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Abstract

Plant stomata are essential structures (pores) that control the exchange of gases between

plant leaves and the atmosphere, and also they influence plant adaptation to climate

through photosynthesis and transpiration stream. Many works in literature aim for a better

understanding of these structures and their role in the evolution process and the behavior of

plants. Although stomata studies in dicots species have advanced considerably in the past

years, even there is not much knowledge about the stomata of cereal grasses. Due to the

high morphological variation of stomata traits intra- and inter-species, detecting and classify-

ing stomata automatically becomes challenging. For this reason, in this work, we propose a

new system for automatic stomata classification and detection in microscope images for

maize cultivars based on transfer learning strategy of different deep convolution neural net-

woks (DCNN). Our performed experiments show that our system achieves an approximated

accuracy of 97.1% in identifying stomata regions using classifiers based on deep learning

features, which figures out as a nearly perfect classification system. As the stomata are

responsible for several plant functionalities, this work represents an important advance for

maize research, providing an accurate system in replacing the current manual task of cate-

gorizing these pores on microscope images. Furthermore, this system can also be a refer-

ence for studies using images from different cereal grasses.

Introduction

Stomata have probably received more attention than any other single vegetative structure in

plants [1], for they regulate gas exchange between the plant and the environment [2]. Such

structures stand for tiny pores on the surfaces of leaves, stems, and parts of angiosperm flowers

and fruits [3, 4]. Due to the controlling of the exchange of water vapor and CO2 between the

interior of the leaf and the atmosphere [3], several plant processes are related to the opening

and closing movements of the stomata, such as photosynthesis, transpiration stream, nutrition

and metabolism [1, 4]. The control of stomatal aperture requires the coordinated control of
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multiple cellular processes [3], and its morphogenesis is affected by several environmental sti-

muli [1–3].

The number of stomata (stomatal traits) per unit area and their shape vary between species

and within species because of the influence of the environmental factors during growth, leaf

morphology, and genetic composition. Another characteristic with significant variation con-

cerns the spacing of stomata, which may be relatively evenly spaced throughout a leaf, located

in regular rows along the length of a leaf, or they may be clustered in patches [1, 4]. Fig 1

shows four different plant species and their stomatal traits.

Since the types of stomatal configuration are profoundly different, the study and identifica-

tion of these pores are vital points to understand several mechanisms of plants [5]. Even with

such relevance, we still know little about the stomata of cereal grasses [6]. Moreover, the exam-

ination of stomata from microscope images is hindered by the manual measurement process,

which is highly dependent on biologists with expert knowledge to identify and measure stoma-

tal morphology correctly [7].

In this scenario, to assist the biological community in performing stomata studies, we pro-

posed an automated strategy for stomata detection and classification in microscope images

using machine learning through deep and transfer learning techniques. Our work is seminal

because it is less time-consuming when examining stomatal behavior, thus enabling biologists

to use more information from the images and study a broader range of stomata. In this work,

we employed microscope images of maize, representing the most produced and consumed cul-

tivars in the world. As far as we are concerned, we have not observed any similar work con-

cerning maize cultivars.

Related works

The research of stomata image processing started in the 80’s. Recognized as possible pioneers,

Omasa and Onoe [9] proposed a technique for measuring stomata characteristics in grayscale

images using Fourier Transform and threshold filters for image processing and segmenting

[7]. More recently, Sanyal et al. [10] compared tomato cultivars using several morphological

characteristics, including stomata measures. Microscope images of different varieties were

obtained using a scanning electron microscope, and the segmentation was performed using a

Fig 1. Variation of stomatal traits in terms of size and density from four different plant species: The eudicots are (a)

Arabidopsis thaliana and (b) Phaseolus vulgaris; The grasses are (c) Oryza sativa and (d) Triticum aestivum. Image adapted

from [8].

https://doi.org/10.1371/journal.pone.0258679.g001
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watershed algorithm resulting in one stomata per image, followed by morphological opera-

tions (e.g., erosion and dilation) and Sobel kernel filters to remove noise and obtain stomatal

boundaries. Using 100 images of tomato cultivars and a multilayer perceptron algorithm, the

proposed approach achieved 96.6% of accuracy.

Jian et al. [11] aimed at estimating stomata density using three different regions of Populus
Euphratica leaves. For image processing purposes, an object-oriented classification method

was used with parameters such as scale, compactness, and shape. Such an approach presented

high accuracy when compared to human-based count, showing advantages over the traditional

method to extract the stoma information. Aiming the constant growth and development of

stomata image processing studies, [12] published the “Live Images of Plant Stomata LIPS”

database. In other work, [13] presented a semi-automatic stomata region detection approach

using ImageJ software [14] and a Clustering-Aided Rapid Training Agent-based algorithm

[15].

da Silva Oliveira et al. [16] proposed an approach solely based on morphological operations.

Initially, a Gaussian low-pass filter was employed to preprocess the images and remove noise.

Further, reconstruction operations (e.g., opening and closing) were applied to highlight sto-

mata regions, which were counted based on background intensity differences. As a result, the

work reported recognition rates of around 94.3%.

Laga et al. [17] introduced a supervised method for stomata detection based on morpholog-

ical and structural features. To fulfill such purpose, 24 microscope images were obtained and

filtered by normalization together with a Gaussian filter. The images were manually segmented

and the width and height parameters extracted. The authors reported results close to a manual

counting approach. Later on, a patent for stomata measurement using Gaussian filtering and

morphological operations was registered by [18].

Duarte et al. [19] proposed a method to count stomata in microscope images automatically.

Initially, the images were converted from RGB to CieLAB to select the best channel for analy-

sis. Wavelet Spot Detection and morphological operations performed the stomata detection

step, with results nearly to 90.6% of recognition accuracy.

Jayakody et al. [7] proposed an automated stomata detection and pore measurement system

for grapevines. The approach employed a Cascade Object Detection (COD) algorithm with

two main steps: (i) first, the COD classifiers are trained using stoma and non-stoma images,

and then (ii) a sliding window over the microscope images was used to identify stomata inside

it. After its detection, the pore measurement step was performed using binary segmentation

and skeletonization with ellipse fitting, for further estimating pore measurements. The authors

reported 91.6% of recognition rate.

As observed, the detection of stomata in microscope images has generally been performed

with different morphological operations and segmentation approaches. Although various

researches have achieved significant accuracies in the last decade [7, 16, 19], improvements are

needed for plant species with more significant stomatal variability. Furthermore, the develop-

ment of image processing methodologies for automatic stomata detection represents a current

challenge with a high potential to boost plant science research on stomatal morphology and its

implications.

The use of deep convolutional neural networks has been suggested as a powerful approach

for diverse applications on automatically extracting abstract features to be used on prediction

[20], replacing the need of defining image descriptors. In several fields of science, the introduc-

tion of deep learning techniques has enabled the construction of efficient models in scenarios

previously considered as unpredictable [21]. For stomatal research, such use is still embryonic.

Incorporating this machinery into stomata segmentation may represent the missing key to

developing effective prediction systems, as proposed in this work.
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Materials and methods

The proposed approach is composed of two different process: (i) stomata detection and further

(ii) classification. Fig 2 depicts an overview of the proposed approach.

In the stomata classification process, the first step is to manually collect and label a subset of

stomata and non-stomata regions from the microscope images dataset, creating two disjoint

sets of subimages, i.e., train and test. Such sets are subjected to an image descriptor that

encodes the visual properties of the subimages into feature vectors (i.e., Ftrain and Ftest for the

train and test sets, respectively). Further, the feature vectors Ftrain are used as input for a learn-

ing method, thus creating a learned model for stomata classification purposes. Finally, each

feature vector Ftest is then classified by this learned model. In the classification process, differ-

ent image descriptors and learning methods are evaluated through a k-fold cross-validation

protocol, and the best model is adopted to detect stomata regions on the next step.

Regarding the stomata detection process, a sliding window is used on each microscope

image from the entire dataset to create a set of regions of interest (ROI), which are subjected to

an image descriptor resulting in the feature vectors (FROI). Finally, each FROI is classified by the

best model, i.e., a tuple (learning method + image descriptor) computed in the classification

process.

Stomata classification process

Fig 3 shows the steps of the stomata classification process proposed in this work. The first step

for identifying stomata structures is the manual selection of a set of subimages containing sto-

mata or other plant structures, labeled as non-stomata. Due to the differences between stomata

size in distinct microscope images, we adopted a region/window of dimension 151 × 258 pix-

els. We observed that such size is enough to include all stomata regions from the dataset

images. Therefore, a total of 1, 000 subimages of each class (i.e., stomata and non-stomata)

were selected to compose the new dataset.

Fig 2. Schematic representation of the proposed pipeline for stomata classification and detection. The proposed approach comprises two main modules: (i) the

stomata classification process, where a classification model based on machine learning is created and trained with features extracted from microscope images; and (ii)

the stomata detection approach, combining a sliding window mechanism to separate a microscope image into sub-images and a stomata identification process using the

model created in (i).

https://doi.org/10.1371/journal.pone.0258679.g002
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Fig 3. Visual representation of the combination of feature extraction approaches employed and classification

algorithms to identify stomata. Based on a manual selection of microscope subimages representing stomata and

errors, several image descriptors were employed (DAISY, Oriented Gradient Histogram—HOG, Haralick Texture

Features, Local Binary Patterns—LBP, GIST and Deep Convolutional Neural Networks—DCNN) and used to produce

features to be used as input to machine learning techniques (Support Vector Machine—SVM, Multilayer Perceptron—

MLP, and Adaboost) for identifying stomata.

https://doi.org/10.1371/journal.pone.0258679.g003
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Once the dataset has been created, the next step is to extract visual properties from the subi-

mages using image descriptors and deep convolutional neural networks.

Image descriptors. In this work, we evaluated five different image descriptors, being two

local descriptors (DAISY and HOG), two texture descriptors (Haralick and LBP), and one

shape descriptor (GIST).

• DAISY: this descriptor is inspired from SIFT [22] and GLOH [23] descriptors, which relies

on gradient orientation histograms. For an input image, orientation maps are calculated

based on quantized directions using Gaussian kernels. The final descriptor concerns the val-

ues from these convolved maps located on concentric circles centered on a location. The

amount of Gaussian smoothing is proportional to the radius of the circles [24].

• Histogram of Oriented Gradients (HOG): Feature descriptor based on the creation of his-

tograms with gradient orientation using their magnitude in specific portions of an image

[25]. The local shape information is described by the distribution of gradients in different

orientations [26].

• Haralick Texture Features (Haralick): At first, a gray-level co-occurrence matrix is com-

puted considering the relation of each voxel with its neighborhood. Using different statistical

measures (e.g., entropy, energy, variance, and correlation), texture properties are encoded

from the image into feature vectors [27].

• Local Binary Patterns (LBP): It computes a local representation of texture based on the

comparison of each pixel with its neighborhood. A threshold for such comparison is defined,

and an output image is produced with the binary to decimal values conversion. Further, a

histogram is created as the final descriptor [28].

• GIST: The descriptor focuses on the shape of the scene itself, i.e., on the relationship between

the outlines of the surfaces and their properties, ignoring the local objects in the scene and

their relationships [29]. The approach does not require any form of segmentation and is

based on a set of perceptual dimensions (naturalness, openness, roughness, expansion, rug-

gedness) [26].

Deep Convolutional Neural Networks (DCNN). A typical convolutional network is a

fully-connected network where each hidden activation is computed by multiplying the entire

input by weights in a given layer [30]. In this technique, a connection between traditional opti-

mization-based schemes and a neural network architecture is considered, where a separable

structure is introduced as a reliable support for robust deconvolution against artifacts [20].

Once we do not have available a large scale of images to train a deep learning architecture

from scratch, a good alternative is to use the transfer learning [31]. Usually, the networks are

pre-trained over ImageNet dataset [32], for further adding other layers according to the target

application. The last layer can be used for feature extraction purposes (image descriptor).

In this work, we adopted six different deep convolutional neural networks:

• DenseNet121 [33]: DenseNet121 architecture contains short connections between the input

and the output layers. While state-of-art convolutions network with L layers implements L
direct connections, the DenseNet architecture is implemented using

LðLþ1Þ

2
connections.

Therefore, several advantages are provided, such as reducing the number of parameters used

in the model, the reuse of features, and feature propagation.

• InceptionV3 [34] & InceptionResNetV2 [35]: The GoogLeNet architecture was introduced

as GoogLeNet (Inception V1), later refined as Inception V2, and recently as Inception V3.
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While Inception modules are conceptually convolutional feature extractors, they empirically

appear to be capable of learning richer representations with fewer parameters. A traditional

convolutional layer attempts to learn filters in a 3D space, with 2 spatial dimensions (width

and height) and a channel dimension. Thus, a single convolution kernel is tasked with simul-

taneously mapping cross-channel correlations and spatial correlations. Being considered a

new version of the Inception architecture, the Inception-ResNetV2 (Inception V4) uses a

batch normalization over the usual convolutional layers.

• MobileNet [36]: Introduced as an efficient and portable DCNN, MobileNet is developed

using streamlined architectures which apply depth-wise separable convolutions. By using

only two hyper-parameters, this DCNN allows the model builder to choose the correct

model size for each application. All layers are followed by a batch norm and a rectified linear

unit (ReLU) activation; one exception occurs in the final fully-connected layer, which has no

nonlinearity and feeds the softmax classification layer. In total, this model posses 28 layers.

• NasNet [37]: NASNet method relies on the search of suitable convolutional architectures on

a dataset of interest. Based on the reinforcement-learning method NAS (Neuron Architec-

ture Search), a controller selects the best models, and it is tuned by evaluating the accuracy

of each model generated in a sampling process over time. Here we opted to use the light-

weight version NasNetMobile.

• VGG16 [38]: The VGG network with 16 layers is structured starting with 5 blocks of convo-

lutional layers followed by 3 fully connected layers. Two fully connected layers with 4096

ReLU activated units are then used before the final fully connected softmax layer.

Machine learning techniques. Concerning the machine learning techniques, we used

three different approaches: (i) Support Vector Machine [39] (SVM), (ii) Multilayer Perceptron

[40] (MLP), and (iii) Adaboost [41]. The best tuple (i.e., learning method + image descriptor)

are then employed to label the new stomata regions on the next process.

Stomata detection process

Fig 4 depicts the methodology for stomata detection, which is divided into the following steps:

1. Dataset: A dataset with stoma and non-stoma subimages (See Fig 5) was created through a

manual selection task from microscope images.

2. Feature extraction: Once the best descriptor has been found on the stomata classification

process, the features of the new dataset are generated and stored into a table with the labels

of each category (stoma or non-stoma).

3. Creation of the learned model: The descriptors were evaluated using three different learn-

ing methods: SVM, MLP, and Adaboost. Based on the best effective results achieved by

each learned model (i.e., a tuple composed of a aescriptor + the learning method), the most

appropriate learned model is then selected to label the subimage in next step.

4. Sliding window iteration: Using a window of 151 × 258 pixels, an iteration over the

microscope images is performed, and for each generated subimage, a label (stoma or

non-stoma) is obtained using the best-learned model. Due to the possible separation of

stoma structures, the windows were created with a stride of 100 pixels in both columns and

rows.
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5. Selection of positive regions: Based on the previous classification, an auxiliary matrix is

filled in order to enable the posterior identification of stoma regions. Pixels with a positive

occurrence for stoma are separated from the rest of the image, for the further analyzes of

such regions.

Fig 4. Visual representation of the stoma detection process. From the train and test subsets established according to

a k-fold cross validation, a sliding window mechanism was used to go through the image and identify possible regions

of pixels corresponding to the stomata.

https://doi.org/10.1371/journal.pone.0258679.g004
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Experimental setup

This section describes the image acquisition process, technologies, and evaluation protocol

used in this work.

Image acquisition. Regarding optical microscope investigation, it has been necessary to

separate the epidermis from the remainder of the leaf itself to get a clear view of the cell walls

and the shape of the stomata [42]. Herein cyanoacrylate glue was applied to the microscope

slide to obtain an impression of the sheet surface to be captured using a camera attached to a

microscope. We sampled leaves from 20 Zea mays cultivars (maize) granted by Nidera

Sementes company (Uberlândia-MG), producing a total of 200 microscope images with differ-

ent dimensions such as 2, 565 × 3, 583, 2, 675 × 3, 737, and 2, 748 × 3, 840.

The selected species were treated with colchicine [43] to change their ploidy and cell mor-

phology for further studies. Due to the plant ploidy specificity, different images might have dif-

ferent stomata sizes and width. Besides, as previously mentioned, stomata differentiation is a

process that occurs together with the development of plant organs, and herein plants with dif-

ferent ages were used (high intra-class variability), and a clear distinction of the images and

plant morphologies can be visualized in Fig 6. In these microscope images, different types of

noise and artifacts can be observed as well, as depicted in Fig 7, thus highlighting the chal-

lenges faced in this work.

In the experiments, the dataset with 200 microscope images was submitted to the 5-fold

cross-validation protocol, i.e., four parts of the dataset compose the training set (160 images),

and one part belongs to the test set (40 images). This process is repeated five times. Therefore,

in the stomata classification task, for each microscope image, 5 stoma and 5 non-stoma

regions/sub-images have been manually select to compose training and test sets in an overall

of 2, 000 sub-images.

Concerning the stomata detection task, respecting the separation of the disjoint sets of the

5-fold cross-validation protocol, each training set created in the stomata classification task is

Fig 5. Examples of subimages/regions from the microscope images of maize cultivars corresponding to (a) stomata, and (b) non-stomata. These regions

were manually selected and labeled in this work.

https://doi.org/10.1371/journal.pone.0258679.g005
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maintained with 1, 600 sub-images. However, the test sets are generated by a sliding window

operation. Hence, for each one of the 40 test images, between 876 and 963 regions/sub-images

were selected by a sliding window iteration, resulting in approximately 44, 000 sub-images per

test set, in an overall of 217, 866 sub-images for the five runs.

Fig 6. A subset of microscope images used in this work. Each of these images corresponds to different maize

cultivars, which show great variability in stoma appearance and configuration.

https://doi.org/10.1371/journal.pone.0258679.g006

Fig 7. Different types of noise present in the microscopic images: (a) the usage of cyanoacrylate glue can generate air bubbles; (b) the microscope might capture

leaves residuals; (c) the leaves might bend and create grooves in the image; (d) degraded stomata due to biological factors; and (e) low image quality due to

equipment limitations.

https://doi.org/10.1371/journal.pone.0258679.g007
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Programming environment and libraries. All approaches considered in this paper were

executed on a personal computer with 2.7GHz Intel Core i7-7500U 2.7GHz Intel Core i7-

7500U with 16GB of RAM and NVIDIA GeForce 940MX 4GB graphic card. Similarly, the pro-

gramming language used in this work was Python2 with the following libraries: scikit-learn

[44], pyleargist, scikit-image [45], opencv [46], keras [47] and tensorflow [48]. A considerable

part of the libraries was mostly used for feature extraction and deep learning methods

purposes.

Evaluation protocol. To assess the accuracy of the proposed approach for classifying and

identifying stomata regions, we employed a k-fold cross-validation with k = 5. The classified

images represent the test set and the sub-images used to create the learned model were

extracted from the training set. A manual count was also performed for each image to evaluate

the final results using all windows generated, including the overlapped regions.

Results and discussion

This section discusses the experiments performed to validate the proposed approach.

Stomata classification task

In this first experiment, we performed a comparative analysis among five image descriptors

(HOG, GIST, DAISY, LBP, and Haralick) and three learning methods (Adaboost, MLP, and

SVM) for the stomata classification task. The effectiveness is measured in terms of the mean

accuracy considering the 5-fold cross-validation protocol.

As one can observe in Table 1, the best results were achieved by descriptors purely based on

gradient information (HOG and DAISY). HOG descriptor with MLP (HOG+ MLP) and

DAISY descriptor with Adaboost (DAISY+ Adaboost) achieved 96.0% of mean accuracy. In a

comprehensive comparison among all image descriptors, HOG descriptor was the most effec-

tive with a mean accuracy of 94.7%, which can be justified by the specific shape of the stoma

when compared to other parts. Therefore, this fact can show us that shape is perhaps the most

essential visual property for the target application. Although GIST is a shape descriptor, its

way of dealing with visual properties globally (holistic) may explain its poor performance in

such images.

Since deep learning techniques are on the spotlight due to their outstanding results in a

number of applications, we also considered them in this work. Table 2 presents the effective-

ness results of six different deep learning architectures (DenseNet121—DenseNet, Inception-

ResNetV2—IResNet, InceptionV3—Inception, MobileNet, NasNet, and VGG16) using three

learning methods (Adaboost, MLP, and SVM) concerning the stomata classification task.

As one can observe, information based on deep learning features outperformed the hand-

crafted ones (Table 1), except for HOG descriptor. In this experiment, the classifiers using

Table 1. Mean accuracies of the classifiers trained with image descriptor features for the stomata classification task. We tested DAISY, Oriented Gradient Histogram

—HOG, Haralick Texture Features, Local Binary Patterns—LBP and GIST descriptors, combined with support vector machine, multilayer perceptron and Adaboost

machine learning algorithms.

Learning Method HOG GIST DAISY LBP Haralick

Adaboost 93.0 79.0 96.0 88.0 87.0

MLP 96.0 81.0 92.0 85.0 80.0

Linear SVM 95.0 81.0 80.0 89.0 86.0

Mean 94.7? 80.3 89.3 87.3 84.3

The values in bold stand for the best descriptor per classifier. Symbol ‘?’ denotes the best overall result.

https://doi.org/10.1371/journal.pone.0258679.t001
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VGG16 features achieved the best results with 100% of mean accuracy for almost all three

learning techniques considered in this work for the stomata classification task.

Stomata detection task

In this experiment, the classifier based on VGG16 features with Support Vector Machines

(SVM+ VGG16) was adopted for the stomata detection task since it obtained the best results

in the stomata classification task. Using the sliding window approach to generate possible sto-

mata regions, we have created between 876 and 963 regions/sub-images for each microscope

image (overall of 217, 866 sub-images) for the further application of a 5-fold cross-validation

protocol.

Table 3 summarizes the effectiveness results considering the classifier SVM+ VGG16. The

number of detected stoma regions are compatible with the manual counting, which shows a

good performance of the proposed approach. Besides, all folds presented similar effectiveness

with around 97.1% of detected stoma regions, i.e., 11, 388 stomata out of the 11, 734 ones pres-

ent in the dataset. It is also important to clarify that the results achieved in this paper are better

than the ones recently reported by Jayakody et al. [7], which obtained an overall accuracy of

91.6% of detected regions.

Once the stomata region candidates have been detected in a microscope image (Fig 8(a)),

an auxiliary matrix was created to encode the stomata region occurrence (Fig 8(b)), and then a

merging between microscope image and auxiliary matrix was performed (Fig 8(c)). Finally, all

stomata are identified in the microscope image, as depicted in Fig 8(d).

We have also analyzed the quality of the effectiveness results. Fig 9 shows the hit and miss-

classification results achieved by the proposed system. It is essential to observe that regions/

sub-images with low quality have also been correctly classified as containing stoma, as depicted

in Fig 9(a). This fact corroborates the usage of the VGG16 features for the stomata detection

Table 2. Mean accuracies of the experiments based on deep learning features obtained with the tested convolutional neural network architectures (DenseNet, IRes-

Net, Inception, MobileNet, NasNet, and VGG16) for the stomata classification task.

Classifier DenseNet IResNet Inception MobileNet NasNet VGG16

AdaBoost 95.0 96.0 90.0 96.0 91.0 99.0

MLP 98.0 94.0 88.0 98.0 95.0 100.0

Linear SVM 80.0 94.0 91.0 98.0 95.0 100.0

Epochs 10 13 6 7 16 6

Mean 91.0 94.7 89.7 97.3 93.7 99.7?

https://doi.org/10.1371/journal.pone.0258679.t002

Table 3. Final effectiveness results obtained with the most promising strategy for stomata detection (Support Vector Machine—SVM combined with VGG16 convo-

lutional neural network) based on a 5-fold cross-validation strategy. The performance evaluation considered the number (#) of stomata detected in relation to the real

amount.

Fold # Stoma Manual Counting # Detected Stoma Regions Total of Regions # True Positives # False Positives

1 2,244 2,189 (97.5%) 43,524 5,094 107 (0.02%)

2 2,374 2,300 (96.9%) 43,458 5,307 159 (0.03%)

3 2,428 2,316 (95.4%) 43,524 5,506 153 (0.03%)

4 2,279 2,213 (97.1%) 43,680 5,596 60 (0.01%)

5 2,409 2,370 (98.4%) 43,680 5,463 49 (0.01%)

Mean - 2277.6 (97.1%) - 5,393.2 105.6 (0.02%)

Overall 11,734 11388 217866 - -

https://doi.org/10.1371/journal.pone.0258679.t003
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task. Miss classified regions can be visualized in Fig 9(b). Most of these regions/sub-images

represent plant structures that are similar to stomata.

Conclusion

The understanding of the stomata is of great importance in exploring the evolution and behav-

ior of plants. In this sense, the proposition of computational tools for the detection and classifi-

cation of stomata is necessary to help better understand these structures and automatically

estimate the productivity of the crop. In this work, we proposed a new system for automatic

stomata classification and detection in microscope images for maize cultivars based on a trans-

fer learning strategy of different deep convolution neural networks (DCNN).

Fig 8. Heatmap representation of the system performance. Based on the sliding window mechanism applied to the original microscope image (a), different regions

were considered as containing stomata (b) and used as an image mask (c) for image segmentation (d).

https://doi.org/10.1371/journal.pone.0258679.g008
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In the experimental section, we compared the effectiveness of different image descriptors

(HOG, GIST, DAISY, LBP, and Haralick) and more complex features based on deep convolu-

tional neural networks (DenseNet, IResNet, Inception, MobileNet, NasNet, and VGG16). We

showed that it is possible to obtain stomata classification results (94.7% of mean accuracy)

even using well-known image descriptors in the literature, such as the HOG descriptor, which

uses less computational power than deep learning architectures. Also, similarly to other appli-

cations in the literature, the deep learning architectures extracted the best features from target

images. Consequently, they delivered excellent results in both tasks, i.e., classification and

detection, achieving 99.7% and 97.1% of recognition rates, respectively. Furthermore, we

showed that our system produced robust results in the target tasks even when exposed to a sce-

nario of high intra-class variability of stomata images of maize cultivar. Last but not least, as

stomata are responsible for diverse plant biological processes, our findings can significantly

benefit future research. As future work, we intend to develop a computational toolkit to sup-

port specialists in the biology area in their studies.
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