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ABSTRACT

The analysis of genomic data such as ChIP-Seq usu-
ally involves representing the signal intensity level
over genes or other genetic features. This is often
illustrated as a curve (representing the aggregate
profile of a group of genes) or as a heatmap (rep-
resenting individual genes). However, no specific re-
source dedicated to easily generating such profiles
is currently available. We therefore built the versa-
tile aggregate profiler (VAP), designed to be used by
experimental and computational biologists to gen-
erate profiles of genomic datasets over groups of
regions of interest, using either an absolute or a
relative method. Graphical representation of the re-
sults is automatically generated, and subgrouping
can be performed easily, based on the orientation
of the flanking annotations. The outputs include sta-
tistical measures to facilitate comparisons between
groups or datasets. We show that, through its intu-
itive design and flexibility, VAP can help avoid mis-
interpretations of genomics data. VAP is highly effi-
cient and designed to run on laptop computers by us-
ing a memory footprint control, but can also be easily
compiled and run on servers. VAP is accessible at
http://lab-jacques.recherche.usherbrooke.ca/vap/.

INTRODUCTION

Genomic data are often represented over genes or other
regions of interest as aggregates or as individual profiles
showing the spatial distribution of the signal intensity. Such
representations are particularly useful for interpreting spa-
tial or intensity variations of the signal between experimen-
tal conditions (1–12). However, the absence of a general

stand-alone tool that allows for easy customization of such
representations forces most laboratories to develop their
own in-house script. Some stand-alone tools such as CEAS
(13) also integrated into Cistrome (14), ACT (15) and se-
qMINER (16) do offer aggregate profiles in their outputs.
However, these tools do not allow users to provide the co-
ordinates of their regions of interest or modify parameters
such as the resolution and the number of reference points.
Moreover, and most importantly, these tools mainly use a
constant number of windows (relative method) to repre-
sent genes and their flanking intergenic regions. As demon-
strated below, the relative method should be used with cau-
tion and an alternative method, using constant window size
and thus termed absolute method, represents a better ap-
proach. We therefore developed versatile aggregate profiler
(VAP), a stand-alone intuitive tool designed to analyze very
high volumes of experimental data on laptop computers,
and which supports both the absolute and relative methods.
Based on a simple gene list, VAP generates aggregate or in-
dividual graphs of the genomic signal using a customizable
number of windows over a specified number of reference
points. These reference points delimit the genes of interest
as well as their flanking genes, or even exons. Alternatively,
VAP can directly use genomic coordinates defined by the
user (e.g. transcription factor binding sites). The output files
include values such as standard error of the mean (SEM) to
facilitate statistical comparisons between groups of features
or datasets. VAP is accessible through both a user-friendly
platform-independent Java interface or via command line
to provide flexibility to advanced users.

RESULTS

The importance of using windows of constant length

In the first aggregate representations of Chromatin Im-
munoprecipitation (ChIP) experiments hybridized on tiling
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Figure 1. Comparison of the relative and absolute methods. When genes are grouped based on criteria other than length, the relative and absolute methods
gave similar results. (a–b) Aggregate profiles showing H3K36me3 (17) on groups of genes based on their transcriptional frequency (26) using the annotation
mode and either the relative (a) or the absolute (b) method. The five groups from red to blue contain, respectively, 231 genes transcribed at a rate above
16 mRNA/h, 1053 genes with a rate between 4 and 16 mRNA/h, 955 genes between 2 and 4 mRNA/h, 1045 genes between 1 and 2 mRNA/h and 1492
genes with a rate below 1 mRNA/h. (c–d) Aggregate profiles showing the same dataset as in panels a–b on groups of genes based on their length using the
relative (c) or the absolute (d) method. The five groups from red to blue contain, respectively, 84 genes longer than 5 kb, 405 genes with a length between
3 and 5 kb, 801 genes between 2 and 3 kb, 2227 genes between 1 and 2 kb and 3087 genes with a length of less than 1 kb.

arrays, all genes were divided in a constant number of 40
windows (17). This method, easy to reproduce, was then
used by many groups (18–24) and included in recently de-
veloped web tools such as the ‘Gene plot’ section of the
WashU Epigenome Browser (25). As a consequence of this
methodology, the size of the windows varies according to
gene length. For instance, the size of each window for a 400
bp-long gene divided into 40 bins is 10 bp, while the window
size is 100 bp for a 4 kb-long gene. In the seminal publication
by the Young group (17), and as reproduced in Figure 1a,
the genes from Saccaromyces cerevisiae were grouped based
on their transcription frequency and the graph shows that
the level of the histone modification H3K36me3 correlates
positively with the level of transcription.

Considering that, in the above approach, all genes were
divided into the same number of windows then, for exam-
ple, the signal in the fourth bin (out of 40) would represent
the signal at 10% of the gene length; we therefore name this
approach the ‘relative’ method. However, it is unlikely that
the transcriptional machinery would be able to sense the rel-
ative distance from the transcription start site (TSS). To cir-
cumvent this conceptual problem, we have previously pro-
posed (1) that genes be divided into windows of constant
size, thereby using a varying number of windows for genes
of different lengths. We have named this approach the ‘ab-
solute’ method and have employed it in multiple studies (1–
12). As illustrated in several examples below, representing
genomic data using the absolute method appears to bet-

ter reflect biological evidence (27). To generate aggregate
profiles using the absolute method, one has to determine
the number of windows to represent the average feature. In
cases where both the start and end coordinates of genes are
used as reference points (anchors) to align the signal, this
produces an interruption in the profiles for genes having
a length different from the represented length (number of
windows times window size). For instance, in Figure 1b, all
genes were virtually cut in the middle of the gene, and the
signal aligned at both ends.

Considering that each group contains a mix of genes of
different lengths, both the relative and absolute methods
produce similar aggregate profiles (Figure 1a and b). How-
ever, if genes are grouped based on their length (each group
containing a mix of transcriptional levels), the methodol-
ogy has a significant impact on the output (Figure 1c and
d). This is due to the fact that, using relative method, the
gene length influences the window size. Consequently, a sig-
nal appearing at the same distance from the TSS (e.g. 200
bp) for a long and a short gene will be placed in different
windows (e.g. first window of a 4 kb gene compared to the
20th window of a 400 bp gene divided into 40 windows).
Without taking this bias into account, one could incorrectly
interpret Figure 1c as showing that H3K36me3 accumula-
tion rate correlates with gene length. In striking contrast,
based on the absolute method, and by aligning the first kb
of the genes before the split, it is clear that gene length has
no impact on the accumulation rate of H3K36me3. Rather,
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Figure 2. The versatile functionalities of VAP. Many options are offered to users such as three analysis modes (annotation, coordinate and exon) using one
to six reference points, with the possibility of automatically subgrouping annotations based on the orientation of adjacent annotations. The black vertical
bars on the X-axis represent the position of the reference point(s). (a) Aggregate profiles, generated using the annotation mode and one reference point,
showing the �H2AS129p ChIP-chip dataset (2) in yeast cells over a group of 275 non-mitochondrial tRNA genes. (b) Aggregate profiles, generated using
the coordinates mode and one reference point, showing a GRO-Seq dataset (GSE45822) in MCF7 cells (after 40 min E2 stimulus) (31) over a group of
ERalpha-bound potential active enhancers based on the co-enrichment of ERalpha (E-TABM-828) (32) and H3K27ac (GSM945854) (33) by ChIP-Seq in
MCF7 cells. The reads from the GRO-Seq experiment mapping to the negative strand were assigned a negative score. ERalpha summits were identified using
MACS (34) then filtered to keep only those in intergenic regions and located at more than 3 kb of known TSS. The H3K27ac signal was then calculated over
a 1 kb window centered on ERalpha summit and a threshold applied. (c) Aggregate profiles, generated using the coordinate mode and two reference points,
showing the H3K36me3 (blue) and H3K27me3 (red) ChIP-chip datasets from ENCODE (33) in U2OS cells over a group of 30 heterochromatin regions
from chr19 (3). (d) Aggregate profiles, generated using the exon mode and six reference points, showing the H3K36me3 (blue) and RNAPII (green) ChIP-
Seq datasets from ENCODE (33) in HeLa cells over the exons of the 44,202 refSeq human genes. (e) Aggregate profiles, generated using the annotation
mode and four reference points, showing the H3K36me3 (17) (blue) and H2A.Z (35) (orange) ChIP-chip datasets in yeast cells over a group containing the
6576 non-mitochondrial genes from sacCer1 (plain curves), as well as on subgroups of genes based on the orientation of the adjacent annotations. Only the
1637 upstream tandem and downstream convergent genes (dashed curves) and the 1588 upstream divergent and downstream tandem genes (dotted curves)
subgroups are shown. (f) Individual profiles showing the H3K4me3 MNase-ChIP-Seq dataset (GSM1016879) in yeast cells over the 4259 genes without
missing data of the sacCer3 assembly (sorted by their length), generated using the annotation mode and one reference point. The heatmap representation
was performed using TreeView (http://rana.lbl.gov/EisenSoftware.htm). Both the upstream and downstream nucleosome-free regions (represented by the
white bands) are striking, as are the 4–5 first nucleosomes immediately downstream of TSS.

H3K36 trimethylation accumulates as a function of the dis-
tance from the TSS at a rate that does not differ between
long and short genes (28).

Versatile functionalities

VAP offers various functionalities from an intuitive inter-
face. The most common usage is to generate aggregate pro-
files of signal along genes aligned at both their start and end
boundaries, requiring two reference points as shown in Fig-
ure 1. To generate these profiles over five groups of genes,

http://rana.lbl.gov/EisenSoftware.htm
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Figure 3. A biased methodology can lead to erroneous conclusions. Using the relative method to analyze genes grouped by their length is not appropriate
and considering the orientation of proximal genes is crucial for compact genomes. (a–b) Aggregate profiles showing the acH4 dataset difference from a
strain deleted for the SET2 gene and the corresponding wild-type strain (18) on groups of genes based on their length using the relative (a) or the absolute
(b) method. The groups of genes used are the same as in Figure 1c and d. (c–d) Aggregate (top) and proportion (bottom) profiles showing the RNAPII
Ser2p dataset (19) on groups of genes identified to show the ‘normal’ 3’ enrichment (blue), an unusual 5’ enrichment (red), and an unusual uniform profile
(orange) from the complete groups (plain curves) and the subgroup of genes in the divergent orientation with the upstream gene (dashed curves) using the
relative (c) or the absolute (d) method. Each group contains, respectively, 3806, 723 and 863 genes, and the subgroups 2112, 313 and 506 genes.

five files are required, each simply a compilation of gene
names. The genomic coordinates of each reference point
are extracted from a genome annotations file using the gene
name as the key. Three types of files are therefore required
in this analysis mode called ‘annotation’: the files contain-
ing the gene names (called the reference groups), a genome
annotations file and the dataset files containing the (usu-
ally normalized) signal to be analyzed. As an option, selec-
tion and exclusion filters can be dynamically applied to the
reference groups (e.g. genes grouped by transcription rate
onto which a filter on gene length is applied). It is crucial
for the genome annotations file and the datasets to be from
the same assembly to avoid potential shifts in the represen-
tation. Reference groups can contain types of genetic fea-
tures other than protein-coding genes, as long as they are
included in the genome annotation file (Figure 2a). VAP
can also be used in the analysis mode, called ‘coordinate’,

where the reference group files contain the genomic coordi-
nates provided by the user thus making the genome anno-
tations file unnecessary. This provides users with the flexi-
bility of mapping their data onto any genomic region, such
as profiling transcriptomic data over binding sites identified
in a ChIP-Seq experiment (Figure 2b). As for the annota-
tion mode, the coordinate mode can be used to generate ag-
gregate profiles on one or more reference points, and the
orientation of the regions is also taken into consideration
(Figure 2c). VAP supports up to six reference points, which
are used in the last analysis mode called ‘exon’ where aggre-
gate profiles are generated independently on the first, mid-
dle and last exons (Figure 2d). Using the exon mode, one
can rapidly determine that H3K36me3 is enriched over ex-
ons relative to introns, as previously reported (29,30). Such
local enrichment in exons cannot be detected by looking
at the same datasets using the annotation mode and only
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two reference points (Supplementary Figure S1a). Aggre-
gate data are usually displayed as the average signal of the
reference group (with the possibility of displaying standard
deviation (SD) and SEM) but VAP can also output median,
maximum and minimum aggregate values. All of these anal-
yses were conducted with a window size (resolution) of 50
bp and a smoothing of six sliding windows applied on the
aggregate data, but these parameters are also customizable.

For compact genomes such as yeast, where the distance
between genes is ∼500 bp, it is important to delimit the in-
tergenic regions in order to avoid signal contamination from
adjacent genes. This can be done using four reference points
(two on each side of the intergenic regions flanking the genes
of interest). As illustrated in Figure 2e (plain curves), the hi-
stone modification H3K36me3 (blue) is clearly restricted to
genes while the histone variant H2A.Z (orange) is clearly
restricted to intergenic regions. This observation is not as
clear when using only two reference points (Supplementary
Figure S1b) and is even clearer when using six reference
points to delimit the boundaries of the flanking genes (Sup-
plementary Figure S1c). Another important aspect to take
into account when working with compact genomes is the
impact of the orientation of adjacent genes. This is particu-
larly well illustrated using the case of H2A.Z (Figure 2e).
When considering all genes without respect to the orien-
tation of their neighbors, H2A.Z appears to be enriched
in both the upstream and the downstream intergenic re-
gions (Figure 2e, plain orange). However, the enrichment
in the downstream intergenic region is lost when only the
subgroup of genes having a downstream neighbor in the
convergent (tail–tail) orientation are considered (Figure 2e,
dashed orange) and it increases for the subgroup of down-
stream genes in the tandem (tail–head) orientation (Fig-
ure 2e, dotted orange). This asymmetry is also apparent in
the upstream intergenic region by comparing the divergent
(head–head) genes (Figure 2e, dotted orange) and the tan-
dem genes (Figure 2e, dashed orange). Based on this easy to
use function of VAP, one can quickly conclude that H2A.Z
is enriched in the upstream intergenic regions (promoters),
but absent (or present at much lower levels) in the down-
stream intergenic regions (terminators).

In addition to aggregate profiles, VAP can also output in-
dividual profiles that can then be used for heatmap repre-
sentation and/or clustering analyses (Figure 2f). This repre-
sentation has the advantage of adding an extra dimension to
the data by, for example, sorting genes based on gene length,
transcription rate or other properties.

The impact of the methodology

It was originally reported that long genes depend on the
Set2/Rpd3S pathway for accurate transcription (18). This
conclusion arose from using the relative methodology to
analyze genes grouped by their length. As reproduced here
in Figure 3a, the authors compared the impact of deleting
the SET2 gene on histone H4 acetylation levels. Based on
this graphical representation, it is tempting to conclude that
‘deletion of SET2 led to a more dramatic increase in acety-
lation at genes with longer Open Reading Frames (ORF),
suggesting that Set2 dependence was proportional to gene
length’ (18). However, using the absolute method (Figure

3b), and as refuted by others (36), one would conclude that
gene length has no significant impact on the role of Set2 in
the dynamics of histone H4 acetylation.

In another case, a group studying the phosphorylation
of the RNA polymerase II (RNAPII) C-terminal domain
identified ‘gene class-specific patterns’ (19). As illustrated
in Figure 3c (top) by the plain blue curve, the level of
Ser2 phosphorylation (Ser2p) gradually increases toward
the 3’ end of genes, as generally accepted (27,37–38). In
their study, Tietjen et al. (19) also identified two groups of
genes with unusual Ser2p profiles. In the first group, Ser2p
peaks at the 5’ of the genes (Figure 3c, top, plain red curve),
while in the second group, Ser2p is uniformly distributed
over the length of the genes (Figure 3c, top, plain orange
curve). To identify these unusual groups, the authors used
the relative methodology and generated individual profiles
that were later submitted to hierarchical clustering. How-
ever, using the absolute method, and as reported by others
(9,39), the same data suggests rather that all groups have
the same gradual accumulation of Ser2p toward the 3’ end
of genes (Figure 3d, top). Furthermore, using the automatic
subgrouping functionality of VAP to display the subgroup
of genes divergent to the upstream gene (head–head), it ap-
pears that the unusual accumulation of Ser2p in the up-
stream intergenic region greatly decreases (Figure 3c and
d, top, dotted red curve). Also, and as acknowledge by the
authors (19), the genes with apparent uniform Ser2p distri-
butions are enriched for highly transcribed genes, while the
genes enriched at the 5’ are in general less transcribed than
the genes with the normal 3’ enrichment (Supplementary
Figure S2a, note the SEM), explaining the difference in the
maximal Ser2p accumulation between the three groups.

In addition to the aggregate signal profiles (Figure 3c
and d, top), VAP also generates a graph containing, for
each window of each group, the proportion of the group
members contributing to the aggregate profile in the corre-
sponding window (Figure 3c and d, bottom). Looking at
this graph generated using the relative method, it is quite
striking that approximately 35% of all genes with a 5’ Ser2p
enrichment and approximately 65% of the subgroup with
divergent upstream orientations actually overlap with the
upstream gene (therefore not contributing to the signal in
the upstream intergenic region) while this is the case for only
approximately 10% for the other groups of genes (Figure
3c, bottom). This overlap clearly contributes to the accu-
mulation of Ser2p signal in the 5’ of these genes. Moreover,
the proportion graph from the absolute method clearly il-
lustrates that genes with uniform Ser2p distribution are on
average longer than the genes with the canonical 3’ enrich-
ment, while the genes with the 5’ enrichment are shorter
(Figure 3d, bottom). As shown in Figure 1, this length dif-
ference also contributes to explaining the profiles obtained
using the relative method. Analyzing the data with VAP al-
lows one to quickly detect that the genes in these groups ac-
tually possess unusual properties that together explain their
profiles. Taken together, these two examples demonstrate
that the choice of methodology to represent the data can
have an important impact on the biological interpretation.
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Figure 4. VAP is efficient and designed to minimize the memory footprint. The computing time and memory footprint is linear to the number of data
lines in the dataset, except for the memory footprint that can be limited, but is almost invariant to the number of annotations to analyze. The tests were
conducted on a 2.2 GHz computer with a SATA hard drive. (a) Computing time to process the H3K36me3 ChIP-Seq datasets (33) (used in Figure 2d)
downsized and profiled on a group containing 44,202 refSeq genes of the human genome (extracted from the UCSC genome browser (40)) without (grey)
or with a limit of 10 million (orange) or 1 million (green) data lines read at a time. The file containing 50 million lines was used to calculate the computing
time of varying numbers of genes in the reference group (inset). The SD of 10 replicates are shown. (b) Memory footprint to process the same datasets as
panel a. The SD were too small to be shown.

VAP is designed to run on either laptop computers or servers

The performance of VAP is linear to the number of lines in
the dataset, such that a dataset of 50 million lines in Bed-
Graph format is processed in about 2 min on a group con-
taining all the genes in the human genome (Figure 4a, grey
curve). This performance of more than 400 000 lines per
second is almost invariable to the number of annotations
(genes) to be analyzed (Figure 4a, inset). The user can also
minimize the memory footprint of VAP (Figure 4b) with-
out affecting performance (Figure 4a). Performance will be
eventually improved through parallelization of data analy-
sis. VAP currently supports datasets in BedGraph and WIG
format, but will also eventually support BigWig and BAM
formats. Based on its overall efficiency, VAP can run either
on a laptop computer or on a server.

Usage

VAP functionalities are available both through a user-
friendly interface and through the command line. The inter-
face is written in Java (requiring version 7), while the core
of VAP is written in C++. The interface guides the user to
create a parameter file (plain text format), which is auto-
matically sent to the core executable to analyze the data and
generate graphical representations of the aggregate profiles
(with the possibility of combining multiple datasets, refer-
ence groups and orientation subgroups on the same graph).
A preexisting parameter file can also be loaded by the in-
terface. The results are output in a tab-delimited text file
that can be used to re-create graphs using external software
such as GraphPad or the Libre/Open Office and Microsoft
Office macro included in provided spreadsheets to produce
publication-ready vectorial graphs. The user can decide to
add a prefix to each output file to facilitate the exploration
of the parameters.

The main interface presents the three analysis modes
(‘Annotation’, ‘Exon’ and ‘Coordinates’) along with their
relevant parameters (Figure 5a). Moreover, the user can
chose from the ‘Absolute’ or the ‘Relative’ method to ana-
lyze the data. Relevant files and folders can be uploaded by

‘Drag and drop’ or by using the ‘Browse’ function (allowing
multiple selections at a time). Alternatively, the full path can
be pasted into the appropriate box, followed by clicking the
‘Add’ button. While running, a progression bar indicates to
the user the different steps, and logfiles with more details are
generated. By hitting the ‘Run’ button, the interface detects
the Operating System (OS) configuration and decompresses
the appropriate executable (compiled with g++ 4.2) in the
output directory selected by the user. To allow users having
to compile the core code on their computer to still benefit
from the interface, VAP first looks for the presence of a bi-
nary named ‘vap native’ in the output directory and will use
it rather than one executable from the package. Sample data
are also packaged within the interface, allowing the user to
test the versatile functionalities of VAP.

As mentioned above, it is also possible to directly use VAP
from the command line. In this case, a parameter file (mod-
ified or not from a file created by the interface, or manu-
ally created) is used as an argument to the core executable:
vap core –p paramFile. To generate graphical representa-
tions from the files produced using the command line, it is
also possible to use the command line or a specific tab of
the interface (Figure 5a). VAP is under active development
and more features will be added in the near future.

CONCLUSION

VAP is a user-friendly stand-alone tool to flexibly generate
aggregate or individual profiles of large genomic datasets
such as ChIP and transcriptomic data over groups of ref-
erence features (genes, annotations, regions) of interest.
Both the absolute and relative methods are offered, and as
demonstrated, the choice of methodology is important to
avoid incorrect interpretation of the results. VAP also per-
mits up to six reference points to delimit the sections of in-
terest in order to avoid contamination of the signal from
adjacent features. In the ‘Annotation’ and ‘Exon’ analysis
modes, the reference groups are simply composed of unique
names linked to a genome annotation file, while users can
directly provide the coordinates of the reference points in
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Figure 5. Annotated screenshot. (a) Interface filled with the parameters used to generate Figure 2e. Using the annotation mode, the H2A.Z and H3K36me3
datasets were analyzed over a reference group containing all the yeast genes (therefore using the corresponding genome annotations file from the Saccha-
romyces Genome Database (41)) with filters selecting the non-mitochondrial genes and excluding the overlapping genes, where all files used the sacCer1
assembly. The aggregate profile was generated using the absolute method with four reference points to isolate the signal over the reference features as
well as their complete flanking intergenic regions with a resolution of 50 bp. Using four reference points creates five blocks corresponding, respectively,
to the upstream annotations, upstream intergenic regions, reference features (each gene from the reference group), downstream intergenic regions and
downstream annotations. The number of 50 bp windows per block was chosen such that the aggregate profiles cover up to 1 kb, 500 bp, 1.5 kb, 500 bp
and 1 kb for each block, respectively. The first and last blocks are always aligned respectively to the right and to the left, while the other blocks were split
(in the middle by default). This means that a gene (reference feature) of 1 kb will contribute to 20 of the 30 windows of the third block (first and last 10
windows of this block), while a 2 kb gene will contribute to all the windows of this block (the middle 500 bp being ignored). The aggregate value is the
mean, a smoothing of six windows is applied on the aggregate values, and the SEM is calculated. The aggregate profile of all the datasets and orientation
subgroups were combined on the same image, showing the profile of all genes as well as two orientation subgroups of genes with a predetermined Y-axis
scaling.
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the ‘Coordinate’ mode. Statistical measures, which can be
displayed on the aggregate curves, facilitate comparisons
between groups or datasets. Moreover, subgrouping based
on the orientation of the flanking annotations is particu-
larly useful for compact genomes. VAP targets both biolo-
gists, through an intuitive interface, and bioinformaticians,
through command line interactivity. Being highly efficient
and given its ability to limit its memory footprint, VAP is
designed to run on laptop computers, but it can also be com-
piled and run on a server.

AVAILABILITY

VAP is open source, published under the GNU Gen-
eral Public License v3. The official VAP website (http:
//lab-jacques.recherche.usherbrooke.ca/vap) contains com-
plete documentation as well as links to download the pack-
aged jar files, which contain the executables (32 and 64 bit
architecture) for the supported OS (Linux, Mac OS X and
Windows). A Bitbucket account (labjacquespe/vap) con-
tains the source code of both the C++ (vap core) and Java
(vap interface) modules with the corresponding makefiles
and dependencies, as well as example input and output files.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Jeronimo and Mathieu Blanchette for useful discussions,
and Chantal Binda for critical reading.

FUNDING

Canadian Institutes of Health Research [MOP-82891 to
F.R.]; Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) [435710–2013 to P.É.J.]. Source of
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