theta waves suppress neural activity, leading to longer

ISIs than the average period T , whereas DC and gamma waves

enhance neural activity, leading to shorter ISIs.

Discussion

In this study, we proposed the general formulation to relate the

PRC and the nth moment of the STE. At first, using the new

formulation, we analytically derived approximate equations that

relate the PRC to the STA. The relational equation between the

STA and PRC was equal to the equation derived by Ermentrout

et al. [13]. Thus, our formulation method includes their theory.

Next, using the formulation, we were able to successfully derive the

relational equation between the PRC and the STC. This relational

equation allows us to determine the feature space only from the

PRC.

Figure 2. Eigenvalue analyses of the theoretically derived DC and numerical simulation. (A1, B1) The eigenvalue spectrum of the
numerically simulated DC (upper) and the eigenvalue spectrum of the theoretically obtained DC (bottom). (A2, B2) The eigenfunctions associated
with the maximal eigenvalue (E1) and minimal eigenvalues (E100). The eigenfunctions derived from the theoretically obtained DC (gray line) mostly
match those derived from the numerically simulated DC (black line). This eigenvalue analysis is independent of the matrix size of DC.
doi:10.1371/journal.pone.0050232.g002
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We used the relational equation to identify the feature space of

the rat hippocampal CA1 pyramidal neurons oscillating in the

theta frequency range. We showed that the first principal

component representing the feature space is the suppressive

eigenfunction mainly composed of theta frequency components,

whereas the second principal component is the excitatory

eigenfunction mainly composed of DC and gamma frequency

components. This result suggests that the hippocampal CA1

pyramidal neurons oscillating in the theta frequency range are

commonly sensitive to inputs composed of DC, theta, and gamma

frequency components. Theta waves prolong the ISIs of theta

oscillating neurons whereas DC and gamma waves shorten them.

Note that the DC sensitivity is trivial because an increase in the

depolarization current shortens the ISIs. Therefore, our results

imply that during theta oscillation the ISIs of the CA1 pyramidal

neurons can be modulated by inputs oscillating at theta and

gamma frequencies. Several studies have observed the theta

oscillation in the CA1 area of the hippocampus in freely behaving

rats and have found that the gamma waves are superimposed on

the theta oscillation [34], and many researchers have focused on

interactions between theta and gamma oscillations in an attempt

to account for the temporal coding of the hippocampus [35]. Our

finding suggests that interactions between theta and gamma

oscillations can be realized at the single neuron level.

The shape of PRCs shown in Fig. 4 is different from those

measured by Netoff et al [36]. This is because the periods of

oscillatory activates we tuned in measuring PRCs are slightly

shorter than 100 ms intervals they used. It is well known that the

shape of PRCs strongly depends on the period of the oscillation

[37].

As expressed in Eqs. (7) and (8), we ignored the refractoriness in

the formulation for the moment of STE. Using Omori et al.’s

formulation [12], we can deal with the refractory effect, because

this formulation enables us to prevent miscounting events in which

the spike is reset after a spike to just prior to a spike.

Small excitatory inputs applied at the end of the phase cannot

advance the action potential to a time prior to the application of

the stimulus. This causality limit changes the noise characteristics

of a measured PRC at the end of the phase even when no

dynamical change may occur. However, the LPE we used to

describe stochastic fluctuations of phase responses in the MAP

estimation algorithm does not have a resetting mechanism

immediately after spike generation as in the integrate-and-fire

neuron model, so this algorithm cannot deal with the causality

limit problem [18,29,30]. One approach to account for this effect

to estimate the phase advance where the mean is estimated using a

truncated Gaussian distribution to describe stochastic fluctuations

of phase responses [38].

We obtained the STC shown in Figs. 1 (A1) and (B1) from lots

of spikes. The number of neural spikes required for a stable

calculation of the STC is nearly the square of the number required

for the STA. Ermentrout et al. calculated the STA of the olfactory

bulb mitral cell from several thousand spikes [13]; therefore, the

STC requires more than 106 spikes, which is much more than

what would be available in a physiological experiment. On the

other hand, the PRCs have been measured from just several

hundred spikes in several real neurons [18,39–43]. Equation (15)

enables us to obtain the STC of the real neuron through the PRC.

The PRCs of the hippocampal CA1 pyramidal neurons

recorded in vitro used here are defined as changes in ISI between

Figure 3. The STC, the eigenvalue spectrum and the eigenfunctions calculated with the PRC estimated from a finite number of
artificial noisy data. (A) Crosses show artificial phase response data generated with the Type I ML model. c~0:45, L~20 and N~10. The gray solid
line is the PRC derived with the adjoint method, and the black solid line indicates an estimated PRC as a result of applying the MAP estimation
algorithm to the artificial data. (B) STC calculated from the estimated PRC with the artificial data. s~1:0. (C) Upper: the eigenvalue spectrum of DC
calculated from the estimated PRC with finite noisy samples. Lower: one calculated from the PRC derived with the adjoint method, which is the same
as the lower part of Fig. 2(A1). (D) The eigenfunctions associated with the maximum and the minimal eigenvalues, E1 and E100. Black solid lines are
calculated with the estimated PRC. Gray solid lines are calculated with the PRC with the adjoint method, which are the same as the gray solid lines of
Fig. 2(A2).
doi:10.1371/journal.pone.0050232.g003
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two successive single spikes in response to small perturbations for

regularly firing neurons. However, temporal spike patterns of the

hippocampal CA1 pyramidal neurons in vivo show more bursty

behaviors than those we assume here. Hence, our assumption does

not correspond to actual behaviors very well. Despite this, our

theory can be straightforwardly applied to bursty situations. For

bursty neurons, the burst phase response curves (BPRCs), which

are defined as changes in the interval between two successive

bursts in response to small perturbations, can be obtained by

computing with an infinitesimal perturbation approximation and

by directly stimulating the neurons, as we did [44–46]. By using

BPRCs instead of PRCs, one can expect to capture coding

properties closer to those of in vivo situations.

To make in vitro experiments for measuring the PRC look like

in vivo as much as possible, Lengyel et al. injected sinusoidal

inhibitory conductance with the dynamic clamp, which mimics

hippocampal theta oscillation, into somata of CA3 pyramidal

neurons [40]. In contrast, we injected DC depolarizing currents

into somata of CA1 pyramidal neurons to evoke periodic firing. By

using the PRCs under external periodic perturbation, one can

expect to capture coding properties closer to those of in vivo

situations.

As described in Methods section, depending on bifurcation

structures, neural oscillators can be classified as Type I and Type

II [47]. It has been proved that near a bifurcation point, the

infinitesimal PRC of Type I neuron only has positive values,

whereas the infinitesimal PRC of Type II neuron has positive and

negative (biphasic) values [33]. Thus, purely positive PRCs are

habitually called Type I PRCs, whereas biphasic PRCs are called

Type II PRCs. In line with this argument, Steifiel et al. showed

physiologically and numerically that cholinergic action, which

causes the down-regulation of slow voltage-dependent potassium

currents such as the M-current, could switch the PRC from Type

II to Type I [48,49]. This result suggests that cholinergic

modulation may change the bifurcation structure of neural

dynamics, resulting in a qualitative switch of the PRCs type. If

this suggestion is true, cholinergic modulation may cause a change

in the feature space of neurons reflected in a qualitative switch of

the PRCs type as shown in Figs. 1 and 2. From the results of Stiefel

et al and our theory, there arises a possibility that we can do a

longitudinal study of a neural system from the molecular level to

the computational level.
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