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A B S T R A C T

Background: Although the association between hypothyroidism and idiopathic pulmonary fibrosis (IPF) is
found in observational studies, it remains uncertain whether hypothyroidism causally influences IPF.
Methods: Two-sample Mendelian randomisation (MR) was conducted with hypothyroidism genome-wide
association study (GWAS) data in the UK Biobank from 289,307 individuals (18,740 cases and 270,567 con-
trols) and the largest GWAS summary statistics of IPF from 11,259 individuals (2,668 cases and 8,591 con-
trols). Findings were verified using an independent validation dataset, as well as through different MR
methods with different model assumptions. A multivariable MR based on Bayesian model averaging was fur-
ther performed to evaluate whether hypothyroidism, even given several other comorbidities of IPF, remained
to be the true causal one of IPF.
Findings: A positive causal effect of hypothyroidism on IPF was revealed (MR inverse-variance weighted [MR-
IVW], odds ratio [OR]=1.125, 95% confidence interval [CI] 1.028-1.231; P=0.011), which was further verified
in an independent validation set (MR-IVW, OR=1.229, 95% CI 1.054-1.432; P=0.008). The results were consis-
tent from a variety of MR methods. Bidirectional analyses also indicated no reverse causation. Multivariable
MR analysis showed hypothyroidism had the strongest marginal evidence (marginal inclusion probabil-
ity=0.397, false discovery rate=0.025) compared with other comorbidities of IPF.
Interpretation: Our results illustrate the significant causal effect of hypothyroidism on IPF, which holds even
given several other comorbidities of IPF. These findings may have an important insight into pathogenesis and
possible future therapies of IPF.
Funding: National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province
and the Young Scholars Program of Shandong University.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a condition in which the
lungs become scarred and breathing is increasingly difficult, and
occurs primarily in older adults with unknown etiology [1] and a
median survival of 3.8 years [2]. In recent years, IPF has become more
prevalent and the incidence is on the rise [3]. One consensus regard-
ing IPF is that damage to the alveolar epithelium and an aberrant
wound-healing response cause widespread deposition of dense
fibrotic tissue, reduce the lung compliance, and inhibit gas transfer
[4]. Treatment options in IPF are limited thus far. Consequently,
understanding of comorbidities in the IPF patient population, in par-
ticular their relationship, can greatly improve clinical practice includ-
ing quality of life and potentially survival [5].

Comorbidities frequently occurring in IPF include both respiratory
(e.g., chronic obstructive pulmonary disease (COPD), obstructive
sleep apnea (OSA), pulmonary hypertension (PH), and lung cancer)
and non-respiratory (e.g., ischemic heart disease (IHD), atherosclero-
sis (AS), type 2 diabetes (T2D), gastroesophageal reflux disease
(GERD), and hypothyroidism) diseases [5, 6]. Among these, the asso-
ciation between hypothyroidism and IPF is of particular interest: a
retrospective case-control study [7] showed that hypothyroidism
was significantly associated with IPF even after adjusting for body
mass index, smoking, diabetes, GERD, and chronic corticosteroid
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Research in context

Evidence before this study

We searched PubMed on October 3, 2021, with the search
terms (“idiopathic pulmonary fibrosis “OR “pulmonary fibro-
sis”) AND (“hypothyroidism” OR “thyroid function” OR “thyroid
hormones”) and without date restrictions. We identified 50
PubMed-indexed articles in total, including in particular a case-
control study which reported the association between hypothy-
roidism and idiopathic pulmonary fibrosis (IPF) after adjusting
for body mass index, smoking, diabetes, gastroesophageal
reflux, and chronic corticosteroid therapy. Several observa-
tional studies also illustrated the relationship between thyroid
function and pulmonary fibrosis. The relationship between
hypothyroidism and IPF is bound to be controversial due to a
range of known and unknown confounders, and the underlying
mechanisms may be complex. The causality of hypothyroidism
on IPF is yet to be established.

Added value of this study

We establish a causal relationship between hypothyroidism
and IPF through a two-sample Mendelian randomisation (MR)
framework using large-scale genome-wide association studies
(GWASs) summary statistics. Findings were verified using an
independent validation dataset, as well as through different MR
methods with different model assumptions. Bidirectional anal-
yses also indicated no reverse causation. Multivariable MR anal-
ysis showed hypothyroidism had the largest marginal inclusion
probability compared with other comorbidities of IPF.

Implications of all the available evidence

Our study was the first attempt shedding light on the direc-
tional causal relationship between hypothyroidism and IPF,
adding to existing knowledge in etiology of IPF. It will also facil-
itate revealing pathogenic pathways and planning future
studies.
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therapy. In addition, several studies also showed the relationship
between thyroid function and pulmonary fibrosis [8, 9]. Given the
fact that inadequate adjustment for confounding factors can bias the
association between hypothyroidism and IPF, a better approach to
assess the evidence on their causal relationship is needed, especially
when other comorbidities of IPF are considered.

Although randomised controlled trial is considered as a gold stan-
dard to evaluate causality, its use is limited with respect to practical-
ity, cost, and ethical considerations [10]. IPF is relatively rare and it is
not feasible to collect large samples in longitudinal studies to suffi-
ciently study the relationship between hypothyroidism and IPF. Fur-
thermore, a host of known and unknown confounders also bring one
big challenge to investigate the causality of hypothyroidism on IPF.
The advent of causal inference between the exposure and the out-
come from observational studies offers such possibility. Notably,
Mendelian randomisation (MR) is a useful framework to study cau-
sality via genetic instruments (e.g., single nucleotide polymorphisms
[SNPs]) [11]. It is analogous to a “natural” randomised controlled trial
in which the random allocation of exposure-influencing genetic
alleles largely rules out the impact from unobserved confounding fac-
tors and avoids the reverse causation and measurement errors, which
can plague other study designs [11]. Publicly available genome-wide
association studies (GWASs) have produced lots of summary-level
data, enabling two-sample MR as an efficient and cost-effective
method to interrogate the causal relationships among health risk
factors and disease outcomes [12]. Two-sample MR estimates and
tests for the causal effect of an exposure on an outcome measured in
two separate studies with no sample overlap [13].

In this study, we investigate the causal relationship between
genetically predicted hypothyroidism and IPF in the MR framework
using publicly available GWAS summary statistics. The results can
provide additional evidence in the etiology of IPF.

2. Methods

2.1. Study design

A two-sample MR was firstly performed on the bi-directional
causal relationship between hypothyroidism and IPF, followed by
verification using an independent validation dataset as well as using
different MRmethods with different model assumptions. A multivari-
able MR based on Bayesian model averaging (MR-BMA) [14] was fur-
ther conducted to see whether hypothyroidism remains to be
selected as the true causal factor of IPF, given several other comorbid-
ities of IPF. Fig. 1 showed the overview diagram of our study design.

2.2. GWAS data sources and instrument selection in univariable MR

Two-sample MR analyses were conducted using GWAS summary
data. In total, we obtained three GWASs of hypothyroidism and one
GWAS of IPF. All GWAS studies were restricted to unrelated individu-
als of European ancestry. In discovery analysis, we used the hypothy-
roidism GWAS from UK Biobank (UKBB) (data field 20002_1226)
[15], which had the largest sample size (N=289,307 with 18,740 cases
and 270,567 controls). UKBB is a large-scale population-based cohort
study of half a million people aged between 40 and 69 years from the
United Kingdom [16]. The hypothyroidism genetic association data
were obtained from UKBB release 2 data in the Atlas of GWAS Sum-
mary Statistics (https://atlas.ctglab.nl/), where hypothyroidism was
defined with self-reported history of hypothyroidism/myxedema. In
validation analysis, we used the hypothyroidism GWAS data from the
large GWAS study on thyroid function and dysfunction [17], with
3,440 cases and 49,983 controls, where hypothyroidism was defined
with thyroid stimulating hormone levels above the cohort-specific
reference range. In sensitivity analysis, another hypothyroidism
GWAS from UKBB (data field 41204_E03), diagnosed with secondary
ICD-10 with 244,890 individuals, was further analyzed to assess the
robustness against different illness code [15]. GWAS summary statis-
tics on IPF was from the largest GWAS to date [18], derived from a
meta-analysis on three previous IPF studies including the Chicago
study [19], the Colorado Study [20,21], and the UK study [22]. The
meta-analysis obtained a maximum sample size of up to 11,259 indi-
viduals (2,668 cases and 8,591 controls) for 10,790,934 well-imputed
SNPs with minor allele count >10 in the three studies. Each study
was separately conducted adjusting for the first 10 principal compo-
nents to account for population structure. IPF cases from the studies
are strictly diagnosed using guidelines American Thoracic Society
and European Respiratory Society guidelines [1,23,24] and had
appropriate institutional review board or ethics approval. In addition,
sample overlap between two datasets could bias the estimated causal
effect [25], thus we conducted linkage disequilibrium score regres-
sion (LDSC) to assess sample overlap [26].

The MR framework uses independent instrumental SNPs as
instrumental variables (IVs) for the exposure (e.g., hypothyroidism)
to estimate and test the causal effect on the outcome (i.e., IPF). A stan-
dard MR analysis requires three model assumptions to hold [12]
(Fig. 1a): (i) instruments are associated with the exposure of interest;
(ii) instruments are not associated with any other confounders that
may be associated with both exposure and outcome; (iii) instruments
only influence the outcome by the path of exposure. A primary step
of MR is to determine appropriate genetic variants to serve as valid

https://atlas.ctglab.nl/


Fig. 1. Study design. (a) The causal diagram for standard Mendelian randomisation (MR) analysis, which involves instrumental variable (IV) and requires three assumptions. (b)
Illustrative diagram of IV assumptions made in multivariable MR model. IPF, idiopathic pulmonary fibrosis; MR, Mendelian randomisation.
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IVs for exposure. For UKBB hypothyroidism data used in discovery
and sensitivity analysis, IVs were derived from lead SNPs reported by
GWAS Atlas (https://atlas.ctglab.nl/traitDB). For non-UKBB hypothy-
roidism data used in validation analysis, IVs were obtained through
the clumping procedure of PLINK (version 1.90) [27] (r2 < 0.01),
where r2 is a measure of linkage disequilibrium (LD), a non-random
association in the occurrence of alleles at two loci [28]. Then, inde-
pendent instrumental SNPs were harmonised with the outcome IPF
GWAS summary statistics.
2.3. Instrument and variable selection in multivariable MR

Multivariable MR can be considered as an extension of standard
univariable MR including multiple variables (Fig. 1b). We selected
the large-scale GWAS of potential IPF-related factors including sev-
eral comorbidities and smoking from two commonly used GWAS
platforms: GWAS Atlas, https://atlas.ctglab.nl/traitDB, and Neale lab,
http://www.nealelab.is/uk-biobank (Table 1). MR-BMA basically
requires the independence among instrumental SNPs, OSA and GERD
were removed since there were no independent SNPs left after the
LD pruning using PLINK (version 1.90) [27] (r2<0.001). Among the
combination SNPs of all retained IPF-related factors, LD clumping
was further used to re-determine the final instruments to satisfy the
independence. Given another model assumption of multivariable MR
is that it only included variables strongly instrumented by at least
one instrumental SNP (P<5£10�8), COPD and lung cancer were
further removed. Finally, hypothyroidism, IHD, CAD, T2D, and smok-
ing were included in the MR-BMA model.
2.4. Statistical analysis

The F statistic (also known as the Cragg-Donald statistic) [29] was
employed to evaluate the issue of weak instrument in MR analysis.
MR inverse-variance weighted (MR-IVW) method was used [30] as
the main analysis. Estimator is represented the weighted regression
slope of the SNP-outcome effect on the SNP-exposure effect when
the intercept is limited to zero. Several other MR methods with dif-
ferent model assumptions were performed to relax the assumption
and address the pleiotropy effect: (i) the weighted median method,
which can provide consistent estimates when at least half of the
instruments used in the analysis are valid [31]. (ii) MR Robust
Adjusted Profile Score (MR-RAPS) [32], which is robust to both sys-
tematic and idiosyncratic pleiotropy. (iii) MR-lasso [33], which penal-
izes the number of candidate instrumental SNPs to be used in the
model. (iv) MR-IVW method using robust regression (MR-Robust)
[33], which reduces the standard error of estimates. (v) leave-one-
out (LOO) cross-validation analysis [34] and Mendelian Randomisa-
tion Pleiotropy RESidual Sum and Outlier (MR-PRESSO) analysis [35],
which makes causal inference as well as outlier detection. Further-
more, we depicted diagnostic plots (e.g., funnel plot) to illustrate the
MR results, which can detect visually directional pleiotropy using
symmetry of graphical representations. A reverse causation analysis
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Table 1
Characteristics of exposures and outcome.

Variable Source GWAS platforms Cases Controls Sample size Population

Exposure
Atherosclerosis UKBB data field I9_CORATHER Neale lab 14,334 346,860 361,194 European
Chronic obstructive pulmonary disease UKBB data field 41204_J44 Neale lab 1,531 359,663 361,194 European
Gastroesophageal reflux UKBB data field 41204_K21 Neale lab 10,743 350,451 361,194 European
Hypothyroidism UKBB data field 20002_1226 GWAS Atlas 18,740 270,567 289,307 European
Ischemic heart disease UKBB data field I9_IHD Neale lab 20,857 340,337 361,194 European
Lung cancer UKBB data field LUNG_CANCER_MESOT Neale lab 2,007 359,187 361,194 European
Obstructive sleep apnea UKBB data field G6_SLEEPAPNO Neale lab 2,249 358,945 361,194 European
Smoking UKBB data field 20160 GWAS Atlas 235,095 149,918 385,013 European
Type 2 diabetes UKBB data field 41204_E11 GWAS Atlas 16,673 228,217 244,890 European
Outcome
Idiopathic pulmonary fibrosis PMID: 31710517 Collaborative Group of genetic

studies of IPF
2,668 8,591 11,259 European
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was carried out to exclude the possibility that IPF causally affected
hypothyroidism using IPF-associated SNPs as IVs.

MR-BMA was a recently developed multivariable MR method
whose major advantage over other methods lies in its ability to select
the true causal determinants of an outcome from a set of candidate
variables, no matter whether these variables are correlated or not
[14]. The model posterior probability (PP) was calculated for each
possible set of variables, which quantifies the possibility of the spe-
cific variables being a causal determinant of IPF risk. In addition, we
computed the marginal inclusion probability (MIP) for the variable
by summing up the models PP including the variable, representing
the probability of causal association between the variable and IPF.
The model-averaged causal effect of each variable on the IPF was
finally obtained. Note that it was non-trivial to obtain the P-value
using standard statistical techniques, we alternatively use the permu-
tations (200 times) to get the empirical P-values [36] and adjustment
for multiple testing via the Benjamini and Hochberg false discovery
rate (FDR) procedure [37]. In the MR-BMA analysis, Cochran’s Q sta-
tistic [38] was used to identify outliers and Cook’s distance (Cd) [39]
to detect influential observations, respectively. A diagnosis of outlier
and influential observations was performed for the top model.

We performed MR analyses using R packages “MendelianRan-
domization” [40], “MRPRESSO” [35] and “mr.raps” [32]. The statistical
analyses were conducted within the R (version 4.0.0) environment.
The statistical significance level was set to be 0.05.

2.5. Ethics

Summary data was used and as such ethical approval was not
required.

2.6. Role of funding source

The funder of the study had no role in study design, data collec-
tion, data analysis, data interpretation, and writing of the report.

3. Results

3.1. Univariable two-sample MR analysis

3.1.1. Discovery analysis
To address the concern over bias in the estimated causal effect

[25] due to overlapping samples in the hypothyroidism GWAS and
IPF GWAS, LDSC was used to obtain an approximately zero intercept
of genetic covariance 0.0013 (z-test, se=0.0052, P=0.80), indicating lit-
tle or no impact from sample overlap on the two datasets [26]. A total
of 84 IVs were identified in the hypothyroidism GWAS dataset (UKBB
data field 20002_1226) (Supplementary Table 1), which explained
about 2.15% phenotypic variation of hypothyroidism. The F statistics
of all these IVs are above ten with an overall F statistic of 75.62,
indicating that the weak instrument bias would not substantially
influence the estimations of causal effects. The overall causal estimate
supported the causality of hypothyroidism on IPF (Fig. 2), with an
odds ratio (OR) of 1.125 (MR-IVW, 95% confidence interval [CI]
1.028-1.231; P=0.011), suggesting that self-reported history of hypo-
thyroidism/ myxedema can lead to an average of 12.5% increase in
the risk of IPF. Overall, the causal effect estimate of hypothyroidism
on IPF from several MR methods were quite consistent. The relevant
OR estimate was 1.101 (MR-lasso, 95%CI 1.012-1.198; P=0.025), 1.111
(MR-Robust, 95%CI 0.997-1.237; P=0.057), 1.104 (MR-RAPS, 95%CI
1.003-1.215; P=0.042), 1.125 (MR-PRESSO, 95%CI 1.028-1.231;
P=0.013) and 1.149 (weighted median method, 95%CI 1.010-1.308;
P=0.034), respectively (Fig. 2). The MR-PRESSO analysis showed no
significant horizontal pleiotropic outliers. The diagnostic funnel plot
shows a visually apparent symmetry, which suggested that the causal
estimates would possibly not suffer from the influence of directional
pleiotropy. (Fig. 3a). In addition, LOO analysis also showed that no
single instrumental SNP can influence the causal effect estimation
(Fig. 3b).

3.1.2. Validation analysis
The intercept of the LDSC between two hypothyroidism GWASs

from discovery and validation analysis is 0.0067 (z-test, se=0.0069,
P=0.33), and it is -0.0003 (z-test, se=0.0049, P=0.95) between the vali-
dation hypothyroidism GWAS and the IPF GWAS, both indicating
approximately no sample overlap [40]. Hence, this non-UKBB hypo-
thyroidism dataset could serve as independent validation dataset
and as well satisfy the requirement of exposure and outcome data-
sets with no sample overlap in two-sample MR. A total of nine inde-
pendent IVs were finally screened in the independent validation
hypothyroidism GWAS dataset [17] (Supplementary Table 2), which
explained about 0.77% phenotypic variation of hypothyroidism. The F
statistics of all these SNPs are above ten with an overall F statistic of
46.32, indicating less weak instrument bias. No significant causal
effect can be detected by MR-IVW method. Further investigation
showed that, among the nine SNPs, there were three SNPs having the
pleiotropy (rs12449792, rs2983514, rs597808), which has been suc-
cessfully detected by MR-PRESSO method. Consistently, all MR meth-
ods that were not robust to the pleiotropy effect failed to detect the
causal associations, while the MR method that was robust to the plei-
otropy effect successfully detected the causal effect of hypothyroid-
ism on IPF, with the OR estimate being 1.215 (weighted median
method, 95%CI 1.011-1.461; P=0.038), 1.229 (MR-PRESSO, 95%CI
1.102-1.369; P=0.014) (Supplement Figure 1 ). After removing the
pleiotropic SNPs, the OR estimate was 1.229 (MR-IVW, 95%CI 1.054-
1.432; P=0.008), 1.229 (MR-lasso, 95%CI 1.054-1.430; P=0.008), 1.226
(MR-Robust, 95%CI 1.095-1.373; P<0.001), 1.231 (MR-RAPS, 95%CI
1.046-1.449; P=0.013), 1.229 (MR-PRESSO, 95%CI 1.103-1.369;
P=0.014) and 1.229 (weighted median method, 95%CI 1.016-1.484;
P=0.034), respectively (Fig. 2).



Fig. 2. The causal effect estimates from various Mendelian randomisation methods. The odds ratios of hypothyroidism on IPF are displayed as blue solid box. The 95% confidence
intervals are shown as horizontal blue lines. MR, Mendelian randomisation; MR-IVW, MR inverse-variance weighted; MR-RAPS, Robust Adjusted Profile Score; MR-PRESSO, Mende-
lian Randomisation Pleiotropy RESidual Sum and Outlier; OR, odds ratio; 95%CI, The 95% confidence intervals.
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3.1.3. Sensitivity analysis
The results are robust to the hypothyroidism GWAS dataset with

different illness code (UKBB data field 41204_E03) (Supplementary
Table 3), with 45 valid instrumental SNPs being selected. All findings
also supported the causal role of hypothyroidism in the development
of IPF (Fig. 2). In bidirectional analyses, the IPF-hypothyroidism
causal model was not significant (MR-IVW, OR=1.014; 95%CI 0.983-
1.046; P=0.371), indicating no reverse causation.

3.2. Multivariable MR analysis based on BMA

In the MR-BMA analysis, 183 independent genome-wide signifi-
cant SNPs were identified as valid IVs (Supplementary Table 4).
Through model diagnostics, no influential but an outlying instrumen-
tal SNP, rs763053, was detected (Fig. 4). Our analysis was performed
after removing the outlier (n=182). Table 2 presented the top ten
models (i.e., sets of IPF-related factors) according to their model PP,
as well as the MIP and the model-averaged causal effect estimate of
the five IPF-related factors. Hypothyroidism had the strongest mar-
ginal evidence (MIP=0.397, FDR=0.025). Note that similar results
were obtained when 183 IVs were included in the analysis (Supple-
mentary Table 5).

4. Discussion

In the present study, we illustrated the causal effect of hypothy-
roidism on IPF under the two-sample MR framework. The results
were verified using an independent validation dataset as well as
through different MR methods with different model assumptions,
suggesting the findings were robust and convincing. In addition, bidi-
rectional analyses also indicated no reverse causation. The study took
great advantage of an MR analysis using the genetic instruments and
benefited from large sample size in the GWAS, containing 2,668 cases
and 8,591 controls as the largest on IPF so far [18]. More importantly,
the causal role of hypothyroidism in IPF remained even given other
comorbidities of IPF in the multivariable MR model. Our study



Fig. 3. Diagnostic plots for the two-sample Mendelian randomisation analysis. (a) Funnel plot for individual causal effect estimate. (b) Forest plot for leave-one-out analysis, with
each point denoting the causal effect by IVW after removing the specific SNP on the left side. IVW, inverse variance weighted method.
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corroborated results from previous observational studies showing a
relationship between hypothyroidism and pulmonary fibrosis [7�9].

The underlying mechanisms in the causative role of hypothyroid-
ism in IPF may be quite complex. Several biological mechanisms
might explain the effect. Previous studies have suggested that the
state of hypothyroidism would reinforce oxidative stress [41,42],
which is implicated to affect apoptosis of structural and inflammatory
cells as well as alter the cytokine microenvironment balance and,
hence, involving in the pathogenic pathways of IPF [43,44]. In addi-
tion, mitochondrial dysfunction and metabolic aberrations are possi-
bly involved in pulmonary fibrosis [45]. Thyroid hormone, which
regulates fundamental biological functions, is critical for maintenance
of cellular homeostasis during stress responses [46]. In an animal
study [47], anti-fibrosis properties and protection of alveolar epithe-
lial cells of thyroid hormones suggest a pathway on the restoration of
mitochondrial function, so thyroid hormone may be a potential treat-
ment for pulmonary fibrosis. Furthermore, TGF-b would contribute
to the development of IPF in expansion of the fibroblast and myofi-
broblast populations [48] by activating SMAD (mothers against
decapentaplegic) transcription factors. An experimental study
suggested that thyroid hormones could inhibit TGF-b signaling by
antagonizing transcriptional activation of TGF-b/SMAD, which
leads to attenuation of fibrotic responses [49], and thus may play
a critical role in blocking the progression of IPF. In conclusion,
hypothyroidism with a decrease in the synthesis and secretion of
thyroid hormones [50], creates metabolic conditions that lead to
failure in restoration of epithelium mitochondrial function and
antagonism transcriptional activation of TGF-b/SMAD, thus con-
tributing to IPF pathogenesis.

Some limitations of this study should be considered. First, it
should be noted that we used the summary data of self-reported
hypothyroidism with non-cancer illness code from UKBB field 20002
in discovery analysis, rather than the summary data of hypothyroid-
ism with diagnosis from main ICD-10 code. Indeed, in total we



Fig. 4. Model diagnostics in multivariable MR based on BMA. The predicted associations with IPF based on the model including hypothyroidism (x-axis) are plotted against the
observed associations with IPF (y-axis). This is the top model when keeping outliers and influential genetic variants in the analysis. (a) Cook's distance for the influential points; (b)
the q-statistic for outliers. Any genetic variant with q value larger than threshold (q-statistic = 13.246) or Cook's distance larger than the median of the relevant F-distribution
(Cd = 0.457) is marked by a label indicating the gene region. IPF, idiopathic pulmonary fibrosis.

Table 2
The ranking of models for idiopathic pulmonary fibrosis after model diagnostics in the multivariable MR analysis.

Model PP casual effect Risk factor MIP Model-averaged causal effect Empirical p-value FDR

1 hypothyroidism 0.290 0.111 hypothyroidism 0.397 0.044 0.005 0.025
2 IHD 0.256 0.503 IHD 0.355 0.176 0.780 0.995
3 AS 0.210 0.364 AS 0.300 0.106 0.905 0.995
4 smoking 0.055 0.037 smoking 0.087 0.003 0.995 0.995
5 hypothyroidism, IHD 0.045 0.109,0.466 T2D 0.039 0.002 0.920 0.995
6 hypothyroidism, AS 0.038 0.110,0.340
7 AS, IHD 0.032 0.318,0.473
8 T2D 0.024 0.043
9 hypothyroidism, smoking 0.010 0.111,0.047
10 IHD, smoking 0.009 0.505,0.039

Top ten models (combination of risk factors) ranked by the model posterior probability and all risk factors ranked by the marginal inclusion probability in the
analysis after model diagnostics based on 182 genetic variants. Causal effects are log odds ratios for idiopathic pulmonary fibrosis. Empirical P-values are com-
puted using 200 permutations and adjustment for multiple testing via the Benjamini and Hochberg false discovery rate (FDR) procedure. PP=posterior probabil-
ity, MIP =Marginal inclusion probability, IHD= ischemic heart disease, AS=atherosclerosis, T2D= type 2 diabetes.
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screened out 1,690 SNPs from the hypothyroidism GWAS data with
diagnosis from main ICD-10, but only two SNPs remained after merg-
ing with these SNPs with 1000 Genome reference panel data, and
both SNPs were not matched with the GWAS of IPF. Second, some
comorbidities GWAS of IPF (i.e., OSA, GERD, COPD, PH, and lung can-
cer), failed to be adjusted in our multivariable MR model, which may
have little impact on the overall causal estimates, but can increase
the residual error and thus reduce the statistical efficiency. However,
here we would like to follow the original multivariable MR work to
emphasize that the main goal of MR-BMA method is, through model
averaging procedure, to prioritize and select causal risk factors in a
Bayesian framework from a set of candidate risk factors. Since the
variable selection procedure often shrinks estimates towards the
null, MR-BMA can lead to causal effect estimates being biased
towards the null when there is a causal effect and unbiased estimates
when there is no causal effect. Third, IPF is known to dramatically
increase in prevalence with age [51], the use of summary rather than
individual-level data from GWAS prevents direct estimation of the
causal effect between hypothyroidism and age-stratified IPF. In addi-
tion, the IPF GWAS in this study was unable to adjust for age and gen-
der due to these information not being available for all individuals in
each dataset. Finally, the result from MR reflects the change in IPF
risk due to a genetically predisposed (lifetime) change in
hypothyroidism status, hence the short-term effect of hypothyroid-
ism status on IPF risk merits additional investigation.

To conclude, our study rendered strong evidence of self-reported
history of hypothyroidism/myxedema as a causal determinant on IPF
risk, even when several other comorbidities of IPF were taken into
account. Importantly, it is biologically plausible that hypothyroidism
is embedded in the critical pathway for patients with IPF, for whom
hypothyroidism should be considered and monitored closely. How-
ever, translating the findings into the treatment of IPF may be not
straightforward, and experimental studies are certainly required for
further validation.
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