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A B S T R A C T   

Helicobacter pylori infects the stomach mucosa of over half of the global population and can lead to gastric cancer. 
This pathogen has demonstrated resistance to many frequently prescribed antibiotics, thereby underscoring the 
pressing need to identify novel therapeutic targets. The inhibition or disruption of nucleic acid biosynthesis 
constitutes a promising avenue for either restraining or eradicating bacterial proliferation. The synthesis of RNA 
and DNA precursors (6-oxopurine nucleoside monophosphates) is catalyzed by the XGHPRT enzyme. In this 
study, using machine learning, artificial intelligence and biophysics-based software, CHEMBRIDGE-10000196, 
CHEMBRIDGE-10000295, and CHEMBRIDGE-10000955 were predicted as promising binders to the XGHPRT 
with a binding score of − 14.20, − 13.64, and − 12.08 kcal/mol, respectively, compared to a control guanosine-5′- 
monophosphate exhibiting a docking score of − 10.52 kcal/mol. These agents formed strong interactions with 
Met33, Arg34, Ala57, Asp92, Ser93, and Gly94 at short distance. The docked complexes of the lead compounds 
exhibited stable dynamics during the simulation time with no global changes noticed. The docked complexes 
demonstrate a significantly stable MM-GBSA and MM-PBSA net binding energy of − 60.1 and − 61.18 kcal/mol 
for the CHEMBRIDGE-10000196 complex. The MM-GBSA net energy value of the CHEMBRIDGE-10000295 
complex and the CHEMBRIDGE-10000955 complex is − 71.17 and − 65.29 kcal/mol, respectively. The 
CHEMBRIDGE-10000295 and CHEMBRIDGE-10000955 complexes displayed a net value of − 71.91 and − 63.49 
kcal/mol, respectively, as per the MM-PBSA. The major driving intermolecular interactions for the docked 
complexes were found to be the electrostatic and van der Waals. The three filtered molecules hold potential for 
experimental evaluation of their potency against the XGHPRT enzyme.   

1. Introduction 

The presence of Helicobacter pylori (H. pylori) in the stomach mucosa 
has been linked to the development of peptic ulcers, gastritis, gastric 
adenocarcinoma, and lymphoid tissue lymphoma. In 1982, the causal 
relationship between H. pylori and various gastric illnesses was discov-
ered, thanks to the research conducted by Warren and Marshall. Their 
groundbreaking work was later recognized with a Nobel Prize in Phys-
iology and Medicine in 2005 (Australia and Robin, 2005). The bacte-
rium is identified in about 50 % of the human population and up to 100 
% in some regions (Mezmale et al., 2020). The bacteria infection is often 
asymptomatic but causes serious symptoms of peptic ulcers and gastritis 
(Kim and Wang, 2021; Liou et al., 2020). H. pylori is ranked third after 
hepatitis B and papillomavirus as the causative agent of cancer (Coates 
et al., 2020). 

The emergence of novel antibiotic resistance mechanisms in Gram- 
negative bacterial infections is a significant concern in the healthcare 
industry. The prevalence of multi-drug resistant (MDR), extensive drug- 
resistant (XDR), and pan-drug resistant (PDR) strains is on the rise, 
which poses a significant threat to the efficacy of antibiotics. The 
development of effective leads to combat this rise in antibiotic resistance 
is of paramount importance to ensure the safety and well-being of pa-
tients (Hutchings et al., 2019). The drug resistance is up to 15–20 % and 
even higher. The pathogen is listed WHO list of 12 bacterial pathogens 
that need prompt action to highlight new drug targets and identify an-
tibiotics (Tacconelli et al., 2018a, 2018b). Among the several biological 
targets that can be targeted for treating H. pylori infections, nucleic acid 
metabolic production could be an innovative target (Keough et al., 
2021). Interrupting nucleic acid biosynthesis can significantly diminish 
the pathogen’s ability to grow and survive. H. pylori transports purine 
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bases from the host, which is compulsory as this process is vital to the 
synthesis of DNA/RNA (Sangavai et al., 2020). Previously, a study has 
established that xanthine-guanine-hypoxanthine phosphoribosyl-
transferase (XGHPRT) is a key enzyme for the constant production of 
purine nucleotide monophosphates (Keough et al., 2021). Considering 
this, the XGHPRT is a vital target for drug intervention. 

The XGHPRT has been documented previously as an attractive target 
against Plasmodium vivax, Mycobacterium tuberculosis, and Plasmodium 
falciparum (Hedstrom, 2009; Keough et al., 2018, 2015). Nucleoside 
phosphonate inhibitors have been designed to mimic substrates of 
enzyme catalysis (Keough et al., 2009). Considering the chemothera-
peutic importance of XGHPRT, herein, in this study several bio-
informatic approaches and software using machine learning, artificial 
intelligence and biophysics-based principles are utilized to identify 
strong binding small molecules to the enzyme active pocket. The 
traditional process of drug discovery is resource-intensive and a lengthy 
task. As such, the integration of information technology with chemistry 
proved successful in streamlining drug design, discovery, and optimi-
zation (Macalino et al., 2015; Sydow et al., 2019; Talele et al., 2010). 
Additionally, it assists in hit-to-lead selection and facilitates profiling of 
compounds’ absorption, distribution, metabolism, excretion, and 
toxicity (ADMET). The recognition of small molecules in this study 
presents a promising avenue for the control of H. pylori infections, 
pending experimental validation in animal models. The potential im-
plications of this finding are significant, as effective treatments for H. 
pylori infections are currently limited. Further research is warranted to 
better understand the mechanism of action of these molecules, as well as 
their efficacy and safety profiles. If validated, these molecules could 
represent a welcome addition to the arsenal of H. pylori treatments 
currently available and could have meaningful implications on public 
health. 

2. Materials and methods 

2.1. ChemBridge drug library preparation 

Selected compounds from the ChemBridge database were used in 
virtual screening against H. pylori XGHPRT. In total of 3928 molecules 
were used in the library. ChemBridge is a library of high-quality 
screening compounds for hits identification. The library for the last 
three decades provided a source of novel drug-like molecules to fulfill 
the requirements of modern drug discovery in both academia and in-
dustry. The ChemBridge currently holds more than 1.3 million com-
pounds that are available for biological activity testing. The selected 
molecules are Food and Drug Administration (FDA) approved drugs. 
The imported library went through energy minimization using the MM2 
force field within the PyRx 0.8 software. Following this, the compounds 
were transformed into.pdbqt format (Dallakyan and Olson, 2015; 
Halgren, 1996). 

2.2. Receptor enzyme structure preparation 

The crystal structure of the H. pylori XGHPRT enzyme was imported 
from the protein database (PDB) in UCSF Chimera v1.16 (Kaliappan and 
Bombay, 2018) by entering the PDB code of 7KL7 (Keough et al., 2021). 
The entry is very recent and made available on 05/05/2021 and has a 
resolution value of 1.47 Å. The crystal structure weighs 37.41 kDa and 
has an atom count of 2,731. The PDB database is handled by Brookhaven 
National Laboratory with more than 8,000 entries (Sussman et al., 
1998). The database has housed the crystal structure of nucleic acids, 
proteins, enzymes, and other biological macromolecules. The retrieved 
structure was preprocessed in UCSF Chimera, where all co-crystallized 
ligands and water molecules were eliminated. Next, the energy of the 
structure was minimized using conjugate gradient and steepest descent 
algorithms for 2,000 iterations. The energy minimization procedure is 
vital to discard any steric clashes present in the structure and add 

missing atoms. The energy-minimized structure, in an analysis con-
ducted by PDBSum, revealed that 91 % of the enzyme lies in the most 
favored regions of the Ramachandran plot and zero residues in the 
disallowed regions (Laskowski et al., 2018). This illustrated the good 
quality of the energy-minimized enzyme structure. 

2.3. Prediction of active site 

The active site of the XGHPRT enzyme was evaluated using the 
PrankWeb server (Jendele et al., 2019) available at (https://prankweb. 
cz/). The PrankWeb server is an online platform to give predictions 
about active sites. 

2.4. PyRx virtual screening 

To carry out the structure-based virtual screening (SBVS) of the drug 
library, the AutoDock Vina v4.2.6 platform available in PyRx 0.8 was 
used (Dallakyan and Olson, 2015). In the PyRx, the molecules and re-
ceptor enzyme were converted into.pdbqt, and then a docking protocol 
was conducted. The dimensions of the grid box were configured along 
the X-axis (24.14 Å), Y-axis (− 1.88 Å), and Z-axis (86.80 Å). The di-
mensions of the box were defined as 25 Å for each of the three co-
ordinates, X, Y, and Z. The number of conformers for each compound 
generated was 100. In the process of evaluating compounds for their 
potential to bind to the XGHPRT enzyme, the best-docked conformation 
is determined according to its lowest binding energy in units of kcal/ 
mol. Subsequently, Discovery Studio Visualizer v2021 and UCSF 
Chimera v1.16 were employed to visualize the best-docked complexes 
(Biovia, 2017; Kaliappan and Bombay, 2018). 

2.5. AMBER molecular dynamics simulation 

The molecular dynamic simulation (MDS) study of selected top 
complexes was accomplished by AMBER v22 software (Case et al., 
2005). The antechamber program was utilized to produce the parameter 
files for the docked complexes (Wang et al., 2001). The compounds’ 
partial charge, bond angle, and length parameterization were done 
using the AMBER General Force Field (GAFF) and the receptor enzyme 
parameters were generated using FF14Sb (Maier et al., 2015; Sprenger 
et al., 2015). The complexes were positioned within a TIP3 water box 
with a padding distance of 12 Å. The CHEMBRIDGE-10000196 complex, 
CHEMBRIDGE-10000295 complex, CHEMBRIDGE-10000955 complex, 
and control system had 15, 13, 18, and 10 counter ions added, respec-
tively. The process of energy minimization for the docked structure was 
executed using two widely accepted methods, namely the steepest 
descent and conjugate gradient methods. The first algorithm was 
applied for 1,500 rounds, while the latter one was used for 2,000 steps to 
get complete energy-minimized systems. An ensemble equilibration of 
the studied complexes was carried out using the number of particles, 
volume, and temperature (NVT) ensemble for 500 ps. This was followed 
by conducting the NVT ensemble using the Berendsen barostate for 1 ns 
while keeping the pressure at 1 bar. During the production run, the 
temperature was conserved using the Langevin algorithm for a duration 
of 200 ns. (Izaguirre et al., 2001). The SHAKE algorithm was applied to 
preserve bonds containing hydrogen atoms during the MDS (Andersen, 
1983). The Particle Mesh Ewald Method was implemented to manage 
the long-range electrostatic interactions. The simulation trajectories 
were examined utilizing the CPPTRAJ module, and for plotting pur-
poses, XMGRACE v5.1 software was used (Roe and Cheatham, 2013; 
Turner, 2005). 

2.6. MM-PBSA binding free energy analysis and revalidation 

The calculation of the binding free energies of complexes was con-
ducted using the AMBER MMPBSA.py module, based on the Molecular 
Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) method (Miller 
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et al., 2012; Navid et al., 2021). In this experiment, a sum of 2,000 
frames was considered from simulation trajectories with the same in-
terval of 1 ns. The MM-PBSA free energies were revalidated using 
WaterSwap, a more advanced method for swapping equal volumes of 
water molecules with ligands occupying the enzyme’s active site cavity 
(Tahir ul Qamar et al., 2021; Woods et al., 2014). 

2.7. ADMET profiling 

The profiling of molecules for ADMET properties was conducted 
utilizing ADMETlab 2.0 (available online at https://admetmesh.scbdd. 
com/). This online integrated platform provides meticulous prediction 
of ADMET properties of small molecules (Xiong et al., 2021). The 
ADMETlab 2.0 is considered the enhanced version of ADMETlab for 
evaluating medicinal and physicochemical properties as well as ADMET 
properties. Though other ADMET software is available, ADMETlab 2.0 
provides a wide spectrum of analysis and is trained with a better dataset 
(Xiong et al., 2021). The comprehensive procedure of the study is 
depicted in Fig. 1. 

3. Results 

3.1. Structure-based virtual screening 

The SBVS process began by identifying the active pocket of the 
H. pylori XGHPRT enzyme using the PrankWeb server. The server pre-
dicted two pockets with scores of 22.78 and 20.41, as shown in S- 
Table 1. During the virtual screening process, three molecules from the 
ChemBridge database, namely CHEMBRIDGE-10000196, CHEM-
BRIDGE-10000295, and CHEMBRIDGE-10000955, were identified as 

promising binders of the enzyme. These molecules had a binding energy 
score of − 14.20, − 13.64, and − 12.08 kcal/mol, respectively, compared 
to a control guanosine-5′-monophosphate, which had a docking score of 
− 10.52 kcal/mol. The details of the top 10 molecules, including their 
binding energy score, IUPAC naming, and key residues involved in in-
teractions are summarized in Table 1. 

The majority of the library compounds were seen docked at the 
central cavity, which is the natural binding site for substrate during 
enzyme catalysis (Fig. 2). CHEMBRIDGE-10000196 major contribution 
was noticed from the terminal 1-ethyl-2,4-dioxo-3-(pyridin-1-ium-2- 
ylmethyl)-1,3,8-triazaspiro[4.5]decan-8-ium moiety which produces 
hydrogen bonds with Gly94, Asn95 and Ser96 at a distance of 2.6 Å, 2.8 
Å and 2.1 Å, respectively. In addition to the above, the analysis showed 
the presence of numerous van der Waals and pi-alkyl interactions. The 2- 
(m-tolyl)-2,5-dihydrofuran ring is mainly engaged in weak hydrophobic 
contacts (Fig. 3). The CHEMBRIDGE-10000295 2-(m-tolyloxy)ethanol 
favored to form strong interactions with Gly94, Asn95, and Ser96 with a 
distance of 2.9 Å, 3.1 Å and 2.5 Å, respectively. The opposite ring 
contributed small in overall binding with the enzyme (Fig. 3). The 
CHEMBRIDGE-10000955 interaction with the enzyme is primarily 
influenced by van der Waals contacts. The following residues were seen 
in weak hydrophobic contacts; Val32, Arg34, Gly35, Ala57, Ile58, 
Leu69, Asp88, Asp92, Ser93, Asn95, Ser96 and Leu97. Only, one 
hydrogen bond with the Leu97 was noticed (Fig. 3). In all the docked 
complexes, it was noticed that both van der Waals and hydrogen bonds 
were essential in keeping a stable ligand binding to the XGHPRT active 
site residues (Du et al., 2016). 

Fig. 1. The stepwise flow of different steps utilized in the current study. The study started with the retrieval of the xanthine-guanine-hypoxanthine phosphor-
ibosyltransferase structure. Then it was used in different phases i.e., SBVS, MDS studies, MMGBSA and MMPBSA binding free energies analysis and WaterSwap-based 
absolute binding free energy prediction. 
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Table 1 
Lead compounds identified in structure-based virtual screening. Each compound 2D structure along with IUPAC naming, binding energy score. The amino acid residues 
participating in the hydrogen bondings and van der Waals interactions are also given.  

Rank Compound ID 2D Structure IUPAC Name Binding 
Energy 
Score 

H-Bonds Van der Waals Interactions 

1 CHEMBRIDGE- 
10000196 

8-(3-(4,5-dihydrofuran-2-yl)benzyl)-1-ethyl- 
2,4-dioxo-3-(pyridin-1-ium-2-ylmethyl)- 
1,3,8-triazaspiro[4.5]decan-8-ium  

− 14.20 Gly94 
Asn95 
Ser96      

Ser59, Asp88, Ile90, Val91, 
Ser93, Leu97, Lys12, 
Ile139, Phe14, Glu144 

2 CHEMBRIDGE- 
10000295 

6-(3-(2-hydroxyethoxy)benzyl)-1-(((1- 
phenylcyclopentyl)methyl)carbamoyl)-6- 
azaspiro[2.5]octan-6-ium  

− 13.64 Gly94 
Asn95 
Ser96 

Val32, Arg34, Gly35, 
Leu69, Asp92, Ser93, 
Leu97, Ile139, Phe141, 
Glu144 

3 CHEMBRIDGE- 
10000955 

1-((3-(4-fluorophenyl)-1H-pyrazol-2-ium-4- 
yl)methyl)-3-(2-hydroxyethyl)-4-(2- 
methylbenzyl)piperazin-1-ium  

− 12.08 Leu97 Val32, Arg34, Gly35, 
Ala57, Ile58, Leu69, Asp88, 
Asp92, Ser93, Asn95, 
Ser96, Leu97 

4 CHEMBRIDGE- 
10000111 

(3-(2-naphthoyl)piperidin-1-yl)(2- 
(dimethylamino)phenyl)methanone  

− 11.33 Ser96 Arg34, Gly35, Ala57, 
Ser59, Asp88, Glu89, 
Val91, Asp92, Ser93, 
Leu97, Ile139, Phe141, 
Glu144 

5 CHEMBRIDGE- 
10000290 

4-((5-isopropyl-2-methyl-1H-pyrazol-2-ium- 
3-carboxamido)methyl)-5-methyl-2-(3-(2- 
methyl-5-methylene-4,5-dihydrofuran-3- 
carboxamido)phenyl)oxazol-3-ium  

− 10.83 Arg34 
Ala57 
Ser93 

Val32, Met33, Gly35, 
Asn56, Ile58, Ser59, Leu69 
Asp88, Ile90, Val91, Gly94, 
Ser96, Leu97 

6 CHEMBRIDGE- 
10000550 

1-benzyl-N,N-dimethyl-5-(2-oxo-1,2,3,4- 
tetrahydroquinoline-4-carbonyl)- 
2,4,5,6,7,7a-hexahydro-1H-pyrazolo[4,3-c] 
pyridine-3-carboxamide  

− 10.06 Ser93 Met33, Gly35, Asn56, 
Ala57, Asp88 Glu89, Ile90 
Val91, Asp92, Gly94, Ser96 
Leu97, Gly144 

(continued on next page) 
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Table 1 (continued ) 

Rank Compound ID 2D Structure IUPAC Name Binding 
Energy 
Score 

H-Bonds Van der Waals Interactions 

7 CHEMBRIDGE- 
10001663 

3-(allylcarbamoyl)-5-((3-methylbenzyl) 
carbamoyl)-1-((5-methylene-4,5- 
dihydrofuran-2-yl)methyl)pyridin-1-ium-4- 
olate  

− 9.67 Asp88 
Ser96 

Val32, Gly35, Ala57, Ser59 
Leu69, Gly89, Ile90, Val91, 
Asp92, Asn95, Leu97, 
Ile139, Phe141, Gly144 

8 CHEMBRIDGE- 
10001746 

3-(2-((2,5-dihydrofuran-2-carboxamido) 
methyl)-5-fluoro-2,3-dihydrobenzofuran-7- 
yl)-2,5-dimethylpyrazine-1,4-diium  

− 8.31 Arg34 
Ile90 
Ser93 

Val32, Gly35, Ser39, Ala57, 
Ile58, Asp88, Val91, Gly94, 
Asp92, Asn95, Ser96, 
Leu97 

9 CHEMBRIDGE- 
10001776 

2-benzyl-5-(4-cyclopentyl-3-oxopiperazine- 
1-carbonyl)benzo[d]oxazol-3-ium  

− 8.04 Met33 
Arg34 
Ala57 
Asp92 
Gly94 

Gly35, Ser59, Asp88, 
Glu89, Ile90, Val91, Ser93, 
Asn95, Ser96, Leu97 

10 CHEMBRIDGE- 
10001792 

1-(4-([1,1′-biphenyl]-4-ylsulfonamido) 
cyclohexyl)-N-cyclopropyl-2,3-dihydro-1H- 
1,2,3-triazole-4-carboxamide  

− 8.07 Gly35 
Asp88 
Gly89 
Ile90 

Val32, Arg34, 
Gly36, Ala57, 
Ser59, Thr62, 
Asp92, Gly94  

Fig. 2. The three-dimensional conformation of docked compounds at H. pylori xanthine-guanine-hypoxanthine phosphoribosyltransferase active pocket. The 
XGHPRT’s N-terminus, C-terminus, and long flexible loop are highlighted. 
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3.2. Understanding docked systems’ movements 

Even though molecular docking studies are highly useful in terms of 
the prediction of intermolecular docking conformation and predicting 
the binding energy of docked ligand(s), nevertheless, they only provide 
information on a single static binding mode (Ahmad et al., 2019a; El 
Bakri et al., 2021; Shaker et al., 2021). As the apo biomolecules and 
docked biomolecules behave in dynamics, understanding complex 
movements as a function of time is vital to guiding atomic-level in-
teractions between the receptor residues and ligands. The simulation 
trajectories were resolved using Newton’s equation of motion and plots 
were generated to decipher the complexes’ stability and deviation along 
the simulation time. The evaluation of the root mean square deviation 
(RMSD) was conducted by taking into consideration the carbon alpha 
atoms. RMSD is a key parameter to highlight whether the system under 
investigation is in an equilibrium state or not (Maiorov and Crippen, 
1994). The backbone structure conformation of complexes is plotted 
versus time. The RMSD analysis of all complexes is provided in Fig. 4A. 
Notably, all the studied complexes were observed in stable conformation 
with very minor variations observed throughout the time. The mean 
RMSD of the CHEMBRIDGE-10000196 complex, CHEMBRIDGE- 
10000295 complex, CHEMBRIDGE-10000955 complex, and control 
system is 1.68 Å, 1.42 Å, 1.76 Å and 1.77 Å, respectively. It is very 
noticeable that the studied systems showed stable dynamics compared 
to control systems. This is again a confirmation of strong intermolecular 
affinity and stable binding mode throughout simulation time. Secondly, 
as the interactions between the compounds and receptors are guided by 
the binding site residues, it is important to examine the residue level 
stability and fluctuations (Ahmad et al., 2017). The minor structure 
deviations were noticed due to loops of the receptor enzyme that upon 
compounds binding showed flexibility. This was achieved by evaluating 
the root mean square fluctuation (RMSF), which was done on backbone 
carbon alpha atoms (Fig. 4B). A coherence in the findings was noticed. 
The mean RMSF of the CHEMBRIDGE-10000196 complex, 
CHEMBRIDGE-10000295 complex, CHEMBRIDGE-10000955 complex, 
and control system is 1.43 Å, 1.23 Å, 1.18 Å and 1.87 Å, respectively. 
The bulk of the active site residues: Met33, Arg34, Ala57, Asp92, Ser93, 
and Gly94 were found to have very stable RMSF values (<2 Å). The 
small fluctuating regions were those present in the loops, which are 
naturally flexible and the deviations may contribute to ligand adjust-
ment during enzyme natural catalysis. Further, surety about the 

complexes’ stable nature and equilibrium and compact behavior was 
derived from the radius of gyration (Rg) analysis (Lobanov et al., 2008). 
According to this analysis, the complexes displayed a strong docked 
behavior (Fig. 4C). The Rg values for the CHEMBRIDGE-10000196, 
CHEMBRIDGE-10000295, and CHEMBRIDGE-10000955 complexes 
along with the control system were measured and compared. The 
average Rg values were found to be 56.32 Å, 53.87 Å, 55.69 Å, and 
57.02 Å, respectively. 

3.3. Estimation of binding free energies 

The nature of compounds binding to xanthine-guanine- 
hypoxanthine phosphoribosyltransferase in terms of chemical in-
teractions was investigated through simulation trajectories based on 
endpoint binding free energy methods like MM-PBSA and molecular 
mechanics generalized Born surface area (MM-GBSA) (Alamri et al., 
2022; Fatima et al., 2022; Miller et al., 2012; Wang et al., 2019). Both 
these methods are appreciable in terms of speed and accuracy. Ac-
cording to the data shown in Table 2, it is apparent that all the docked 
complexes have demonstrated a notably stable net binding energy. The 
CHEMBRIDGE-10000196 complex demonstrated MM-GBSA and MM- 
PBSA values of − 60.1 and − 61.18 kcal/mol, respectively. The MM- 
GBSA net energy values of CHEMBRIDGE-10000295 complex and 
CHEMBRIDGE-10000955 complex were − 71.17 and − 65.29 kcal/mol, 
respectively, whereas the MM-PBSA net values reported for the same 
complexes were − 71.91 and − 63.49 kcal/mol, respectively. The values 
indicate the system’s high intermolecular affinity and docked confor-
mation stability, resulting in very stable energies throughout the simu-
lation period. The gas phase energy was determined as the major driving 
energy for stabilizing the intermolecular interactions, especially the van 
der Waals force, which dictates the energy parameters. The van der 
Waals energy values for the CHEMBRIDGE-10000196 complex, 
CHEMBRIDGE-10000295 complex and CHEMBRIDGE-10000955 com-
plex were − 56.89, − 64.82, and − 58.92 kcal/mol, respectively. The 
dominance of van der Waals contacts was evident from the molecular 
docking section, where the compounds were noticed along the length to 
produce short, intermediate, and long-distance van der Waals bonding. 
Another force of the gas phase energy that contributed to the global 
stability of complexes was electrostatic energy. The net electrostatic 
energy values of the CHEMBRIDGE-10000196 complex, CHEMBRIDGE- 
10000295 complex, and CHEMBRIDGE-10000955 complex were 

Fig. 3. The chemical interactions plotting of compounds with the H. pylori xanthine-guanine-hypoxanthine phosphoribosyltransferase active pocket residues.  
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− 22.63, − 24.06, and − 25 kcal/mol, respectively. This is another 
confirmation that both electrostatic and van der Waals energies balance 
the recognition and docking of compounds to the active pocket of 
xanthine-guanine-hypoxanthine phosphoribosyltransferase. According 
to the net energy value calculated using both MM-PBSA and MM-GBSA, 
the complex of CHEMBRIDGE-10000295 was ranked as the most stable 
complex in comparison to the other two systems. The solvation energy 

was predicted to be non-favorable due to the negative contribution to 
complex formation. The net MM-GBSA solvation energy for complexes 
was in the following order; CHEMBRIDGE-10000196 complex (19.42 
kcal/mol), CHEMBRIDGE-10000295 complex (17.71 kcal/mol), and 
CHEMBRIDGE-10000955 complex (18.63 kcal/mol). The solvation en-
ergy values for the CHEMBRIDGE-10000196 complex, CHEMBRIDGE- 
10000295 complex and CHEMBRIDGE-10000955 complex were 

Fig. 4. The time-dependent dynamics of docked complexes and their behavior over a duration of 200 ns. The analysis comprised three key parameters, namely (A) 
RMSD, (B) RMSF, and (C) Rg, with a specific focus on the carbon alpha atoms of the complexes. 
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18.34, 16.97, and 20.43 kcal/mol, respectively. Compared to the lead 
systems, the control complex secured less binding energy scores. The net 
MM-GBSA control complex energy value was − 48.76 kcal/mol, while 
the MM-PBSA net energy value was − 49.77 kcal/mol. Details of the 
control system and the lead complexes energies are tabulated in Table 2. 

3.4. Prediction of entropy energy 

Further confirmation of the intermolecular docked complexes was 
accomplished using AMBER normal mode entropy energy estimation 
(Ahmad et al., 2018). The entropy energy estimation is very costly, so 
limited simulation frames were analyzed in the AMBER normal mode 
entropy calculation (Genheden et al., 2012). The entropy energy of 
systems was split into translational, rotational, and vibrational energy. 
The CHEMBRIDGE-10000196 complex was depicted as the most stable 
in terms of having less disorder energy. The net energy value of the 
CHEMBRIDGE-10000196 complex was − 2.41 kcal/mol. The 
CHEMBRIDGE-10000295 complex and CHEMBRIDGE-10000955 com-
plex were found to have unstable entropy energy scores of 3.85 kcal/mol 

and 5.20 kcal/mol, respectively. The control system was ranked unsta-
ble compared to other complexes. The AMBER normal entropy energy 
score for each complex is given in Table 3. 

3.5. WaterSwap analysis 

The MM-GBSA and MM-PBSA methods for binding free energy pre-
dictions though quite popular, still suffer from some drawbacks. For 
example, the influence of water molecules that connect the ligand with 
receptor residue atoms is not factored in during calculation. On the other 
hand, the WaterSwap considers the ligand-water and receptor-water 
interactions. This method has been implicated in many studies in 
recent times to validate the docking and MM-PBSA findings (Ahmad 
et al., 2019b; Raza et al., 2019). The WaterSwap analysis utilizes three 
distinct algorithms to execute free energy calculations, namely free 
energy perturbation (FEP), thermodynamic integration (TI), and the 
Bennetts algorithm (Bergström and Larsson, 2018; Woods et al., 2014). 
CHEMBRIDGE-10000955 was determined as the most stable with en-
ergy values of − 43.91 (kcal/mol; Bennetts), − 42.61 (kcal/mol; TI), and 

Table 2 
Free energy values estimated by MM-GBSA and MM-PBSA methods. All the values are expressed in kcal/mol.  

Method Energy Parameter CHEMBRIDGE-10000196 CHEMBRIDGE-10000295 CHEMBRIDGE-10000955 Control Complex 

MM-GBSA Van der Waals Energy  − 56.89  − 64.82  − 58.92  − 44.10 
Electrostatic Energy  − 22.63  − 24.06  − 25.00  − 16.50 
Delta Gas Phase Energy  − 79.52  − 88.88  − 83.92  − 60.6 
Delta Solvation Energy  19.42  17.71  18.63  11.84 
Net Energy  − 60.1  − 71.17  − 65.29  − 48.76 

MM-PBSA Van der Waals Energy  − 56.89  − 64.82  − 58.92  − 44.10 
Electrostatic Energy  − 22.63  − 24.06  − 25.00  − 16.50 
Delta Gas Phase Energy  − 79.52  − 88.88  − 83.92  − 60.6 
Delta Solvation Energy  18.34  16.97  20.43  10.83 
Net Energy  − 61.18  − 71.91  − 63.49  − 49.77  

Table 3 
AMBER normal mode entropy estimation for complexes. The values are in kcal/mol.  

Complex Translational Rotational Vibrational Total DELTA S total 

CHEMBRIDGE-10000196 18.28 (0.15) 21.33 (0.20) 2515.03 (1.64)  2,554.64  − 2.41 
CHEMBRIDGE-10000295 24.11 (0.52) 22.16 (0.43) 2634.05 (2.49)  2,680.32  3.85 
CHEMBRIDGE-10000955 20.64 (0.81) 21.86 (0.71) 2420.78 (4.19)  2,463.28  5.20 
Control 18.34 (0.52) 14.12 (0.55) 2228.10 (3.34)  2,260.56  11.62  

Fig. 5. The binding free energies calculated by different algorithms of WaterSwap including free energy perturbation (FEP), thermodynamic integration (TI) and 
Bennetts algorithm. The resultant values are presented in units of kcal/mol. 
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− 41.2 (kcal/mol; FEP). The algorithms have scored < 1 kcal/mol, 
indicating well-converged systems (Fig. 5). The very negative scoring in 
WaterSwap demonstrates the complexes showed tremendous stable 
dynamics with strong intermolecular conformation and interactions. 

3.6. ADMET profiling of lead molecules 

The bad and undesirable ADMET properties of lead molecules 
collected after a tedious drug discovery process may result in late-stage 
attrition (Pires et al., 2015). Thus, ADMET profiling of compounds at 
early stages can bring new dimensions to potent drug development 
(Alamri et al., 2023; Altharawi et al., 2021; Jia et al., 2019). The 
computational methods in ADMET profiling provide faster prediction 
and are economically viable with no need for expensive laboratory re-
sources. The CHEMBRIDGE-10000196, CHEMBRIDGE-10000295, and 
CHEMBRIDGE-10000955 compounds’ properties against upper and 
lower limits are plotted as radar and given in Figs. 6, 7, and 8, respec-
tively. The properties of the compound that have been analyzed include 
its molecular weight (MW), the number of rings (nRig), the number of 
heteroatoms (nhet), formal charge (fchar), the number of atoms in the 
biggest ring (MaxRing), the number of rotatable bonds (nRot), the 
number of rigid bonds (nRig), the number of hydrogen bond donors 

(nHD), the number of hydrogen bond acceptor (nHA) and the topolog-
ical polar surface area (TPSA). All three lead molecules identified herein 
were found to satisfy the physicochemical properties limits of the 
ADMETlab 2.0 radar; thus, they can be classified as good drug molecules 
and possess properties that can make them good lead molecules. The 
comprehensive ADMET profiling of compounds is provided in S-Table 2. 
Briefly, the compounds are accepted by Lipinski’s rule of five (Lipinski, 
2004). Per Lipinski’s rule, compounds that adhere to this principle are 
more likely to possess favorable oral bioavailability, leading to increased 
gastrointestinal absorption and distribution. 

Similarly, the compounds have zero alert for the pan-assay inter-
ference compounds (PAINS) (Whitty, 2011). The zero alerts for PAINS 
ensure that the investigated molecules will interact with a single specific 
biological target and might not cause any false positive results in a high 
throughput virtual screening process. The synthetic accessibility score 
CHEMBRIDGE-10000196 and CHEMBRIDGE-10000295 was observed 
less than 6, which mean that the compounds can be easily synthesized 
experimentally and can be used for biological activities validation. 
Additionally, the compounds were categorized to have less cytotoxicity 
and are non-mutagenic, which are essential parameters in drug discov-
ery and design. 

Fig. 6. ADMET profiling of CHEMBRIDGE-10000196. The yellow shadow and pink regions represent upper limits and lower limits, respectively while the blue line 
stands for compound properties. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4. Discussion 

The burden of H. pylori infection on the developing countries’ 
healthcare system is significant. This results in poor management of the 
infection and leads to a higher mortality rate (Hussein et al., 2021). The 
H. pylori burden is observed to be in high prevalence among children and 
adolescents (Liou et al., 2020). To effectively tackle the pathogen, 
appropriate screening combined with early identification can be helpful 
to avoid complications (Hutchings et al., 2019). From a treatment 
perspective, serious efforts are needed to look for new biological path-
ways and targets against the pathogen (Van Drie, 2007). Traditional 
techniques though quite successful in the past take a lot of time and 
often fail. 

In contrast, computational techniques based on genomics and pro-
teomic data can speed up novel target identification and subsequently 
new drug molecules (Siva Kumar et al., 2022). In particular, the 
implementation of artificial intelligence, machine learning and 
biophysics-based techniques proved to be highly useful in this regard 
(Bajorath et al., 2020). The CADD approaches have been successfully 
applied to identify promising inhibitors against the targeted enzyme. In 
one study, using different CADD techniques, a top compound “B5” was 

identified as a promising inhibitor of the DNA excision repair protein 
ERCC-1 and DNA repair endonuclease XPF complex. The compound is 
also proven experimentally to show active biological potency (IC50 =

0.49 µM) (Gentile et al., 2020). In another work, FDA-approved drugs 
were found to show potent binding with the SARS-CoV-2 binding re-
ceptor, the angiotensin-converting enzyme-2 (Ahmad et al., 2021). In 
this work, the use of different applications and software based on ma-
chine learning, artificial intelligence and biophysics principles allowed 
us to predict three promising lead structures (CHEMBRIDGE-10000196, 
CHEMBRIDGE-10000295, and CHEMBRIDGE-1000095) against 
H. pylori XGHPRT enzyme. The compounds were proved to show stable 
binding to the enzyme active site and revealed robust chemical inter-
action patterns. Therefore, it is highly suggested to use the compounds 
in different enzyme-based assays to test the biological effectiveness of 
the drugs. 

5. Concluding remarks 

In this work, three compounds namely CHEMBRIDGE-10000196, 
CHEMBRIDGE-10000295, and CHEMBRIDGE-1000095 were identified 
as the best binders of H. pylori XGHPRT enzyme. These predictions were 

Fig. 7. ADMET profiling of CHEMBRIDGE-10000295. The yellow shadow and pink regions represent upper limits and lower limits, respectively while the blue line 
stands for compound properties. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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made based on machine learning, artificial intelligence and biophysics- 
based principles. The compounds dock deep inside the pocket between 
the N-terminus and a long flexible loop. Multiple hydrogen bonding and 
van der Waals interactions were reported in compounds docking with 
the XGHPRT enzyme. The balance interactions of compounds with the 
enzyme demonstrate stable docked and dynamic behavior of complexes. 
Although the results of the present study display promising results, it is 
important to acknowledge that the lack of experimental testing is one of 
the main limitations of the work. Such studies could provide valuable 
insights into the biological characteristics of these molecules and their 
potential applications in relevant fields. Nevertheless, the study findings 
might be useful in speeding up drug discovery and optimization against 
XGHPRT in general and specifically against H. pylori. 
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