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Cancer cell dormancy is a common feature of human tumors and represents a major

clinical barrier to the long-term efficacy of anticancer therapies. Dormant cancer cells,

either in primary tumors or disseminated in secondary organs, may reawaken and relapse

into a more aggressive disease. The mechanisms underpinning dormancy entry and

exit strongly resemble those governing cancer cell stemness and include intrinsic and

contextual cues. Cellular and molecular components of the tumor microenvironment

persistently interact with cancer cells. This dialog is highly dynamic, as it evolves over

time and space, strongly cooperates with intrinsic cell nets, and governs cancer cell

features (like quiescence and stemness) and fate (survival and outgrowth). Therefore,

there is a need for deeper insight into the biology of dormant cancer (stem) cells and

the mechanisms regulating the equilibrium quiescence-versus-proliferation are vital in

our pursuit of new therapeutic opportunities to prevent cancer from recurring. Here, we

review and discuss microenvironmental regulations of cancer dormancy and its parallels

with cancer stemness, and offer insights into the therapeutic strategies adopted to

prevent a lethal recurrence, by either eradicating resident dormant cancer (stem) cells

or maintaining them in a dormant state.

Keywords: tumor microenvironment, cancer stem cells (CSC), disseminated cancer cells (DCC), reawakening,

dormancy, immunoediting of cancer, immune escape, tumor evolution

INTRODUCTION

Despite the many noteworthy improvements in early diagnosis and treatment of primary tumors
in recent years, in many cases, cancer patients develop distant metastases that, almost invariably,
portend a poor prognosis. The current view is that metastatic relapse is caused by the reawakening
of disseminated cancer cells (DCCs) from a dormant and asymptomatic state, after a time-lag
lasting from a few months to several years.

Cancer dormancy is broadly defined as a stalled phase of cancer progression during which
single cancer cells or microscopic tumor bulks remain clinically undetectable, yet retain the ability
to progress into overt disease (1). Pristine mentions of cancer dormancy date back to the 1950s,
when clinicians hypothesized that dormancy could explain cases of relapse observed several years

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.02166
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.02166&domain=pdf&date_stamp=2020-10-21
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ruggero.demaria@unicatt.it
https://doi.org/10.3389/fimmu.2020.02166
https://www.frontiersin.org/articles/10.3389/fimmu.2020.02166/full


Sistigu et al. Microenvironmental Go-to-Sleep and Wake-Up Forces

FIGURE 1 | Principles and temporal course of cancer dormancy. Along with primary tumor development, a state of dormancy (red line) allows the survival of

microscopic bulk cancer cells. The progressive evolution of the tumor, accumulating genetic and epigenetic changes, and its microenvironment, molding immune, and

angiogenic contextures, eventually lead to tumor outgrowth (blue line). At this time, early disseminated cancer cells may develop and home to metastatic sites (mainly

bone marrow, lungs, lymph nodes, and brain). Following treatment (either surgery or therapy or both) leading to tumor regression, resistant cells may persist latent (red

line) and constitute an undetectable minimal residual disease. At this time, late disseminated cancer cells may develop and join early counterparts at secondary

organs. After a time lag, which can last from a few months to many years, these disseminated cells may overgrow and give rise to metastatic clinical relapse (blue line).

Dormancy might be due to solitary cells entered into a G0 phase of cell cycle arrest (cancer cell dormancy) or to the equilibrium between the rate of proliferation and

apoptosis (tumor mass dormancy) mainly influenced by angiogenic and immunological cues.

after post-surgical and post-therapy remission (2). Nowadays,
it is well-proven that dormancy is an adaptive and protective
mechanism thatmalignant cells adopt to survive stress conditions
of the tumor microenvironment (TME) (3). Moreover, cancer
dormancy is considered a crucial part of the natural history

of cancer evolution, irrespective of whether it occurs during
primary tumor development (primary dormancy) or metastatic
colonization (metastatic dormancy) (4) (Figure 1). In this
setting, if the TME is growth permissive, cancer cells proliferate
and give rise to overt diseases. If instead, the TME is
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not-permissive, cancer cells either are eradicated via the
activation of regulated cell death or an irreversible proliferative
arrest known as cellular senescence or survive by entering
reversible dormancy. Dormant cells could then contribute to
disease evolution by increasing their fitness via enforcement of
genetic and epigenetic editing (5), and/or by promoting the
remodeling of the TME, which then becomes “fertile soil” for
outgrowth (3).

Three additional layers of complexity are emerging in
the field of cancer dormancy, all of which have therapeutic
relevance. First, at the molecular level, both the entry to and
exit from dormancy are finely regulated by the cooperative
action of cellular and molecular components of the TME
(3). Of note, these contextual cues trigger a multitude of
dormancy inducing signaling, and almost all overlap with those
that induce cancer stemness (6, 7). This is supported by the
evidence that cancer stem cells (CSCs)—the subset of cancer
cells endowed with self-renewal ability, therapy-resistance, and
immune evasion (8–10)—may switch between dormant and
proliferative states (6, 7), resulting in an increased metastatic
potential (11). Second, at the mechanistic level, tumor dormancy
encompasses cellular dormancy (i.e., the condition in which
solitary cancer cells temporarily arrest their cell cycle), and
tumor mass dormancy, which refers to the condition in which
clusters of indolent malignant cells enter a state of balanced
proliferation/apoptosis rate (1). This balance, which prevents
a tumor from increasing in size, seems to rely on (i) the
absence of new vessel sprouting (so-called angiogenic dormancy)
(3, 12), and (ii) immunosurveillance (so-called immunologic
dormancy) (3, 13, 14). Finally, even though cellular senescence
is widely considered as an irreversible and persistent cell
cycle arrest (15), instances of reversible senescence and a
causal link of the latter to disease recurrence have also been
reported (7, 16).

In this study, we first describe the process of metastasization
and the experimental models developed to study cancer
dormancy and then discuss the role of the TME factors in
regulating cancer dormancy and reawakening at metastatic sites.
In particular, we focus on the intimate cooperation between
different TME signals as we cover the complex relationship
between immune-mediated dormancy and dormancy-mediated
immune escape. During these discussions, we highlight the
striking parallels between cancer dormancy and cancer stemness
and summarize the current use of and ensuing therapeutic
opportunities to prevent the occurrence of life-threatening
metastatic relapse.

METASTASIS: MODELS, EVOLUTION AND
DORMANCY

It is estimated that metastatic relapse is responsible for as much
as 90% of cancer-related deaths (17, 18). This is ascribed to
the fact that progressing metastases rapidly become incurable,
spread to additional sites, and compromise the function of vital
organs (17). The clinical importance of cancer metastasis has
been undeniable since the recognition of cancer as a disease,

which has fostered massive experimental efforts to understand its
origins and nature (19).

Taking stock of the increasingly large body of research to date,
metastasis can be depicted as a sequential, multi-step process
collectively conceptualized as the invasion-metastasis cascade
(19–22). This sequence of events includes: (i) single cancer cell
detachment from the primary tumor and infiltration of the
surrounding tissues (invasion); (ii) stimulation of neo vessel
sprouting (neoangiogenesis); (iii) entering of cancer cells into
blood vessels (intravasation), where these cells acquire the status
of circulating tumor cells (CTCs); (iv) survival of CTCs to the
hematogenous environment; (v) the leakage of CTCs from the
bloodstream (extravasation) followed by their homing to distant
organs, where they acquire the status of DCCs; and (vi) formation
of micro metastatic bulks by DCCs and their adaptation to the
new microenvironment (colonization) (23, 24). The metastatic
cascade is full of rate-limiting steps, which explains why only
a small percentage (0.02%) of DCCs successfully take root and
rise into overt metastases (25). Indeed, after homing to a distant
site, DCCs face a newmicroenvironment almost always devoid of
growth permissive factors, resulting in DCC demise/senescence
or entry into dormancy (1, 23, 26). As anticipated above,
the acquisition of a dormant state is a strategy that enables
cancer cells to perpetuate the disease while remaining under
the radar for a protracted time, until both their fitness and the
environmental conditions become permissive for growth (5).
In this evolutionary process, the more DCC variants acquire
genetic and epigenetic alterations, the higher is their probability
of outgrowing in target organs.

Based on genetic comparative analysis studies, different
evolutionary models have been proposed to explain the process
of metastasization. In the linear progression model, metastases
are late, even final events of primary tumor development (27)
arising from the progressive accumulation of somatic alterations
in cancer cells of the primary tumor (28, 29) that are under
the selective pressure of heterotypic signals from the TME
(30). Such a unidirectional timeline of events is initiated by
the emergence of a cancer cell clone with metastatic capability
followed by its dissemination to distinct organs. As a result,
primary and metastatic sites are genetically related, although
major differences can derive from the development of metastases
from rare subclones (27, 31, 32) or the acquisition of specific
genetic/epigenetic variation at the primary and/or colonization
site. On the contrary, the parallel progressionmodel assumes that
DCCs develop early during tumor onset, perhaps even before
the formation of overt primary lesions (33–38). This model
implies that primary andmetastatic tumors evolve independently
from each other, resulting in them having a completely different
genetic makeup (39, 40). Hence, cancer cells may constantly
disseminate during primary tumor progression and evolve,
giving rise to different cell variants, outside of the primary lesion.
Finally, the tumor self-seeding model postulates a bidirectional
exchange of cancer cells between parallel primary and metastatic
lesions, denying the hypothesis of independent tumor evolution
at primary and colonization sites (41).

Irrespective of the precise metastatic model, DCCs surviving
this process are generally incompetent at growing in colonization
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sites and enter dormancy. This is clinically relevant, as beyond
enhancing cancer cell fitness and aggressiveness, metastatic
dormancy also induces resistance to therapy (5). Indeed, as
conventional anticancer therapies target rapidly proliferating
cancer cells, quiescence appears as the most consistent defense
strategy of tumors to resist therapy. In particular, therapy-related
dormancy preserves the survival of such cell subpopulations,
which are the precursors of tumor relapse constituting the so-
called minimal residual disease (MRD) (42) (Figure 1).

Cancer dormancy stands out as more than simple quiescence
and clinical undetectability, instead, it is a multifaceted and
plastic phenomenon with a tremendous impact on therapy
outcome and patient survival. This is the reason why dormancy
represents amajor clinical conundrum and a hot research topic in
oncology. We need to gain further insights into the mechanisms
governing cancer dormancy and reawakening, as this would open
new avenues for preventing or treating metastatic disease. To
accomplish this need, a number of experimental preclinical and
computational models have been developed.

MODELS OF CANCER DORMANCY:
PRINCIPLES AND APPLICATIONS

Over the past two decades, an intensive wave of investigation
in the field of tumor dormancy has led to the development
of various experimental models that investigate the molecular
mechanisms and circuitries regulating dormancy as well as
the intricate cross-talk between dormant cancer cells and host
immune cells (3, 43). Experimental strategies conceived to study
cancer dormancy encompass: (i) in vitro and ex vivo models; (ii)
in vivo models; (iii) mathematical and computational models.
Table 1 summarizes these current methods, which are also briefly
described here.

In vitro and ex vivo Models of Cancer
Dormancy
Despite constituting a highly simplified depiction of the TME,
in vitro models of cancer dormancy provide major advantages
including the unique possibility (i) to study, at a single cell
resolution, the crosstalk between cancer cells and the other
cellular and non-cellular components of the TME; and (ii)
to functionally suppress or completely remove specific cell
populations that are essential for animal survival and as such,
difficult to be studied in in vivo models. The regulatory
mechanisms identified through in vitro models, however, always
need validation in more complex and realistic in vivomodels.

Two-dimensional (2D) and three-dimensional (3D) cell
cultures are the standard in vitro tools for investigating the
mechanisms of cellular dormancy as well as the interactions
with selected players of the microenvironment regulating major
steps of dormancy such as cell cycle arrest, immunogenicity,
differentiation, and therapeutic resistance. In the simplest 2D
cell culture setting, cancer cells from either immortalized or
primary cell lines are seeded on selected stromal components
[e.g., fibronectin 1 (FN1), collagen I, collagen IV, among
others] at clonogenic densities to favor cell interaction with
the substratum and in the presence of microenvironmental

TABLE 1 | Models for studying cancer dormancy.

In vitro and ex vivo models References

2D cultures:

Cancer cells are cultivated on extracellular matrix (ECM)

component-coated plates.

Breast cancer + fibronectin + fibroblast growth factor-2

(44)

(45)

3D cultures:

Dormant cancer cells remain quiescent in 3D bioengineered

models.

Biomaterial based model (46)

Breast Cancer + Basement Membrane Matrix

Breast Cancer + Bone Marrow and Lung Niche Cells +

laminin-rich ECM

Breast Cancer + Bone Marrow Niche Cells + Collagen

biomatrix

Breast, Colon and Pancreatic Cancer + Stiff Col-Tgel

Bladder, Prostate Cancer + Prostate Niche Cells + Amikagel

Breast and Ovarian Cancer + Collagen gel

Melanoma + Fibrin gel

Brain Metastatic Breast Cancer + Hyaluronic Acid Hydrogel

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

Microfluidic based models/Organ-on-a-Chip

Breast Cancer + Hepatic Niche Cells + PEG hydrogel

LiverChip and Breast Cancer

Lung Cancer-on-a-Chip

(55–58)

Bioreactor based model

Breast Cancer + Bone Niche Cells (59, 60)

In vivo models

Mouse vaccination and tumor challenge

BCL1 mouse lymphoma model

DA1-3b of acute myeloid leukemia

(61)

(62)

Experimental metastasis assays:

Cancer cells are injected directly into the circulation (e.g., tail

vein, left cardiac ventricle, iliac artery)

(63)

(64–66)

Spontaneous metastasis assays:

Cancer cells are injected orthotopically or subcutaneously. (67)

(68, 69)Spontaneous tumor models:

Genetically engineered mouse models of oncogene

ablation/induction (e.g., Myc, Kras)

Transgenic mouse models (e.g., MMTV-PyMT,

MMTV-HER2, RET)

(70–72)

(33, 73)

Resection mouse models (74, 75)

PDX models (76–78)

Mathematical and Computational models

Ordinary differential equations (79–81)

Mechanistic modeling (82, 83)

Gene regulatory networks (84, 85)

Systems biology models (86)

soluble factors [e.g., epidermal growth factor (EGF) and basic
fibroblast growth factor]. The effect of such extracellular matrix
(ECM) factors on cancer cell dormancy, survival, and metastatic
potential can then be evaluated by analyzing (as examples)
cell clonogenic potential upon staining with crystal violet or
cancer cell morphology, phenotype, cell cycle arrest, proteome
and transcriptome employing standard methods of cellular
and molecular biology (e.g., by microscopy, flow cytometry,
western blot, qRT-PCR, and other techniques) (44, 45). In
this setting, the 2D system can be easily perturbed by the
addition of blocking antibodies, inhibitors, or peptides, partially
mimicking the tumor microenvironmental conditions (44, 45).
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In this context, the recent development of microfluidic devices,
bioreactors, and biomaterials, has driven researchers into a 3D
cell culture-based multidisciplinary approach to detect, profile
and even treat dormant cancer cells, spanning from fundamental
biology to high-throughput screening (87–91). Indeed, cells
cultured in a 3D model system more closely mimick the
in vivo conditions and address most of the factors that can
impact cancer dormancy, such as cell-to-cell and cell-to-ECM
interactions, tissue architecture, proteomic and metabolomics
profiles, and oxygen levels (92). 3D cell cultures can be generated
by using either natural (Cultrex, laminin-rich ECM, collagen)
(46–49) or synthetic biomaterials (collagen-based and fibrin-
based hydrogels, amikagels, and hyaluronic acid hydrogels) (50–
54). Moreover, organ-on-chip 3D models provide a way to study
cancer dormancy at growing steps of complexity from a cell,
to tissue till organ levels, and offer the possibility to perform a
real-time, high-resolution analysis taking into consideration the
inter-tissue interfaces, the fluid flows, and mechanical strengths,
which are all features known to affect tumor dormancy (55–
59). Similarly, bioreactors allow researchers to monitor and alter
the chemical composition of the culture and thus to identify
key chemical contributors to cancer dormancy and reawakening
under controlled conditions (60).

Although highly informative and relatively simple, in vitro
models are not devoid of caveats. The most significant hurdles
of the in vitro systems are: (i) the need, in multicellular cultures,
to optimize culturing protocols allowing the growth and survival
of different cell types, (ii) the needs of organ-specific stromal
cells, which are usually difficult to obtain, (iii) the difficulty of
mimicking the dynamic evolution of the TME composition, and
(iv) the challenge of replicating the complexity of the TME, and
most notably the role of the immune system. Indeed, in vivo
models represent a logical extension of in vitro findings providing
a more comprehensive approach and enabling data validation.

In vivo Models of Cancer Dormancy
Five broad approaches are currently employed to investigate
cancer dormancy in vivo: (i) vaccination assays, (ii) metastasis
assays, either in induced or spontaneous settings, (iii)
spontaneous tumor models, (iv) resection mouse models,
and (v) patient-derived xenograft (PDX) models.

In the vaccination assay, irradiated or otherwise killed
malignant cells are inoculated into immunocompetent syngeneic
mice. One-to-2 weeks later, the immunized animals are
challenged with living cancer cells and monitored for the
presence of persistent dormant cancer cells over long term follow
up (from a few months to 1 year) (61, 62). As it stands, the
gold-standard approach to evaluate the multi-organ dormancy
of tagged cancer cells relies on metastasis assays. Metastases can
be experimentally induced by injecting cancer cells into the tail
vein (63–65) or the iliac artery (66). Otherwise, cancer cells can
be injected subcutaneously or orthotopically and spontaneous
metastatic potential can be monitored over time (67–69), or
into genetically engineered mice that develop metastatic cancers
(33, 70–73), or even humanized PDXmodels (76–78) can be used.
All these assays allow in vivo live animal imaging and real-time
monitoring of metastasis formation and growth, they provide
countless insights into the mechanisms of metastatic dormancy

and tumor persistence. Of note, as surgery could trigger
metastatic relapse in patients with breast cancer (93), are so-
called resection mouse models, which offer the possibility to link
primary cancer surgery to the appearance of secondary disease
at distant anatomical sites (74, 75) potentially helping unveil
mechanisms of cancer cell dissemination and reawakening.

These multiplicities of in vivo models offer a holistic view
of cancer dormancy and represent pre-clinical tools for clinical
validation and intervention. However, in vivo studies also have
some limitations. Indeed, cancer dormancy takes place over
a long time frame and asynchronous heterogeneous dormant
cancer cell populations are difficult to track. In this sense, the
integration and merging of experimental data with mathematical
models and computational simulations may provide insights
and a better understanding of the regulatory circuits and
the biological behaviors underlying dormancy, with invaluable
benefits to translational research.

Mathematical and Computational Models
of Cancer Dormancy
The last 15 years have witnessed significant advances in
mathematical modeling and computational simulations of
complex biological processes such as cancer evolution, response
to therapy, and even dissemination and dormancy. The use
of mathematics in cancer research, known as mathematical
oncology, encompasses knowledge-based differential equation
models that simulate and predict tumor dynamics and response
to therapy. Mathematical oncology offers insights into the
complexity and multiscale nature of cancer cell dormancy
and dissemination, (i) by integrating experimental and clinical
information (79–81), (ii) by mechanistically modeling tumor
evolution and progression as a functional consequence of the
complex interaction between cancer cells and the surrounding
TME (82, 83), and (iii) by predicting and simulating the
molecular pathways involved (84, 85). More recently, systems
biology, a multidisciplinary approach that integrates cancer
research and medicine, genetics and epigenetics, mathematics,
physics, and bioinformatics has gained momentum in the
study of cancer dormancy and reawakening, as provides a
more comprehensive view of the dynamics of these complex
processes (86).

The optimization, application, and integration of all these
models will help our understanding of the complexity of cancer
dormancy and the multiscale nature of cancer progression.
Undoubtedly, this is a promising path forward to validate and
translate experimental findings in clinical settings and overcome
therapeutic resistance in cancer.

CANCER DORMANCY AND CANCER
STEMNESS: PARALLELS AND
DIFFERENCES BETWEEN CULPRITS OF
RELAPSE

CSCs are the subpopulation of stem-like cells within the tumor
mass that possess unique stem-like features such as long-
term self-renewal capability, multi-lineage differentiation, and
high resistance to stress and apoptosis (9, 94). Based on these
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properties, CSCs are considered the seeds of tumor initiation,
progression, and metastatic relapse and mainly responsible for
therapy failure and poor clinical outcomes (9, 94). Historically
presumed to be a very small and quiescent subpopulation, it
is now clear that CSCs may not always adhere to this model.
Indeed, recent evidence shows that CSCs can be relatively
abundant (at least in some tumors), able to alternate between
dormant and proliferating states, characterized by a high degree
of heterogeneity and plasticity over space (i.e., in distinct tumor
regions) and time (i.e., at distinct tumor progression stages)
(9). Moreover, subsets of CSCs were reported to differentiate
into heterogeneous lineages of cancer cells including non-
stem cells, and vice versa differentiated cells to undergo cell
dedifferentiation and even adopt CSC features (95, 96). CSCs
reside in niches, which are specialized regions within the
TME, preserving CSC survival and metastatic potential and
regulating dormancy-reawakening switches (97). However, to
date, a univocal definition of CSCs is still missing, and a unified
model of genetic and phenotypic biomarkers is very difficult to
achieve. In light of this evidence, resting CSC functional markers
on the most threatening properties of CSCs may likely be the key.

One such property is the ability of CSCs to enter and exit
from dormancy that, in the majority of cancer types, is the
sine qua non condition for surviving therapy and initiating
metastases, which are the two lethal features of CSCs. Based on
this striking analogy, some investigations have proposed that
CSCs and dormant cells are two sides of the same coin (6, 98).
Indeed, ever-increasing data show the parallels at the molecular
level, between dormant DCCs and CSCs. To give some examples,
the activation of the p38 mitogen-activated protein kinase 1
(MAPK1) can induce dormancy in differentiated cancer cells
(99) as well as in CSCs (100). Similarly, the induction of the
mammalian target of the rapamycin (mTOR) signaling pathway
could preserve both the survival of dormant DCCs (101) and the
quiescence of CSCs (102).

Strengthening these findings, more recently, the activation of
mTOR was able to enrich the pool of CSCs within DCCs in
bone marrow (BM) metastatic niches in prostate cancer models,
through a mechanism involving the release of growth arrest
specific 6 (GAS6) by osteoblasts (103). Along with this, the
Notch and Wingless (Wnt) pathways, which are essential for
the maintenance of cancer stemness (104–106), were proven
to promote cancer cell reawakening in different solid tumors
(107, 108). Notably, these pathways could promote cell cycle
progression in a fashion dependent on the protooncogene c-
Myc, while their inactivation was associated with CSC senescence
and tumor dormancy (109–112). Furthermore, c-Myc could
trigger the polycomb repressor complex 1 component (PRC1)
Bmi-1 expression, which in turn seems to correlate with
breast cancer patient relapse years after treatment (113) and to
influence the self-renewal capability of breast CSCs (114). Other
examples proving the molecular similarity between dormant
DCCs and CSCs include the interleukin 6 (IL-6) cytokine
leukemia inhibitory factor (LIF)-LIF receptor (LIFR) axis, which
appears to have a role in preserving both dormancy and cancer
stemness, at least in the breast cancer setting (115). Autophagy,
an evolutionarily conserved process through which cells survive

metabolic stress conditions (116), can regulate the survival of
dormant cancer cells and CSCs (117–120).

Finally, mechanical cues of the ECM and the epithelial-to-
mesenchymal transition (EMT) process, may be functionally
important for inducing stem traits in cancer cells and for
promoting their metastatic outgrowth (121–123). For example,
the Zinc Finger E-Box Binding Homeobox 1 (ZEB1), a
key regulator of EMT, was shown to contribute to the
cellular response to microenvironmental stimuli, such as local
inflammation and the tumor promoter transforming growth
factor-β (TGF-β), by activating a transcriptional program that
pushes DCCs out of dormancy, committing them with stem-
like features (124, 125). Similarly, the hypoxia-induced lysyl
oxidase like-2 protein (LOXL2) can promote EMT and endow
breast cancer cells with the ability to switch from dormant non-
CSCs into proliferating metastatic CSCs (123). In this context,
analyses in colorectal cancer models have recently revealed that
the EMT-related factor ZEB2 coordinates a program of therapy
resistance of quiescent cancer cells (126). Of note, these cells,
which pre-exist in therapy-naïve tumors, show recognizable
stem-like traits and behaviors (126). On the whole, these findings
suggest again that the binomial dormant DCCs and CSCs could
be interchangeable.

However, not all CSCs are dormant (9); and not all dormant
cells are CSCs (127). Dormant cancer cells likely comprise both
CSC and non-CSC subpopulations (7). Moreover, CSCs do not
necessarily retain dormant-like features owing to their capacity to
switch from dormant to proliferative states (128). Based on their
tendency to enter dormancy, cancer (stem) cells can be broadly
grouped into (i) dormancy-competent CSCs, (ii) dormancy-
incompetent CSCs, (iii) cancer repopulating cells, and (iv) DCCs
(7, 129). Dormancy-competent CSCs are endowed with the
ability to switch between dormancy and reawaking states, a
plasticity that fosters their metastatic potential and resistance
to therapy (7, 129). Conversely, dormancy-incompetent CSCs
are usually enriched in advanced diseases and are characterized
by a loss in the ability to enter dormancy, possibly due to
the progressive accumulation of somatic mutations in the
mechanisms governing dormancy entry (7, 129).

Indeed, as the tumor progresses and the microenvironment
evolves, CSCs accumulate epigenetic and genetic alterations
despite their robust DNA damage response (130), and dormancy-
competent CSCs may turn into dormancy-incompetent CSCs
(129). Cancer-repopulating cells are the subset of CSCs able to
self-renew post-therapy and thus responsible for relapse and
metastatic onset (7, 129). Finally, DCCs, either with stem-
like or differentiated features, lie in secondary distant organs
and the bloodstream (in this latter case, acting as CTCs) and
preserve the ability to reawaken and fuel metastatic outgrowth
(7, 129).

As above described, striking parallels exist between dormant
DCCs and dormant CSCs. These analogies also apply to the
microenvironmental cues, encompassing biological, biochemical,
and biophysical factors, that coordinate both DCC outgrowth
and CSC self-renewal. Further research in this area could uncover
new similarities that ultimately may offer therapeutic solutions
for unmet medical needs.
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MICROENVIRONMENTAL CUES
COOPERATE TO TIP THE BALANCE
BETWEEN CANCER DORMANCY AND
REAWAKENING

The TME is a complex and dynamic ecosystem made up of
a heterogeneous population of cancer cells and resident or
infiltrating non-cancer cells [mainly leukocytes, including
lymphocytes and tumor-associated macrophages (TAMs),
cancer-associated fibroblasts, endothelial cells, and pericytes].
These are surrounded by the ECM and a mixture of secreted
molecules encompassing lymphokines, cytokines, growth
factors, and metabolites, among others. Cancer cell behavior
and fate are profoundly influenced by the constant and evolving
interplay with microenvironmental players, which often corrupt
cancer cells to survive and eventually give rise to overt disease.
The TME thus represents the background where physical
and chemical perturbations tip the balance quiescence vs.
proliferation. Quiescence and proliferation, in turn, come into
sharp focus as by-products of the co-evolution of cancer cells
and their microenvironments. Indeed, it is emerging that, in
response to mitogenic and stress-signaling pathways, cancer cells
trigger a set of complex intracellular molecular programs, thus
underscoring a situation in which intrinsic mechanisms perfectly
meet the cooperative action of extrinsic factors (3). Such intrinsic
molecular pathways are beyond the scope of this review and
have been extensively reviewed elsewhere (131–134). In this
review, we will only cover the different microenvironmental cues
governing dormancy regulation, with particular emphasis on
CSCs and metastatic outgrowth.

Cancer Niches: More Than Just Fertile
Soils
Niches are specialized areas of the TME that regulate cancer
(stem) cell fate and properties by the joint action of cell-
cell and cell-ECM crosstalks and the messages delivered by
paracrine factors.

Metastatic niches are the fertile environments of secondary
organs (i.e., BM, lymph nodes, lungs, liver, and brain) that
provide favorable conditions for the seeding of DCCs with
stem-like and non-stem-like features (135). Indeed, metastatic
niches guarantee the nutrient and oxygen supply required for
cell proliferation, thus setting the point for cancer (stem) cell
proliferation or quiescence (135).

A body of evidence indicates that the BM frequently hosts
DCCs derived from different primary organs, including breast,
colon, prostate, head, and neck (136), although these DCCs
rarely develop bone metastases (137). This observation suggests
that BM metastatic niches could delay or even prevent tumor
mass sprouting by inducing a state of dormancy (138), a
situation observed in expanded hematopoietic stem cells (HSCs)
undergoing differentiation (139). In line with this hypothesis,
metastatic niches reportedly provide unique signals promoting
quiescence and long-term survival. For example, Notch2, which
is known to induce cancer cell proliferation in primary breast
carcinomas (108), was recently shown to have an opposite effect

in metastatic BM niches, favoring the quiescence and long-term
survival of disseminated breast CSCs (140).

The Wnt pathway, which in its canonical form acts as a
regulator of processes like cell proliferation and cell stemness
(141), is also inversely associated with cancer cell dormancy
(107, 142), was reported to induce dormancy of prostate cancer
cells populating the BM niches, via a mechanism involving the
non-canonical receptor tyrosine kinase-like orphan receptor 2
(ROR2)/Siah E3 Ubiquitin Protein Ligase 2 (SIAH2) signal,
resulting in the inhibition of the canonical Wnt/β-catenin
pathway (143). In this study, a negative correlation between
ROR2 expression and metastasis-free survival in patients with
prostate cancer was observed, potentially offering new potential
therapeutic opportunities. These data are in line with previous
observations of a role for non-canonical Wnt signaling in
maintaining HSCs in a quiescent G0 state (144). At odds
with this is the fact that canonical Wnt signaling, out of
the BM, is generally inversely associated with cancer cell
dormancy in different tumor types (107, 142). On the whole,
these observations show opposite effects led by the same
factors in different metastatic niches, where they likely face
different microenvironmental factors. This further supports the
hypothesis that HSC niches may host dormant cancer cells.

Other microenvironmental signals involved in dormancy at
the metastatic site include TGF-β, bone morphogenetic proteins
(BMPs), and LIFR. Firstly described as a potent inhibitor of
HSC proliferation (145, 146), TGF-β is now recognized as
another major factor that, once released by osteoblasts (one
main BM stromal cell type), keeps DCCs and CSCs in a state of
protracted dormancy (147, 148). This effect mainly relies on the
triggering of the Gas6 receptor Axl (148) and the downstream
activation of the p38 MAPK signaling (147). Similarly, the
production of BMPs by BM stromal cells was associated with
DCC hibernation. Specifically, the presence of BMP7 induced
dormancy of prostate CSCs by activating the MAPK p38, and by
fostering the expression of the cell cycle inhibitor p21 and the
metastasis suppressor gene N-myc downstream-regulated gene
1 (NDRG1) (100). Accordingly, a variant of BMP7 (BMP7v)
reportedly halted the metastatic spreading of colorectal CSCs
by inhibiting the EMT program and by forcing cancer cell
differentiation (149). In line with these observations, blocking
BMP ligands via the TGF-β inhibitor Coco reawakened dormant
breast CSCs and favored disease outgrowth in lung niches, which
are known permissive soils (150). Notably, in a large cohort
of patients, Coco-related metagenes predicted metastatic relapse
in the lung, but not in the BM nor the brain, suggesting that
Coco could be an organ-specific regulator (150). Finally, in breast
cancer patients, low LIFR levels were shown to correlate with
poor prognosis and with the appearance of overt metastasis along
with the loss of CSC-associated genes (115). This is in line with
previous observations which indicate that IL-6 plays a role in
reawakening breast CSCs from therapy-induced dormancy (151).

Beyond reacting to soluble factors, DCCs also engage with
other cell types of the metastatic niche, as well as with the
ECM. Experimental studies show that breast cancer cells prime
mesenchymal stem cells (MSCs) residing in BM niches to
transfer microRNAs (miRNAs) via exosomes, which in turn
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promote cancer cell quiescence and drug resistance (152,
153). Apparently at odds with these observations, using a
3D co-culture model, Bartosh et al. demonstrated that DCCs
from breast tumors cannibalize surrounding MSCs, resulting
in an increased survival and tumor mass dormancy (154).
Osteoblasts and osteoclasts, which are BM stromal cells with
opposite physiological functions (155), also play opposite roles
in the regulation of DCC dormancy. This was shown in
myeloma DCCs, which entered dormancy while engaging with
osteoblasts in the endosteum, while they started proliferating (i.e.,
reawakened) upon interaction with osteoclasts (77). Accordingly,
as reported above, in a prostate cancer model, osteoblasts induce
mTOR signaling by releasing GAS6, and this preserves CSC
dormancy (103). Moreover, in breast cancer models, osteoclasts
were recruited in the proximity of DCCs, supporting DCC
growth into overt metastases (156). At the molecular level, cancer
cell reawakening appears dependent on soluble receptor activator
of nuclear factor- kappa B Ligand (sRANKL) signaling (77).

Accordingly, in breast cancer models, osteoclasts were found
to be recruited in the proximity of DCCs and to support their
growth into overt metastases (156). Along with this, a recent
study in lung metastatic niches demonstrated that sustained
inflammation and the interaction of DCCs with immune cells
promote the formation of neutrophil extracellular traps (NETs,
networks of neutrophil-derived extracellular fibers) in turn
driving the switch from dormancy to reawakening (157). This
effect was associated with the activity of neutrophil elastase
and matrix metalloproteinase 9 (MMP9), two NET-associated
proteases which sequentially remodel the ECM and activate the
integrin α3β1 on cancer cells, eliciting downstream mitogenic
signaling culminating in cellular dormancy.

The perivascular niche, a tumor promoting milieu made up
of a multitude of microvessels, regulates dormancy of cancer cells
disseminated into BM, the lungs, and brain from various primary
tumors (48, 158–160). Perivascular niches are characterized
by the high availability of oxygen, nutrients, and paracrine
factors, which renders them a permissive environment for the
proliferation of DCCs and CSCs (161, 162). Accordingly, distinct
types of CSCs and DCCs localize in the perivascular niches,
growing in the proximity of capillaries (97, 163). It recently
emerged that bidirectional interactions between these cells and
components of the perivascular niche, including endothelial cells,
are relevant for tumor evolution. The pool of glioblastoma CSCs
residing at perivascular niches were shown to engage integrin
α7-laminin interactions that foster invasiveness as well as self-
renewal and growth potential (164), all features correlating
with a dismal prognosis (165). Moreover, breast cancer cells
that infiltrate lung metastatic niches induced the expression
of the matricellular protein periostin (POSTN) in endothelial
cells. In turn, POSTN contributed to CSC survival, nurturing
micro to full macrometastases via a mechanism dependent
on the activation of the Wnt signaling (166) and the activity
of TGF-β1 (48). Other ECM components of the perivascular
niche that influence metastasis include osteopontin and tenascin
C (167–169). Emerging evidence indicates that these proteins
act as primary regulators of CSC survival, self-renewal, and
reawakening via the activation of transcriptional programs

centered onWnt, Nanog, and POU domain, class 5, transcription
factor 1 (POU5F1, best known as Oct-4) (167–169).

Of note, is the fact that there is a certain degree of
heterogeneity in endothelial cells of the perivascular niches.
Thus, while endothelial cells of the sprouting neovasculature
were shown to foster metastatic outgrowth, those of stable
microvasculature mostly preserved and promoted cancer cell
dormancy through the tumor suppressor thrombospondin-
1, acting as a rate-limiting step for disease re-occurrence
(48). Moreover, dormant and proliferating breast cancer cells
displayed a distinct localization in perivascular areas (160). More
precisely, dormant cells were shown to reside predominantly
close to perisinusoidal venules expressing high levels of the
inflammatory vascular cell adhesion molecule E-selectin, which
favors the entry of cancer cells into the BM, and of the stromal
cell-derived factor 1 (SDF-1), which anchors cells to the niche
through its interaction with the C-X-C chemokine receptor type
4 (CXCR4), respectively (160).

The ECM: A Biochemical and Biophysical
Niche for Cancer Cells
The ECM, commonly defined as the non-cellular component
of a tissue, is a highly dynamic and physiologically active
structure, that provides biochemical and biophysical support
for surrounding cellular components (170). Characterized by
a continuous remodeling over space and time, the ECM
also represents a biological barrier, an anchorage site, and
a movement track, playing major roles in regulating cellular
interactions and communications (170). The ECM is tightly
organized during embryogenesis and tissue homeostasis, but
becomes extremely deregulated and deranged in cancer (171).

Emerging evidence suggests that the ECMmay serve as a niche
for DCCs and CSCs, influencing cell survival and proliferation,
and thus dormancy (171, 172). Thus, downregulation of the
urokinase plasminogen activator receptor (uPAR), which is
involved in cell/ECM interactions, affected the capability of
head and neck squamous cell carcinoma cells to interact with
integrins, in turn causing deactivation of mitogenic pathways
and induction of dormancy (173). Along with this, tissue
stiffness (a mechanical property of the TME) and its underlying
mechanotransduction pathways are also involved in tumor
progression and metastasis (122, 174). Thus, in breast cancer
models, the crosslink between fibrosis-associated deposition
of type I collagen and integrin β1 or lysyl oxidase (LOX),
was described to create a growth-permissive microenvironment
capable of reawakening DCCs, thus supporting proliferative
metastatic growth (46, 175). This occurred through the
activation, downstream of integrin β1, of players including focal
adhesion kinase (FAK), non-receptor tyrosine kinase (Src), ERK,
andmyosin light chain kinase (MLCK) (46). In this context, there
is interesting evidence that pharmacological co-inhibition of Src
and MEK1/2 prevented disease recurrence by killing dormant
breast and ovarian DCCs (176, 177). Similarly, interstitial
collagen I was described to favor the interaction between the
tetraspanin Transmembrane 4 L Six Family Member 1 (TM4SF1)
and the collagen receptor tyrosine kinase Discoidin domain
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receptor family, member 1 (DDR1). This led to the expression
of the stem related factors SRY (sex determining region Y)-box 2
(SOX2) and NANOG, driving multiorgan metastatic reactivation
in the lung, bone, and brain (178).

The dormant-to-proliferative metastatic switch is also favored
by a global reconfiguration of the cytoskeletal architecture
of DCCs often mediated by the integrin β1 signaling. Thus,
using a model of lung disseminated breast cancer cells, Green
et al., demonstrated that, cancer cells respond to integrin β1-
mediated fibronectin production and signaling by activating
MLCK, resulting in the generation of actin stress fibers and
entry into a proliferative state (179). The ability of integrin β1
signaling to promote cell-cycle progression seems also to rely
on FAK activation (180). In particular, Weinberg’s team showed
that soon after extravasation into the lungs, breast cancer cells
arrest their proliferation due to their inability to engage stable
adhesions with ECM components. Later on, some cancer cells
acquiring an elongated morphology developed abundant cell-
matrix adhesion plaques, which in turn triggered the integrin
β1-FAK signaling and promoted exit from dormancy (180).
Src family kinases (SFKs) also act downstream the integrin-
triggered dormant-to-proliferative switch (176). Moreover, using
an in vitro model of stiff-soft tunable matrix it was revealed
that fibrosis related integrin β1 and FAK signaling increased
mitogenic stimuli by inducing protein kinase B (PKB/Akt) and
signal transducer and activator of transcription 3 (STAT3). In
this setting, only cells grown in soft matrix supports expressed
CSC markers (181), suggesting that a pliable microenvironment
might support cancer cell stemness, a hypothesis that is intriguing
but which still requires in vivo validation. Finally, the association
between matrix stiffness and cancer cell proliferation appears
to be influenced by endothelial cells (182). More precisely, in
a stiff environment, endothelial cells express the matricellular
protein cysteine-rich angiogenic inducer 61 (CYR61), which in
turn induces a β-catenin-dependent upregulation of N-cadherin
levels. This lets cancer cells stably interact with the endothelium
and thus enter the bloodstream and metastasize (182).

To add further layers of complexity, a recent study
demonstrated that a stiff matrix could also induce dormancy
(183). In this study, cancer-repopulating cells, when coping
with a harsh environment, activate an epigenetic program
that leads to the transcription of ten-eleven translocation 2
(Tet2) hydroxymethylating enzyme. Tet2, in turn, activates
the cell cycle suppressors p21–p27 and induces integrin
β3 downregulation, respectively, promoting and preserving
dormancy (183). Moreover, a recent deep single cell analysis
revealed a high phenotypic heterogeneity in dormant cancer
cells, encompassing pools of quiescent, senescent, and
actively proliferating cells (184). The characterization of
cells entering long-term dormancy demonstrated that these
cells adhere stably to a stiff matrix through integrin α5β1
and rho-associated kinase (ROCK)–mediated cell tension.
Moreover, the capability to exit from dormancy appears
strictly connected to the ability to trigger MMP-mediated FN1
degradation (184).

In conclusion, disseminated cancer (stem) cells and their
environment engage in an intricate molecular cross-talk,

regulating the entry into and the exit from dormancy and thus
determining cancer cell fate (Figure 2).

ANGIOGENIC SWITCH AND ANGIOGENIC
DORMANCY

A hallmark of progressive cancer growth, in both primary and
secondary tumors, is the induction of tumor vasculature, a
process termed the “angiogenic switch” (185, 186). Indeed, like
healthy tissues, tumors need both an appropriate supply of
oxygen/nutrients and a way to remove waste products (187).
However, unlike physiological angiogenesis, in which new vessel
sprouting is a highly regulated and self-limited process, tumor
angiogenesis lacks growth controls resulting in continuous and
deregulated vessel production (185). This leads to a structurally
and functionally abnormal tumor vascular network characterized
by new vessels with dead ends, which results in low oxygen
tension (hypoxia), the paucity of metabolites, and imbalanced
expression of angiogenic factors. This latter eventually stimulates
further abnormal angiogenesis (185). As neovascular supply is
crucial for tumor growth, cancer cells, including those integrated
into the vessel walls (188), undergo adaptive dormancy, also
known as angiogenic dormancy (186, 189). During angiogenic
dormancy, cancer cell proliferation rate is balanced by enhanced
apoptosis induction. This equilibrium maintains tumors that are
microscopic and undetectable, for extended times (12).

Currently, there are three subtypes of hypoxia and related
cancer cell adaptive mechanisms (190). First, acute hypoxia
is characterized by transient perturbation in perfusion lasting
from a few minutes up to a few days. Reportedly, cancer
cells facing acute hypoxia decrease oxidative metabolism and
activate autophagy, yet retaining high proliferative potential
(191–193). Second, chronic hypoxia is mainly related to the
presence of abnormal neo-vessels, leading to limited perfusion
and oxygen supply. This long-lasting phenomenon is linked to
a state in which cancer cells remain persistently dormant (192).
Finally, cycling hypoxia is characterized by oxygen fluctuations
in parallel with intermittent phases of cancer cell dormancy and
reawakening that have been associated with increased tumor
aggression (190, 194).

The balance between the angiogenic switch and angiogenic
dormancy is a finely-tuned process regulated by integrated
microenvironmental factors, including the pro-angiogenic
vascular endothelial growth factor (VEGF), platelet-derived
growth factor (PDGF), anti-angiogenic thrombospondin-1,
angiostatin, and endostatin (189). Prosaposin has been described
as another regulator of metastatic growth arrest (195). Once
produced by cancer cells, prosaposin acts in a paracrine and
endocrine fashion inducing the expression of thrombospondin-1
in stromal cells at primary and distant tumor sites, which blocks
neoangiogenesis and delays tumor growth (195). Many niche
components also play a role in regulating angiogenesis. Indeed,
CSCs, seem able to transdifferentiate and directly contribute
to the formation of abnormal vessels, thus supplying for the
absence of true angiogenesis (196, 197). Moreover, CSCs often
promote a considerable enhancement of VEGF levels, both by a
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FIGURE 2 | Microenvironmental patterns tuning cancer dormancy, reawakening, and stemness. A schematic model showing the plethora of microenvironmental

cues, encompassing the cellular, molecular, and physical factors, that converge to induce either stress-related or mitogenic signals to cancer cells. The bulk of cancer

cells, encompassing disseminated and stem cells, in the face of contextual signals, either enter or exit dormancy.

direct production and by stimulating a pro-angiogenic activity in
stromal cells localized in the proximity of the niche (198–200).
Along with this, some stem-related factors such as Notch also
act as angiogenesis promoters (201, 202), while anti-angiogenic
factors (i.e., thrombospondin-1) are associated with inactivation
of the stem-related transcriptional factors (i.e., MYC) (203),
which in turn promote dormancy (109). Of note is the fact
that CSCs adopt further adaptive mechanisms to cope with
hypoxia, among which the expression of the hypoxia-inducible
factors (HIFs) and HIF-regulated genes (204) that induce
cellular dormancy by activating p21 signaling (205). In a seminal
work, Almog et al. characterized a transcriptional rewiring

of cancer cells undergoing an angiogenic switch (206). This
switch was associated with downregulation of the angiogenesis
inhibitor thrombospondin and upregulation of genes not
hitherto linked to tumor dormancy, such as endothelial cell-
specific molecule 1 (ESM1), 5’-ectonucleotidase, tissue inhibitor
of metalloproteinase 3 (TIMP3), epidermal growth factor
receptor (EGFR), insulin-like growth factor receptor (IGF1R),
phosphatidylinositol 3-kinase (PI3K) signaling, Eph receptor A5
(EphA5), and histone H2BK (206).

In summary, these myriad microenvironmental components
and their reciprocal interactions, represent the major culprits
governing cancer (stem) cell dormancy and outgrowth, and
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are a clear index of the complexity of this regulation, offering
additional potential targets for therapeutic intervention.

CANCER (STEM) CELL DORMANCY AND
IMMUNITY: PRODUCTIVE DIALOGS AND
RECIPROCAL REGULATIONS

Immune-Induced Dormancy: the
Equilibrium Phase of Cancer
Immunoediting
Over the past two decades, understanding of tumor biology has
increased and revealed that the host immune system plays a
dual role in cancer: it may both constrain and paradoxically aid
tumor outgrowth. This phenomenon, which has been referred to
as cancer immunoediting, passes through three phases, namely
elimination, equilibrium, and escape (207).

During the elimination phase or immunosurveillance, cancer
cells that escaped intrinsic control are destroyed by extrinsic,
immune-mediated tumor suppressor mechanisms (208). The
successful completion of this phase ensures cancer cell clearance
and prevents the onset of the clinically apparent disease.
However, rare cancer subclones may survive and progress into
a phase of equilibrium, during which the immune system,
by inducing a functional state of dormancy, might contain
but not fully extinguish cancer cell growth. Of note, is the
strong and relentless pressure exerted by the immune system
during this phase, which may either control the outgrowth of
occult tumors throughout the life of the host or sculpt less
immunogenic variants that ultimately evade immune attack
(208). Such immunoedited cancer cells, that are no longer
susceptible to immune control, progress in the escape phase,
emerging into clinically visible tumors (208). Of the three
phases of cancer immunoediting, equilibrium is probably the
longest and the most difficult to characterize. Clinical evidence
on the existence of an equilibrium or tumor-dormancy phase
came from the unintentional transmission of cancer from
transplant organ donors to immunosuppressed recipients. In
these cases, donors either were in durable clinical remission
(209–211) or had no known history of malignancy (212, 213).
Notably, cases of the rapid outgrowth of occult metastases were
even reported when donors had glioblastoma, which usually
does not metastasize (214). Similarly, metastatic recurrence of
primary renal cell carcinoma soon after the post-transplant
immunosuppressive medication was reported (215). These
observations suggest a mechanism of immune-mediated control
for occult malignancies and a progressive outgrowth of cancer
cells under pharmacologically-induced immunosuppression, a
condition required to prevent the recipient’s rejection of the
organ. The median time frame between transplantation and
metastasis detection is relatively short, ranging between 3 and
36 months, with no differences between cancer types and the
organ transplanted (211). As metastases generally take 6 to
12 years to emerge (35), it is plausible that under immune
suppression, adaptive immunity cannot hold dormant cells in
check, which thus exit from the equilibrium/dormant/persistent
state (13). In line with these observations, in a variety of

human tumors, it was reported that a 20 to 50 year interval
from initial carcinogen exposure to the clinical detection of
disease. Moreover, epidemiologic studies in autopsies revealed
that microscopic foci of disease frequencies considerably exceed
clinical incidence rates in various cancer types (e.g., thyroid
cancer, prostate and breast carcinoma) (216–218). This gets
stronger during the theoretical existence of periods of subclinical
dormancy during tumor progression (219). However, none of
these reports visualized tumor dormancy de facto, and they did
not describe the immune effectors involved. Admittedly, clinical
cancer dormancy is still poorly characterized and the role of
innate and adaptive immunity in initiating and then stabilizing
the dormant state is a matter of debate (220). However, we
have strong evidence supporting the existence of an equilibrium
phase governing clinical cancer dormancy. Indeed, tumors may
chronically persist without symptoms for years and even decades
before recurring either locally or at distant metastatic sites (4,
25, 221). Moreover, late relapses are relatively frequent in breast
and prostate carcinoma patients after radical surgery (222, 223),
in melanoma, thyroid and renal cell carcinoma (224, 225), non-
Hodgkin’s lymphoma (226), and acute myeloid leukemia (227).

In parallel, clinical and experimental studies have provided
evidence that cancer cells can disseminate during premalignant
stages of the disease, thus entering a protracted period of
metastatic dormancy into target organs (35). Early preclinical
suggestions of the capability of the immune system to hold
cancer cells in a dormant/equilibrium phase were provided
by transplant experiments in which immunodeficient mice
adoptively transferred with T cells and then challenged with
the murine B lymphoma BCL1 cells, were endowed with the
capability to induce and maintain a state of tumor latency (228).
Similarly, BCL1 dormant cancer cells resident in the spleen
of immunized mice showed no evidence of disease 250 days
after tumor rechallenge (229). In line with these findings, the
adoptive cell transfer of tumor specific lymphocytes provided
long-term protection from tumor development, retaining minor
foci of dormant cancer cells on mouse models of prostate cancer
(230) and lymphomas (231). Additional studies with mouse
models of skin malignancies confirmed that the immune system
may induce long-term latency of occult primary and metastatic
carcinomas (232, 233). These findings are consistent with a
role for anti-tumor immunity, and in particular T cells, in
the maintenance of an equilibrium dormant state preventing
tumor-cell growth. Pivotal studies from Schreiber’s lab have
further provided evidence and unveiled mechanisms of immune
mediated dormancy. It was observed that the treatment of mice
with low-dose methylcholanthrene (MCA) was followed by the
development of aggressive tumors in only a few animals, with
a sizeable percentage of the surviving mice free of disease.
Deceptively, however, these mice bear dormant tumors that
were held in check by the immune system. Indeed, when
animals were treated with antibodies blocking T lymphocytes or
neutralizing the cytokines IL-12 or interferon-γ (IFN-γ), tumors
were released from immune control and outgrew (13). These
findings validate previous observations of dormancy induced by
CD8T cell derived factors (228, 234). Moreover, MCA-induced
sarcomas from immunodeficient mice were more immunogenic
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than those arising in immunocompetent hosts (235). Follow-up
studies showed opposing, complementary roles for ILs, during
the equilibrium phase. Specifically, IL-23 seemed to promote
the survival and outgrowth of occult cancer cells, while IL-12
seemed to favor dormancy and thus prevent immune escape
(236). At odds with previous reports, innate immune signaling
is associated with the awakening of dormant cancer cells. Local
inflammation in the lungs was shown to ignite the exit of DCCs
from latency, and thus the growth into overt metastases through
the activation of a previously silent EMT transition program
(125). This provided a newfound knowledge of the dual role
of the immune system in protecting the host against tumor
outgrowth and in sculpting the immunogenic profile of evolving
tumors, finally rendering them more fit to survive and progress
in an immunocompetent environment (235).

On the whole, these observations suggest that immunity
can maintain cancer cells in a transient dormant state, which
as a matter of course, end in either tumor elimination or
tumor escape. CSCs may play pivotal roles in preserving the
cancer dormant state. Indeed, they cope with robust anticancer
immune responses by subverting immune effector functions and
by drastically reducing their visibility (237). At the same time,
however, such an immunopriviledge may foster immune escape
and cancer outgrowth (238). It remains to be elucidated whether
immune-mediated dormancy is either always a matter of a bulk
tumor or may also resemble cellular dormancy. Mining the
mechanisms regulating immune-mediated tumor equilibrium
will help solve this question, and will open the possibility of
uncovering predictive signatures with invaluable prognostic and
therapeutic implications.

Dormancy as a Mechanism of Immune
Escape: Sleeping in the Name of Survival
Immune escape is central to tumor persistence and relapse.
Dormant cancer (stem) cells constitute the most critical, yet
heterogeneous fraction of malignant cells able to evade host
antitumor immunity (6, 7). Effective mechanisms of escaping
immune control are (i) prevention of immune detection, (ii)
prevention of immune activation, and (iii) activation of immune
suppression (239, 240).

The immunogenicity of a tumor relies on a combination
of antigenicity, i.e., the expression and presentation of tumor-
associated antigens, and adjuvanticity, i.e., the release of alarmins
and damage signaling (241). Cancer cells defective in either
antigen presentation or production of adjuvant-like signals (or
both) remain relatively invisible to the immune system and
escape immune detection. The capability of dormant cancer
cells to evade immune surveillance by reducing antigenicity
has been reported (242, 243) and more recently confirmed
through clinical immunogenomics (244, 245). Downregulation
of the major histocompatibility complex class I (MHC-I) was
ostensibly observed in quiescent cancer cells and CSCs isolated
from different cancer types (238, 246). In a model of liver
disseminated pancreatic cancer, dormancy-related loss of MHC-
I was attributable to unresolved endoplasmic reticulum stress,
and was responsible for hiding and protecting DCCs from T

cell-mediated surveillance (247). Interestingly, the observation
that, in hair follicles, Lgr5-GFP stem cells survive the adoptive
transfer with antiGFP T cells by persisting in a dormant
state, and reducing the expression of MHC-I molecules (248),
further confirms that loss of antigen presentation is a common
mechanism in quiescent cells, which CSCs adopt to escape
immune attack. If the tumor does not manage to escape
detection, then it can evolve to prevent the activation of a robust
anticancer immune response. The immunosuppressive effects of
cancer cells are mediated by (i) the secretion of soluble factors,
(ii) the expression of inhibitory molecules, and (iii) the turning
of infiltrating leukocytes into tolerogenic cells that, in turn, can
suppress other tumor-specific immune cells. In a model of acute
myeloid leukemia, the expression by cancer cells of the immune
checkpoints CD274 (best known as PD-L1) and CD80 (also
known as B7.1) prevented T cell activity and preserved cancer
dormancy (62). Furthermore, the microenvironment itself can
help quiescent cells elude immune control. Indeed, within the
perivascular niche, the activity of effector T cells can be inhibited
through the release of immune suppressive cytokines (such as IL-
6) and the activation of the programmed cell death 1 (PDCD1,
best known as PD1)-PD-L1 axis (249–251). In addition, tumor
evolution seems to select for cancer cell clones resistant to the
death effector mechanisms of the immune system. We recently
discussed the genetic inactivation of the oncosuppressor caspase
8 (CASP8) and the death receptor FAS as strategic mechanisms
cancer cells may adopt to evade apoptosis-mediated eradication
by immune cells, mainly T and natural killer (NK) cells (5). These
reports are in line with previous observations of dormant cancer
cell-mediated escape from T cell induced apoptosis through
deregulation of the suppressor of cytokine signaling 1 (SOCS1)
cascade and overexpression of the pro-tumorigenic cytokine
IL-3 (252).

Cancer cells defective for MHC-I molecules are optimal
targets for NK cells, in which activation is MHC-unrestricted
(253, 254). Evidence of evasion from NK mediated
immunosurveillance by quiescent disseminated CSCs
firstly came from Massague’s lab. This team showed that by
overexpressing the WNT inhibitor Dickkopf-related protein
1 (DKK1), CSCs enter a self-imposed quiescent state and
downregulate the expression of UL16 binding protein (ULBP)
ligands for NK cells, thus evading innate immunity and
remaining latent in the long-term (255).

Additionally, dormant cancer (stem) cells may enter immune
protected niches (also called immune-privileged niches), where
they lie quiescent for extended periods (256). The capability of
dormant niches to protect (cancer) stem cells from immune
control is mainly due to the recruitment of regulatory immune
cells, encompassing regulatory T (TREG) cells, myeloid-derived
suppressor cells (MDSCs), and immunosuppressive TAMs
and neutrophils (TANs) (257, 258). In particular, TAMs are
recruited by diverse chemotactic factors—including tumor-
derived colony-stimulating factor 1 (CSF1), vascular endothelial
growth factor A (VEGFA), semaphorin 3A, CC-chemokine
ligand 2 (CCL2), and CXC-chemokine ligand 12 (CXCL12)—and
nullify the cytotoxic activity of CD8+ T cells by expressing the
immune checkpoints PDL1 and B7-H4 (259, 260).
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In addition, TAMs and regulatory dendritic cells can recruit
TREG cells and MDSCs, and foster their expansion and
immunosuppressive functions (261–263). In brain metastatic
loci, reactive astrocytes prevent CD8T cell activation and
recruit TAMs through the signal transducer and activator of
transcription 3 (STAT3) activation program (264). Similarly,
once expanded and polarized under gamma delta (γδ) T cell
control (265), TANs act as pro-tumorigenic players in particular
in metastatic niches, conferring highly immunosuppressive
properties to the TME through the release of leukotrienes (266).

Finally, some tumors seem to evolve and acquire the capability
to corrupt and turn immune effectors against themselves,
thereby causing immune cell death through mechanisms that
physiologically limit the antitumor immune response (240, 267,
268). These immune escape mechanisms can act in combination
and make the tumor a formidable foe for the immune system,
ultimately fostering the neoplastic outgrowth. Current integrated
and single-cell based approaches that have been adopted
to mine the immunome of primary and metastatic tumors
seem extremely powerful, and may offer data that will soon
implement the list of factors, cells, and mechanisms involved in
immune escape.

Clinical Detection of Dormant DCCS and
CTCS
The identification and possible targeting of dormant DCCs which
persist during MRD is of utmost importance to prevent disease
recurrence. However, the clinical detection (and monitoring) of
cancer dormancy is a challenge, making it difficult to validate
the cancer dormancy model in patients. Indeed, per definition,
cancer dormancy is a controlled chronic disease that persists
without any symptom or sign until its underlying equilibrium
is disturbed and local or systemic relapse occurs. Two major
obstacles need to be overcome for the clinical detection of
cancer dormancy. First, micrometastatic, dormant DCCs are
almost undetectable using conventional high resolution, whole-
body imaging tools. Second, the entire process involves a
long time frame of disease latency. In the last two decades,
a flurry of research efforts have focused on the identification
and standardization of highly sensitive and specific assays to
identify and characterize occult micrometastatic cancer cells, in
particular, DCCs in BM aspirates, and CTCs in peripheral blood.

The Current State of DCC and CTC
Detection
Three methods are commonly used to detect and quantify
DCCs and CTCs in liquid biopsies: (i) immunocytochemistry
(IHC)/immunofluorescence (IF) staining followed by bright
field/fluorescence microscopy; (ii) multicolor flow cytometry
(MFC); and (iii) real time-polymerase chain reaction (RT-
PCR). In this context, IHC and IF are the most widely used
approaches as they provide the major advantage of evaluating
and characterizing morphological criteria at a single-cell level
(269, 270). On the contrary, MFC analyses are largely used to
analyze biopsies from advanced stage metastatic cancer patients
as they allow the rapid screening of tens of thousands of cells

per second coupled with the possibility of isolating pure, viable
cell subsets for further experimentation. As examples, isolated
cells can be expanded either in vitro, by establishing primary cell
cultures, or in vivo, by using xenograft models, and then used for
functional analyses (271). A major drawback of these antibody-
based technologies is the possibility of false positives, due to an
“illicit” expression of markers in non-malignant cells—which can
be the result of inflammation or injury (272), or even of the
formation of chimeras by the fusion of cancer cells with immune
cells (273)—and false negatives, due to the loss of marker
expression (270). Finally, RT-PCR-based transcriptome analyses
allow for the simultaneous and high sensitive detection of
multiple factors, although the probability of false positive results
due to contamination and amplification of transcripts from non-
cancer cells is high. Besides, the presence of degrading enzymes
could also give rise to false negative results (274). In these
experimental settings, as DCCs andCTCs are a few tens dispersed
in millions-to-billions of hematopoietic cells per milliliter of
BM aspirate or blood, prior enrichment approaches through
density gradient centrifugation and/or immunomagnetic bead
separation are mandatory (269).

Markers of DCC and CTC Detection,
Isolation, and Characterization
As hematopoietic cells circulating in the peripheral blood and
residing in the BM are mainly of mesenchymal origin, epithelial
cancer cells from different solid tumors can be identified through
epithelium-specific antigens such as (i) cytoskeletal-associated
cytokeratins (CKs, in particular CK 8, 18, 19, and 20) (275,
276), (ii) surface adhesion molecules, such as the epithelial cell-
adhesion molecule (Ep-CAM) (269), and (iii) growth factor
receptors, such as the erb-b2 receptor tyrosine kinase 2 (ERBB2,
best known as HER2) for breast cancer and the epidermal
growth factor receptor (EGFR) for lung cancer. Moreover, to
disseminate in distant anatomical sites, cancer cells lose cell-to-
cell adhesion molecules and enter the EMT process. Therefore,
markers of EMT, such as vimentin, FN1, twist family bHLH
transcription factor 1 (TWIST1), snail family transcriptional
repressor 1 (SNAI1) and 2 (SNAI2, best known as SLUG) can
be used to detect cancer dormancy (277, 278). As described
above, DCCs can show stem cell features (7), such as the
expression of cell surface adhesion receptor CD44, the cell
surface CD24, prominin (best known as CD133), and CD49
antigens, and the functional marker aldehyde dehydrogenase
1 family member A1 (ALDH1) (279). Notably, co-staining
with specific markers helps discriminate between quiescent and
actively proliferating DCCs and CTCs. The most common
dormancy-specific markers are the lack of the nuclear antigen
Ki67, and the expression of the nuclear receptor subfamily
2 group F member 1 (NR2F1), the basic helix-loop-helix
family member e41 (BHLHE41, also known as DEC2), and the
cyclin dependent kinase inhibitor 1 B (CDKN1B, best known
as p27) (280). Because dormant cells activate cytoprotective
programs (i.e., the UPR) to cope with environmental stresses,
including hypoxia and glucose starvation, the expression of
UPR proteins, such as the heat shock protein family A
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(Hsp70) member (HSPA5, best known as Grp78), can be
analyzed (281).

Major Limitations of DCC and CTC
Detection and Future Directions
Despite the successful detection and enumeration of DCCs
and CTCs, and the unceasing development of automated
and high sensitive analytical methodologies (e.g., CellSearch,
ImageStream, FAST, Epic, CytoTrack, and EPISPOT platforms)
(270, 282, 283), achieving high yield and high purity remains a
major challenge. Moreover, the high variability of the results is
due to multiple reasons, including the heterogeneity of marker
expression, the difficulties to recover intact and live cells, the
bias of false positive and false negative data, and the lack of
standardized protocols. This has prevented the implementation
of DCC and CTC usage into the routine clinical practice (284–
288).

Currently, next-generation sequencing (NGS) multi-
“omics” technologies are providing large-scale data and more
comprehensive characterization of the intricate molecular
mechanisms underlying the hallmarks of cancer (289). The in-
depth knowledge of disease development, treatment resistance,
and recurrence risk facilitated by this will be fundamental in
guiding treatment decisions. Very recent advances in single-cell
analyses have enabled researchers to characterize intra-tumor
heterogeneity (i.e., the heterogeneity among the cancer cells of
a single patient, at the spatial or temporal level), identify rare
cell subsets, and measure the mutational landscapes of different
cancer cell populations, and thus guide diagnosis and treatment.
However, mainly due to the prohibitive costs (single-cell), multi-
omics analyses have not yet been implemented in the clinical
setting, preventing the advancement of precision medicine. As
there is a widely recognized need to detect and characterize
dormant DCCs and CTCs in more detail, there will undoubtedly
be a rapid development of new, standardized, and exploitable
technologies in the near future, that will expedite DCC and CTC
implementation in clinical settings to prevent relapse and thus
improve outcome.

IMPLICATIONS FOR THERAPY

After years of bench studies on cancer dormancy, discoveries
of the mechanisms regulating dormancy and reawakening could
provide an opportunity for bedside translation. There are
essentially two clinical options to target dormant cancer (stem)
cells: (i) forcing them out of quiescence, so-called “lock-out”
approaches, or (ii) sustaining their perpetual dormancy, so-
called “lock-in” strategies (138, 290). Clinical trials were launched
to study the safety and efficacy of both strategies (Table 2).
Nonetheless, these strategies require detailed knowledge of
the mechanisms underlying dormancy and tumor evolution,
a clear view of which mechanisms are tissue-specific or
instead common and thus universally exploitable, and the
possibility/ability to stratify patients and distinguish those who

could benefit from therapies targeting dormancy and those who
could not.

As dormancy represents a mechanism by which cancer cells
evade current conventional antiproliferative therapies, lock-out
strategies aim at reawakening and forcing dormant cells into
proliferation before treatment. According to this principle, exit
from dormancy wakes up cancer cell sensitivity to conventional
chemo and radiation therapy as well as some types of target
therapy. Inhibitors of Polo-like kinase1 (Plk1), for instance,
appear highly effective against proliferating colorectal CSCs
(128). Notably, dormant CSCs survive the treatment with Plk1
inhibitors but retain sensitivity once out from quiescence (128).
In patients with chronic myeloid leukemia and non-small cell
lung cancer, ablation of F-box/WD repeat-containing protein
7 (FBXW7), a ubiquitin ligase that regulates dormancy by
degrading cMyc and Notch (291), pushes CSCs out of dormancy
and thus significantly enhances the benefit of imatinib and
gefitinib, respectively (292, 293). Likewise, human leukemia stem
cells efficiently exit the quiescent state and enter an active
cell cycle following the administration of granulocyte colony-
stimulating factor (GCSF) and IFN-α (294, 295). Proliferating
stem cells are then vulnerable to cytarabine- and 5-fluoro-uracil-
based chemotherapy (294, 295).

In a more recent study, inhibition of macroautophagy could
force quiescent ovarian CSCs out of G0 and prevent further
entry into quiescence (296). The dependence on specific niches
(see above) represents a therapeutic opportunity for preventing
or reducing metastasis outgrowth. This is exemplified by the
targeting of E-selectin- and SDF-1 in the bone perivascular
metastatic niche, which disrupts the anchorage of dormant breast
cancer cells (160). This forces the mobilization of dormant
cells into the bloodstream, where they are more vulnerable to
chemotherapy, thus preventing metastatic colonization. Along
similar lines, breaking the foothold of dormancy by targeting
blood vessels, the ECM, or effector immune cells may prove
effective in inhibiting dormant cancer cell survival and eventually
relapse (297–299). Indeed, the blockade of the CCL2-C-C Motif
Chemokine Receptor 2 (CCR2) axis, involved in breast cancer cell
metastatic seeding in the lungs and recruitment of metastasis-
associated macrophages (300), has provided therapeutic benefit
in fibrosarcoma models (301). Similarly, inhibition of neutrophil
infiltration by targeting the Notch1 signaling prevented lung
metastatic spread of breast, ovary, and colorectal carcinoma,
as well as melanoma (302). Overall, these pieces of evidence
may offer new opportunities to specifically target DCCs and
strategically eliminate MRD.

Data from clinical trials are emerging, and the results
are promising (Table 2). As an example, in breast cancer
patients docetaxel treatment following adjuvant fluorouracil,
epirubicin, and cyclophosphamide (FEC) therapy successfully
erased dormant DCCs (as detected in BM aspirates) while
increasing the rates of metastasis-free survival [(303)
NCT00248703]. Moreover, multiple on-going trials are
exploiting immunotherapeutic protocols to target dormant
cells. To reach a successful outcome, a few parameters have
to be properly addressed. First, as dormant cancer (stem)
cells develop early during tumor progression, their antigenic
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TABLE 2 | Clinical trials targeting the dormancy window in cancer patients.

Description ClinicalTrials.gov

identifier

Drug(s) Number of

patients

Recruitment

status

Phase Results

Pilot study to evaluate the impact of

Denosumab on DTCs in patients with

early stage breast cancer

NCT01545648 Denosumab 4 Terminated

(low accrual)

2 N/A

Pilot study of mobilization and

treatment of DTCs in men with

metastatic prostate cancer

NCT02478125 Burixafor hydrobromide,

G-CSF, Docetaxel, or in

combination

3 Terminated

(low accrual)

1 N/A

Effect of Trastuzumab on DFS in early

stage HER2-negative breast cancer

patients with ERBB2 expressing

DTCs

NCT01779050 Trastuzumab 7 Active, not

recruiting

2 All patients experienced

eradication of

HER2/neu-positive ITCs

from bone marrow;

reduction in the number of

ITC-positive patients

Zoledronic acid in the treatment of

breast cancer with minimal residual

disease in the bone marrow (MRD-1)

NCT00172068 Zoledronic acid in

combination with

calcium/vitamin D

96 Terminated 2 All patients treated became

DTC negative; untreated

patients 12 months after

diagnosis had significantly

shorter OS

Secondary adjuvant treatment for

patients with ITCs in bone marrow

NCT00248703 Docetaxel 1,028 Active, not

recruiting

2 79% of patients became

DTC negative; enhanced

metastasis-free survival in

patients with DTC

elimination

Gedatolisib, Hydroxychloroquine or

the combination for prevention of

recurrent breast cancer (GLACIER)

NCT03400254 Hydroxychloroquine,

Gedatolisib, or

combination

0 Withdrawn 3 N/A

Phase II pilot trial of

Hydroxychloroquine, EVErolimus or

the combination for prevention of

recurrent breast cancer (CLEVER)

NCT03032406 Hydroxycholorquine,

everolimus, or

combination

60 Recruiting 2 N/A

Prolonged Tamoxifen compared with

shorter Tamoxifen in treating patients

who have breast cancer

NCT00003016 Tamoxifen citrate 20,000 Terminated N/A N/A

Pilot study of 5-Azacitidine and

All-trans retinoic acid for prostate

cancer with PSA-only recurrence after

local treatment

NCT03572387 Combination of

5-Azacitidine and

All-trans retinoic acid, or

no treatment

20 Recruiting 2 N/A

Phase II study comparing

chemotherapy in combination with

OGX-427 or placebo in patients with

bladder cancer

NCT01454089 Gemcitabine and

Cisplatin in combination

with OGX-427

183 Completed 2 N/A

OGX-427 in castration resistant

prostate cancer patients

NCT01120470 OGX-427 and

prednisone in

combination

74 Completed 2 N/A

Safety and efficacy of ABT-510 in

subjects with advanced renal cell

carcinoma

NCT00073125 ABT-

510/Thrombospondin-1

mimetic

103 Completed 2 N/A

PROvenge treatment and early

cancer treatment

NCT00779402 Sipuleucel-T 176 Completed 3 N/A

Sunitinib malate or Sorafenib tosylate

in treating patients with kidney cancer

that was removed by surgery

NCT00326898 Sunitinib malate or

sorafenib tosylate

1,943 Completed 3 None of patients treated

showed survival benefit

relative to placebo

DC, dendritic cell; DFS, disease free survival; DTC, disseminating tumor cell; ITC, isolating tumor cell; N/A, not applicable; OS, overall survival.

cargo is relatively poor. This, coupled with a reduced capability
to present antigen on MHC-I, renders dormant cells poorly
immunogenic. Alternative strategies based on chimeric antigen
receptor (CAR) T (304) and NK cells (305) can be developed to

overcome these limitations. Second, the high intra- and inter-
patient heterogeneity of most tumors represents an additional
challenge, that could be only addressed with cost-prohibitive
personalized protocols. However, preclinical studies have shown
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the possibility of rapidly and easily reprogram circulating T
cells in situ (306). Third, not all patients presenting DCCs in
BM aspirates de facto develop metastases (137), and so it is of
utmost importance to identify the additional parameters that
characterize high-risk patients, thus avoiding the over-treatment
of low-risk patients.

Lock-in strategies aim at artificially keeping cancer cells
in a dormant state, thus preventing their outgrowth (138).
To date, the Adjuvant Tamoxifen: Longer Against Shorter
(ATLAS NCT00003016) is the most significant trial that
has used a strategy specifically based on forcing dormancy
maintenance (Table 2). In this clinical trial, ER positive breast
cancer patients showed a significant reduction of disease
recurrence and metastasis outgrowth, when the standard 5
year adjuvant tamoxifen administration was extended to 10
years (307, 308).

A plethora of signaling pathways previously identified as
regulators of cancer cell quiescence in preclinical studies
can be exploited as potential therapeutic targets. Specifically,
two strategies can be conceived. The first strategy is based
on the activation of dormancy-maintaining factors. Thus,
the activation of the stress-activated protein kinase p38 was
shown to preserve a state of protracted dormancy in different
cancer types (99, 309). Similarly, in breast cancer models,
induction of the morphoregulatory gene Homeobox (Hox)D10
reverted tumorigenic cells into a growth-arrested phenotype
(310, 311). The same effects are ascribed to the multiple
microenvironmental factors described above, which drive
quiescence by triggering low-mitogenic and high-stress signaling.
For instance, metastasis-incompetent primary tumors promoted
the conversion of recruited myeloid cells from pro- to anti-
metastatic by forcing them to produce the antitumorigenic factor
thrombospondin-1 (312). Moreover, stromal BMP7 triggered
dormancy of prostate CSCs by activating p38, inducing the cell
cycle inhibitor p21, and the metastasis suppressor NDRG1 (100),
which is in line with the evidence that the inhibition of BMP4
reawakened dormant breast CSCs and favored lung colonization
(150). Finally, the TGF-β2 signaling was also involved in the
maintenance and/or induction of a quiescent state for BM DCCs
in a head and neck squamous cell carcinoma model (147).

A second strategy is based on the chronic silencing of
reawakening pathways. Specifically, a blockade of uPAR affected
the FN1-dependent mitogenic signaling, resulting in a lack of
ERK1/2 activity and induction of dormancy in head and neck
squamous cell carcinoma cells (173, 309). Similarly, suppression
of MAPK/ERK axis and SFK signaling, favored quiescence in
breast cancer models (176, 313). Also, the inhibition of the
lysophosphatidic acid receptor 1 (LPAR1) induced dormancy
of breast metastatic lesions by activating p38 signaling (74).
The DNA methylation inhibitor 5-azacytidine interrupted the
G0→ G1 switch in leukemia and breast cancer cells (314). In a
subsequent study, the same authors showed that a combination
of 5-azacytidine with bortezomib induces long-term dormancy
multiple myeloma cells (315).

The advent of omics-based approaches disclosed single
cell snapshots of molecular signatures associated with cancer
dormancy (106, 316–318), some of which represent every

promising target. Although theoretically highly attractive
and clinically highly beneficial, the idea of keeping cancer
(stem) cells asleep, may be difficult to translate into clinical
settings. Some patients with a good prognosis and no more
evidence of disease may be reluctant to continue therapy
indefinitely. Moreover, long-term follow-ups and accumulating
costs are additional challenges that need to be carefully
considered. Interestingly, screening of the Prestwick Library,
made up of Food and Drug Administration (FDA) approved
drugs, led to the identification of the stimulant laxative
drug bisacodyl as the sole agent specifically inhibiting
quiescent, but not proliferating, glioblastoma stem-like
cells (319). This opens the avenue to a third therapeutic
strategy: the targeting of cancer (stem) cells while they are
dormant. Intense basic and clinical research is developing,
for example, target therapy with ABT-737, an inhibitor
of anti-apoptotic BCL2 family members exerted a robust
and preferential cytotoxic activity on quiescent lung CSCs
(320). These findings opened the possibility to combine
conventional chemotherapy with ABT-737 to kill otherwise
resistant dormant CSCs, and thus prevent their relapse after
reawakening (320).

We urge that more studies further explore dormancy
regulation. These future studies will offer new possibilities
for marker detection and metastatic prediction, opening a
therapeutic window for prevention trials.

CONCLUDING REMARKS

This is an exciting moment for cancer research, with data
bringing into sharp focus the complex factors and mechanisms
that render the TME either metastasis-permissive or metastasis-
suppressive, but we still have a long way to go. The ability
to anticipate whether, when, and how dormant DCCs are
reactivated could help make cancer curative intent a reality.
The striking analogies between dormant DCCs and dormant
CSCs, along with their co-evolution with the surrounding
microenvironment, may provide the ground for developing
therapies that consider dormancy as a whole process. This
opportunity to rethink therapeutic strategies could be the way
to eradicate and/or prevent lethal metastatic recurrence and
would surely benefit from the possibility ofmonitoring dormancy
over time through rigorous, non-invasive, and preferably low-
cost approaches.
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