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ABSTRACT

Background: The majority of patients with obstructive sleep apnea do not receive timely 
diagnosis and treatment because of the complexity of a diagnostic test. We aimed to predict 
obstructive sleep apnea based on heart rate variability, body mass index, and demographic 
characteristics in a large Korean population.
Methods: Models of binary classification for predicting obstructive sleep apnea severity 
were constructed using 14 features including 11 heart rate variability variables, age, sex, and 
body mass index. Binary classification was conducted separately using apnea-hypopnea 
index thresholds of 5, 15, and 30. Sixty percent of the participants were randomly allocated 
to training and validation sets while the other forty percent were designated as the test set. 
Classifying models were developed and validated with 10-fold cross-validation using logistic 
regression, random forest, support vector machine, and multilayer perceptron algorithms.
Results: A total of 792 (651 men and 141 women) subjects were included. The mean age, 
body mass index, and apnea-hypopnea index score were 55.1 years, 25.9 kg/m2, and 22.9, 
respectively. The sensitivity of the best performing algorithm was 73.6%, 70.7%, and 78.4% 
when the apnea-hypopnea index threshold criterion was 5, 10, and 15, respectively. The 
prediction performances of the best classifiers at apnea-hypopnea indices of 5, 15, and 30 
were as follows: accuracy, 72.2%, 70.0%, and 70.3%; specificity, 64.6%, 69.2%, and 67.9%; 
area under the receiver operating characteristic curve, 77.2%, 73.5%, and 80.1%, respectively. 
Overall, the logistic regression model using the apnea-hypopnea index criterion of 30 showed 
the best classifying performance among all models.
Conclusion: Obstructive sleep apnea was fairly predicted by using heart rate variability, body 
mass index, and demographic characteristics in a large Korean population. Prescreening 
and continuous treatment monitoring of obstructive sleep apnea may be possible simply by 
measuring heart rate variability.
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INTRODUCTION

Obstructive sleep apnea (OSA) is a disease characterized by repeated obstruction of the 
upper airway during sleep, leading to intermittent oxygen desaturation and frequent 
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arousal. Patients often experience excessive daytime sleepiness, poor cognitive function, 
and impaired quality of life.1 Patients who remain untreated for long periods of time have an 
increased risk of multiple health-related outcomes, including cardiovascular disease, stroke, 
and death from all causes.2 OSA is a significant and growing public health problem, and 
is estimated to affect 13–33% and 16–19% of men and women, respectively.3 However, the 
majority of patients with OSA do not receive timely diagnosis and treatment.4

The gold standard for the diagnosis of OSA is polysomnography (PSG). The examinee must 
spend an entire night in the hospital with a sleep specialist monitoring them while they sleep. 
Then, the PSG data are scored manually by the specialist according to the American Academy 
of Sleep Medicine guidelines.5 Hence, PSG is not suitable for massive screening and/or 
repeated measurements of OSA. Considering night-to-night variability,6,7 PSG is limited for 
diagnosis as well as continuous monitoring for effectiveness during treatment.

Various less complicated sleep diagnostic devices have been developed, with advantages of low 
prices and simple installation. These devices are portable and can be used at home without 
medical support. Systems developed in the context of OSA diagnosis use nasal airflow and/
or oxygen saturation as parameters.8,9 However, these measurement tools have some intrinsic 
limitations since mouth breathing or incorrect positioning can cause signal loss.

Measurable heart rate variability (HRV) from single lead electrocardiogram signals reflects 
cardiac autonomic activity and can be used to evaluate quantitative changes between normal 
heartbeats.10 The association between OSA and increased sympathetic nervous system activity 
of HRV has been well documented since the clinical significance of HRV was introduced 
firstly in 1965.11,12 Recently, further studies on the correlation between HRV factors and PSG 
indices have been conducted.13,14 Currently, various devices are commercially available that 
provide heart rate monitoring, such as smartwatches, consumer sleep wearables, and adhesive 
electrocardiographic monitor patches. Such devices create the possibility of evaluating sleep-
disordered breathing status of patients by measuring HRV using a heart rate monitor.

The present study aimed to develop binary classifiers of OSA based on HRV parameters using 
several machine learning algorithms. This study also aimed to verify the feasibility of using 
HRV for OSA prescreening and treatment monitoring in a large Korean population.

METHODS

Study participants
We retrospectively reviewed outpatients and inpatients who visited our sleep center owing to 
snoring or sleep apnea between January 2013 and December 2017. Adult patients, aged ≥ 18 
years were included in this study. We excluded patients who underwent split-night PSG. After 
reviewing apnea-hypopnea index (AHI) scores, we randomly allocated patients to non-OSA 
and mild, moderate, and severe OSA groups proportionally to reduce selection bias. Then, 
we excluded subjects with any of the followings: 1) significant arrhythmias; 2) sleep disorders 
such as insomnia or narcolepsy; 3) inveterate use of sedatives and hypnotics; 4) specific 
conditions related to HRV changes (i.e., myocardial disease, diabetic neuropathy, or heart 
transplantation); 5) low quality data (artefacts > 20% of total sleep time); 6) total sleep time 
< 5 hours; and 7) awake for > 30 minutes from midnight–5 AM. A flow chart of the participant 
selection process is summarized in Fig. 1. All participants underwent in-laboratory, full-
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night PSG (Embla® N7000, Neurolite Advanced Medical Solutions, Belp, Switzerland). The 
anthropometric data on the subjects were reviewed.

HRV analysis
HRV was measured using exported electrocardiogram data and commercially available PSG 
software (Embla® RemLogic™ 3.0 HRV analyzer; Neurolite Advanced Medical Solutions). 
This methodology was described in our previous study.15 Calculations of the time- and 
frequency-domain parameters were performed according to standard methods for HRV 
measurements.10 We only analyzed the electrocardiogram signal from midnight–5 AM 
to maintain consistency for comparisons. Therefore, the AHI was measured again from 
midnight–5 AM. The electrocardiogram signals were interpolated and resampled at 5.0 Hz. 
Normal-to-normal (NN) heartbeat intervals > 2,400 ms and < 400 ms were omitted. We 
used five time-domain and six frequency-domain measures in the present study. The time-
domain parameters were as follows: 1) average NN interval (all intervals between adjacent 
QRS complexes); 2) standard deviation of the NN interval; 3) square root of the mean of the 
squared differences of adjacent NN intervals; 4) number of pairs of adjacent NN intervals 
more than 50 ms, and 5) the rate of pairs of adjacent NN intervals more than 50 ms among 
the total number of NN intervals. The frequency-domain parameters were as follows: 1) total 
power (variance of all NN intervals); 2) low frequency (LF; 0.04–0.15 Hz); 3) high frequency 
(HF; 0.15–0.4 Hz); 4) LF/HF ratio; 5) normalized LF (LF normalized units [nu]; LF / [LF + HF] 
× 100), and 6) normalized HF (HFnu; HF/[LF + HF] × 100). Frequency-domain measures were 
yielded as the average of the values calculated every 5 minutes.
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Excluded due to the following reasons (n = 81)
(1) Significant arrhythmias (n = 1) 
(2) Combined sleep disorders (n = 3)
(3) Habitual use of sedatives and hypnotics (n = 7)
(4) History of specific pathology related to HRV changes (n = 5)
(5) Low quality data (n = 2)
(6) Total sleep time less than 5 hours (n = 43)
(7) Awake more than 30 minutes (n = 20)

Excluded
Age < 18 (n = 14)
Split-night PSG (n = 52)

Outpatients and inpatients who visited our
sleep center owing to snoring or sleep apnea

2013–2017
(N = 2,633)

Adult patients who underwent full-night PSG
(n = 2,567)

Patients who randomly selected
proportionally according to OSA severity

(n = 873)

Excluded randomly for reducing selection bias (n = 1,694)

Final study group
(n = 792)

Fig. 1. Flow chart of participant selection process. Data on outpatients and inpatients who visited our sleep center due to snoring or sleep apnea between 2013 
and 2017 were collected. Patients who were under 18 years old and underwent split-night polysomnography were excluded. To reduce selection bias, patients 
were randomly allocated proportionally according to OSA severity. The final study group was selected by excluding additional patients with factors likely to 
influence the classifying performance for OSA using heart rate variability parameters. 
HRV = heart rate variability, OSA = obstructive sleep apnea, PSG = polysomnography.



The HRV measures according to OSA severity are presented as the mean ± standard deviation, 
and were compared by one-way analysis of variance using SPSS software (version 22.0, IBM 
Corp., Armonk, NY, USA). Turkey, Bonferroni or Dunnett T3 test were used for post-hoc 
comparisons. P values < 0.05 were considered statistically significant.

Development of binary classifiers of OSA
A model of OSA classification was constructed using 14 features and actual class according 
to AHI threshold (Fig. 2A). Output was the predicted class using estimated AHI scores. The 
14 features included age, sex, body mass index (BMI), and the 11 HRV measures. We built 
the classifying model using logistic regression, random forest, support vector machine, and 
multilayer perceptron algorithms in a free machine learning software (Weka; University of 
Waikato, Hamilton, New Zealand).16 Sixty percent of participants were randomly selected for 
the training and validation sets while the other forty percent were designated as the test set. 
The difference between classes in the training set was adjusted using the Synthetic Minority 
Oversampling Technique in Weka. Validation was conducted by applying 10-fold cross-
validation. The enrolled subjects were splited randomly into 10 subgroups. One subgroup was 
preserved for validation of the prediction model. The other nine subgroups were served for the 
training set. The cross-validation process was repetitively conducted 10 times (10-fold) with 
all 10 subgroups. This produced 10 evaluation results, which were then averaged. The learning 
algorithm was then applied a final (11th) time in the whole data set to gain the final model.16 
Ultimately, the test set was included in the final training model (Fig. 2B). Output was expressed 
as a confusion matrix and area under the receiver operating characteristic curve (AUC).

The performance outcomes of the machine learning classifiers were mainly evaluated by 
sensitivity, specificity, and accuracy. The AUC was also presented to assess the performance 
of the classifiers. All results were extracted from the test set.

Ethics statement
The present study protocol was reviewed and approved by the ethics committee of Seoul National 
University Bundang Hospital (IRB No. B-2111-723-110). The requirement for written informed 
consent was waived by the ethics committee owing to the retrospective nature of the study.

RESULTS

General patient characteristics and HRV parameters
A total of 792 participants (651 men and 141 women) with a mean age of 55.1 ± 12.6 years 
were included in the study. The mean BMI and AHI score was 25.9 ± 3.5 kg/m2 and 22.9 ± 
19.2, respectively. Participants were classified according to AHI score as follows: 124, normal 
(AHI < 5); 223, mild OSA (5 ≤ AHI < 15); 221, moderate OSA (15 ≤ AHI < 30); and 224, severe 
OSA (AHI ≥ 30). General and polysomnographic characteristics are summarized in Table 1. 
The means and standard deviations of the 11 HRV parameters according to OSA severity are 
presented in Table 2. The HRV parameters presented a significant difference according to 
OSA severity except for square root of the mean of the squared differences of adjacent NN 
intervals, number of pairs of adjacent NN intervals more than 50 ms, and rate of pairs of 
adjacent NN intervals more than 50 ms among the total number of NN intervals (P < 0.05). 
Post-hoc analyses were performed on HRV variables showing significant differences in Table 
2. The total power, LF, LF/HF ratio, and LFnu values increased with OSA severity. The average 
NN interval, HF, and HFnu showed a decreasing tendency as the severity of OSA increased.

4/10

Classifying Model of Obstructive Sleep Apnea

https://doi.org/10.3346/jkms.2023.38.e49https://jkms.org



Comparison of classifying performance among models
The classifying performance results derived from four algorithms with the AHI threshold 
for binary classification defined as 5, 15, and 30, are summarized in Table 3. When the 
AHI criterion was 5, logistic regression showed the best performance. The sensitivity and 
specificity of the model were 73.6% and 64.6%, respectively. The accuracy and AUC of 
the model were 72.2% and 77.2%, respectively. When the AHI criterion was 15, the best 
classifying model was also logistic regression. The sensitivity and specificity of the model 
were 70.7% and 69.2%, respectively. The accuracy and AUC of the model were 70.0% and 
73.5%, respectively. When the AHI threshold criterion reached 30, a model using logistic 
regression showed the best classifying results as follows: sensitivity, 78.4%; specificity, 
67.9%; accuracy, 70.3%; and AUC, 80.1%. The logistic regression model using the AHI 
criterion of 30 showed the best classifying performance among all models.
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Fig. 2. Study framework of machine learning process. (A) Fourteen features including age, sex, body mass index, and 11 measures of heart rate variability were 
used in the machine learning process for binary classification of obstructive sleep apnea by predicting the apnea-hypopnea index score. (B) Sixty percent of the 
data was used for training and a 10-fold cross-validation process. The remaining forty percent of data was used for the final training model. The classifying result 
was expressed as a confusion matrix. Sensitivity, specificity, and accuracy were calculated by the confusion matrix. 
AHI = apnea-hypopnea index.



DISCUSSION

In this study, OSA was fairly predicted using age, sex, BMI, and time- and frequency-
domain HRV variables in a large Korean population. The binary classification sensitivity 
of the best performing model was over 70% in all AHI criteria. In particular, it showed 
better performance with 78% sensitivity in discriminating severe OSA. As the purpose of 
this study was to evaluate the use of HRV in OSA prescreening rather than to develop an 
accurate diagnostic tool as an alternative to PSG, we determined that HRV can be an intuitive 
and informative tool for large-scale preliminary screening to determine whether or not a 
patient should undergo additional PSG. Because it is binary classification, identifying the 
quantitative difference in terms of treatment effect can be difficult if the patient remains 
at the same level of OSA severity. However, considering the simplicity of this concept, 
measuring HRV to determine OSA severity, HRV has the potential to become a very powerful 
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Table 1. General and polysomnographic characteristics
Variables AHI < 5 (n = 124) 5 ≤ AHI < 15 (n = 223) 15 ≤ AHI < 30 (n = 221) AHI ≥ 30 (n = 224) P value
Age, yr 48.9 ± 14.0 56.1 ± 11.9 57.8 ± 11.8 54.7 ± 12.0 < 0.001
Male/Female ratio 86:38 168:55 184:37 213:11 < 0.001
BMI, kg/m2 24.0 ± 3.1 25.3 ± 3.5 25.9 ± 2.9 27.6 ± 3.4 < 0.001
AHI, per hour 2.6 ± 1.4 9.8 ± 2.7 21.4 ± 4.0 48.6 ± 14.8 < 0.001
AHI = apnea hypopnea index, BMI= body mass index.

Table 2. Heart rate variability characteristics according to obstructive sleep apnea severity
Variables AHI < 5 (Group 1) 5 ≤ AHI < 15 (Group 2) 15 ≤ AHI < 30 (Group 3) AHI ≥ 30 (Group 4) P value
Average NN interval, ms 993.6 ± 109.5 984.0 ± 116.9 989.7 ± 129.2 937.8 ± 123.3 < 0.001a

SDNN, ms 98.7 ± 41.4 92.5 ± 37.5 92.0 ± 30.8 101.5 ± 52.1 0.043b

RMSSD, ms 69.4 ± 64.7 63.1 ± 56.2 59.4 ± 42.4 61.6 ± 47.8 0.386
NN50 count 3,345.1 ± 3,096.6 2,780.4 ± 2,698.7 2,875.8 ± 2,940.3 3,047.5 ± 2,869.2 0.328
pNN50, % 20.1 ± 19.5 15.8 ± 16.2 15.8 ± 16.4 15.8 ± 14.4 0.069
Total power, ms2 42,784.8 ± 20,451.1 43,610.0 ± 20,253.2 50,459.8 ± 48,297.3 59,346.9 ± 36,301.6 < 0.001c

LF, ms2 13,334.0 ± 7,085.8 13,835.2 ± 7,808.8 14,494.5 ± 7,632.1 18,414.9 ± 11,904.5 < 0.001d

HF, ms2 7,780.8 ± 3,501.2 7,080.6 ± 3,615.8 7,081.2 ± 3,823.0 6,412.5 ± 3,089.1 0.006e

LF/HF ratio 2.0 ± 1.2 2.4 ± 1.8 2.8 ± 1.8 3.5 ± 3.4 < 0.001f

LFnu 61.2 ± 13.0 63.4 ± 14.5 64.4 ± 14.9 70.3 ± 11.9 < 0.001g

HFnu 38.5 ± 13.0 35.5 ± 14.0 33.8 ± 13.8 28.1 ± 11.3 < 0.001h

AHI = apnea-hypopnea index, NN = normal to normal, SDNN = standard deviation of NN intervals, RMSSD = square root of the mean of the squared differences of 
adjacent NN intervals, NN50 count = number of pairs of adjacent NN intervals more than 50 ms, pNN50 = rate of NN50 in the total number of NN intervals, LF = 
low frequency, HF = high frequency, LFnu = LF power in normalized units, HFnu = HF power in normalized units.
Post-hoc analyses. a,d,gGroup 4 vs. Group 1, 2 and 3 (all P < 0.001); bGroup 2 vs. Group 4 (P = 0.002); cGroup 4 vs. Group 1, 2 and 3 (P < 0.001, P < 0.001 and P = 
0.004); eGroup 1 vs. Group 4 (P < 0.001); fGroup 4 vs. Group 1, 2 and 3 (all P < 0.001), Group 1 vs. Group 3 (P = 0.005); hGroup 4 vs. Group 1, 2 and 3 (all P < 0.001), 
Group 1 vs. Group 3 (P = 0.01).

Table 3. Classification performances
Criteria Method Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)
AHI 5 Logistic regression 72.2 73.6 64.6 77.2

Random forest 80.1 87.0 41.7 74.0
SVM 15.1 0.0 100.0 50.0
Multilayer perceptron 76.3 81.8 45.8 62.9

AHI 15 Logistic regression 70.0 70.7 69.2 73.5
Random forest 62.8 67.2 57.3 69.5
SVM 54.9 100.0 0.0 50.0
Multilayer perceptron 65.6 77.6 51.0 71.9

AHI 30 Logistic regression 70.3 78.4 67.9 80.1
Random forest 74.1 66.2 76.5 77.2
SVM 23.3 100.0 0.0 50.0
Multilayer perceptron 60.3 81.1 53.9 75.8

AUC = area under receiver operating characteristic curve, AHI = apnea-hypopnea index, SVM = support vector machine.



assessment tool. The present study was conducted on a larger scale (including 792 subjects) 
than previous studies that have investigated the relationship between HRV parameters and 
PSG indices.13,17,18 Furthermore, considering that OSA severity differs by race,19 our study 
has significance in that it was conducted in an Asian population (in particular, Koreans) with 
physical characteristics that differ those of Westerners.

Our findings indicate that the best performing algorithm was logistic regression among the 
four machine learning algorithms. Since we aimed to confirm the feasibility of using HRV 
in OSA screening and treatment monitoring, the machine learning algorithm itself was not 
that important.

Several studies have attempted to differentiate OSA based on HRV that changes owing to 
sympathetic nervous system activity in hypoxic conditions. One study found that by using the 
difference between the daytime and nighttime standard deviations of the NN interval index, 
they could detect OSA with a sensitivity of 89.7% and 83% and a specificity of 98.1% and 
96.5% in 91 and 52 subjects, respectively.17 However, this study was limited in that PSG and 
Holter monitoring, which is used to measure HRV, were not simultaneously performed. Since 
heart rate is affected by various external factors, measuring the heart rate at the different 
times may create problems with reproducibility. Another study attempted to calculate 
equations for HRV variables and PSG parameters such as AHI score, micro-arousal index, and 
oxygen desaturation index through multiple regression analyses in 25 patients with OSA.13 
However, the statistical significance was only evaluated using one-way analysis of variance 
analysis, with no evaluation of prediction accuracy. In contrast, another study attempted to 
develop a model for OSA detection using machine learning methods based on HRV, pulse 
oxygen saturation, and BMI in 148 patients with OSA and 33 non-OSA participants.18 A 
proposed model showed high prediction accuracy. However, the accuracy was not reliable 
in that oxygen desaturation index was used as a predictor of AHI score, which is nearly the 
same thing as providing the correct answer in machine learning. Some studies have validated 
commercial fitness trackers, such as Fitbit, the Oura Ring and Whoop, which utilize HRV, 
by comparing them with PSG indices.20-22 These studies compared sleep variables, such as 
sleep onset latency, total sleep time, sleep efficiency, and sleep stages. However, no studies 
have been conducted yet on the prediction of AHI score or assessment of OSA classifiers 
using such utilities. Moreover, further studies on the correlations between HRV parameters 
and PSG diagnostic indices such as AHI score have been conducted recently.14 However, 
few studies have been conducted on a model of binary classification for OSA severity by 
predicting AHI score using simultaneously measured HRV variables without the use of oxygen 
saturation levels.

Various methods for screening OSA have been introduced. The STOP-Bang questionnaire is 
one of the well-known sleep questionnaires to predict OSA. One study found that when total 
score was greater than 3, the probability for severe sleep apnea continued to increase from 
31.3% (score 4) to 81.9% (score 8), while the probability for everything else (non-OSA, mild 
and moderate OSA) decreased.23 The questionnaire is probably the simplest way to screen for 
OSA without any cost or time. However, it can be difficult to obtain information other than 
that the probability of severe OSA increases as the score increases. Respiratory sounds during 
sleep may be used for prediction of OSA severity. In our previous study, a simple algorithm 
for prescreening of OSA on the basis of respiratory sounds recorded during PSG was 
developed.24 Accuracies of classification at AHI criteria of 5, 15, and 30 were 82.7%, 84.4%, 
and 85.3%, respectively. However, this modality needs to overcome technical issues such as 
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noise cancellation. There may be restrictions on its application, for example, when a patient 
has a bed partner or a companion animal. In comparison, each method for screening OSA 
has its own strength and weakness.

When chronic intermittent hypoxia and sleep interruption are caused by OSA, the 
accumulation of oxidative stress and inflammatory responses, as well as increased 
sympathetic nervous system activity can occur.25 HRV reflects cardiac autonomic activity, 
which is a balance between sympathetic and parasympathetic nervous system activity. 
Regarding the frequency-domain parameters of HRV, LF activity reportedly reflects both 
sympathetic and parasympathetic nervous system activity, while HF has been correlated 
to parasympathetic nervous system activity.26 Therefore, the LF/HF ratio is regarded as the 
balance between sympathetic and parasympathetic nervous system activity, and has been 
linked with AHI scores in patients with OSA.11 LFnu and HFnu are considered markers 
of sympathetic and parasympathetic nervous system activity, respectively.26 Therefore, 
theoretically, the increased risk for OSA can be estimated using HRV analysis. In our study, 
the total power, LF, LF/HF ratio, and LFnu values increased with OSA severity. Conversely, 
when the OSA severity increased, the average NN interval, HF, and HFnu presented a 
decreasing tendency. From these results, a linear relationship can be inferred.

The development of predicting algorithms for OSA are important in several respects. 
First, if predictive models were applied to various electrocardiogram measuring devices 
such as smartwatches, wearable sleep devices, and adhesive patches, more patients would 
get the chance to prescreen their OSA at home on a daily basis. Indeed, considering the 
aforementioned limitations of PSG, many OSA patients are underdiagnosed despite the high 
prevalence. Individuals with recurrent snoring, daytime drowsiness, or poor quality of sleep 
should see a doctor firstly and undergo PSG. Ambulatory at-home monitoring devices have 
similar limitations in that a symptomatic patient must visit a hospital with the appropriate 
equipment at first. Second, given the night-to-night variability in OSA severity, this kind 
of prediction algorithm may assist clinicians with a more accurate diagnosis beyond the 
weaknesses of PSG and home testing devices by replacing repetitive tests without additional 
economic burden. Third, a prediction algorithm for OSA severity may be useful for verifying 
the therapeutic effects of OSA treatments such as mandible advancement devices or positive 
airway pressure in real time. Moreover, serial monitoring of the therapeutic results of OSA 
surgery are feasible using HRV. Conversely, such treatment effect analysis may serve as 
the basis for determining how to treat OSA in the future. Ultimately, early diagnosis and 
decisions regarding the most effective treatment modality reduce the social and economic 
burden of OSA since OSA is a risk factor for multi-organ diseases, such as neurovascular, 
cardiovascular, and metabolic diseases.

This study had some limitations. First, we included a relatively small number of subjects 
without OSA because the participants were patients who visited a tertiary hospital for snoring 
or sleep apnea. Therefore, we tried to eliminate any numerical imbalance between classes by 
randomly selecting patients with mild, moderate, and severe OSA to proportion. In addition, 
we used the Synthetic Minority Oversampling Technique, a general method often used to 
solve this type of problem in the machine learning process. Second, our binary classifier 
may not cover all sleep stages because we only analyzed data between midnight and 5 AM. 
Heart rate varies by sleep stage, although we did not consider sleep stages in this study. Since 
rapid eye movement sleep generally occurs 90 minutes after sleep onset, it would be better to 
measure HRV after the onset of deep sleep. If the sleep stage were detectable, HRV analysis 
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could begin after one sleep cycle. However, since HRV can vary by time period because of 
circadian rhythms, studying measurements by particular time period may have an advantage 
from a certain perspective. Third, considering the characteristics of the machine learning 
process, classifying its performance may have been affected by the distribution of patients in 
the training set. Indeed, there are many more people without OSA in the general population; 
therefore, discrepancies between research results and the real world can occur, although 
this can be corrected later through real-world validation. Fourth, the external validation was 
not performed. Since the present study was conducted in a single institution, there may be 
potential bias. It can be supplemented through future multi-institutional studies. Finally, 
there are hurdles to overcome in order to apply our classifying model to multiple devices. 
Since there is difference in the electrode for each device, validation is required to predict 
AHI. In the future, studies which comparing HRV of PSG and HRV of a sleep device or a smart 
watch are needed by wearing the multiple devices and implementing PSG simultaneously for 
application of our classification model.

In conclusion, OSA severity was fairly predicted using HRV parameters, BMI, and 
demographic characteristics in a large Korean population. The binary classification 
sensitivity for OSA was over 70% in each AHI criterion. The best binary classification model 
showed performance with 78% sensitivity in discriminating severe OSA. This study may have 
high value regarding the feasibility of HRV for OSA prescreening and continuous monitoring 
of treatment effects. Severe OSA may possibly be prescreened simply by measuring 
HRV. Further real-world validation studies may lead to improvements in the classifying 
performance of HRV for OSA.
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