
The PyRosetta Toolkit: A Graphical User Interface for the
Rosetta Software Suite
Jared Adolf-Bryfogle1,2, Roland L. Dunbrack Jr.1*

1 Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America, 2 Drexel University College of Medicine, Program in

Molecular and Cell Biology and Genetics, Philadelphia, Pennsylvania, United States of America

Abstract

The Rosetta Molecular Modeling suite is a command-line-only collection of applications that enable high-resolution
modeling and design of proteins and other molecules. Although extremely useful, Rosetta can be difficult to learn for
scientists with little computational or programming experience. To that end, we have created a Graphical User Interface
(GUI) for Rosetta, called the PyRosetta Toolkit, for creating and running protocols in Rosetta for common molecular modeling
and protein design tasks and for analyzing the results of Rosetta calculations. The program is highly extensible so that
developers can add new protocols and analysis tools to the PyRosetta Toolkit GUI.

Citation: Adolf-Bryfogle J, Dunbrack RL Jr (2013) The PyRosetta Toolkit: A Graphical User Interface for the Rosetta Software Suite. PLoS ONE 8(7): e66856.
doi:10.1371/journal.pone.0066856

Editor: Heinrich Sticht, Universität Erlangen-Nürnberg, Germany

Received January 31, 2013; Accepted May 11, 2013; Published July 9, 2013

Copyright: � 2013 Adolf-Bryfogle, Dunbrack. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding from National Institutes of Health R01 GM84453. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Roland.Dunbrack@fccc.edu

Introduction

The Rosetta Molecular Modeling suite is a collection of

command-line-only applications encompassing approximately

1.7 million lines of C++ code. Within the suite there are numerous

applications for modeling and design ranging from minimization

of the scoring function to enzyme redesign. Rosetta is an extremely

useful piece of software for a variety of molecular modeling tasks

[1,2,3,4,5,6].

Due to the wealth of useful C++ classes within Rosetta and the

ease of Python programming for beginners and advanced users

alike, Sergey Lyskov and the PyRosetta team created Python

bindings for Rosetta [7]. PyRosetta allows direct access to nearly

all Rosetta functions and classes using Python scripts, programs,

and the interactive IPython/Python terminal.

To allow beginning users, including molecular biologists with

little or no computational experience, to use Rosetta with ease, we

have created a Graphical User Interface (GUI), which we call the

PyRosetta Toolkit, using PyRosetta as the underlying Rosetta code.

The PyRosetta Toolkit was created with code simplicity in mind,

allowing users to add their own functions, menus, and windows.

Although stand-alone Foldit [8,9] can be used to run some basic

Rosetta algorithms such as repacking and minimization on a single

model, many modeling tasks are either difficult or non-existent in

FoldIt. As such, we believe the PyRosetta Toolkit represents the

first major GUI to the full functionality of the Rosetta software

suite.

A complete overview and description of the PyRosetta Toolkit

GUI code base and a tutorial on how to add to the GUI can be

found online through the PyRosetta website (www.pyrosetta.org/

documentation) and in the GUI’s documentation directory. Here

we provide an introduction to the GUI and an overall description.

Results

The PyRosetta Toolkit is composed of two main areas – the

main window and the main menu. The main window, shown in

Figure 1, allows users to specify protein regions and output

options, perform quick analyses, or run standard protocols such as

relaxing or repacking structures and regions. The main menu

houses many additional functions and more advanced Rosetta

methods and protocols. In addition, PyMOL [10] visualization of

poses, coordinate changes, and energetics through the PyMOL-

Mover [11] are integrated into the GUI.

The main window (Figure 1) acts as a place for the user to

prepare or quickly analyze a protein of interest as well as to setup

decoy and output options for the session. Main functions in this

window encompass region selection where a user can: choose

multiple loops, chains, and termini; control decoy output, energy,

and RMSD analysis; and perform common protocols such as

energy minimization or rotamer repacking through both Rosetta

and SCWRL4 [12]. In addition, it has a textbox where most

Rosetta and Python output has been redirected to make it easier to

observe results of an analysis, protocol, or file load. The sequence

of the selected region is also given, and clicking next to a residue

will show the PDB number and chain as well as the internal

Rosetta residue numbers, which are used in a number of Rosetta

applications outside of the GUI.

The menus in the PyRosetta Toolkit are as follows.

File Menu:
The File Menu allows the user to load a structure from a PDB

file or directly from the Protein Data Bank, prepare a PDB for use

in Rosetta, save and load GUI sessions, and import or export a

variety of Rosetta filetypes (Table 1).

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e66856

In addition, the RosettaFlagFileBuilder GUI can be launched

using this menu. This GUI is independent of PyRosetta and

functions in helping a user create a Rosetta command line flag file,

run Rosetta applications, and launch them on a cluster using qsub,

a commonly used job submission and queuing system for cluster

computers (Figure 2). It parses Rosetta Doxygen documentation

for recommended options/values and the many other options

available for each C++ application. A user can explore the

documentation for the many applications within Rosetta interac-

tively, as well as get information and default values for each option

of each application. Functions are available for constructing or

loading a flag file (usable by Rosetta command-line applications),

running them locally, or submitting them to the qsub queue.

Options Menu:
The Options Menu allows the user to set the number of

processors to use, setup the main score function, and interact with

the Rosetta options system.

The score function window (Figure 3) allows a user to choose

any weight set or patch in Rosetta, as well as modify the weight of

any score term or add any score term that is not being used to the

current score function. This score function is then used by any

function in the GUI that requires one and can be modified at any

time. A user can also save the new score function or set the GUI to

use a particular set of weights by default.

General Rosetta options, such as -dun10 (the 2010 Dunbrack

rotamer library [13]) or -ex2 (extra chi2 rotamers), can be set

through a window where a user can select from a few common

options, enter custom ones, save and load a set of options, or set

defaults for the GUI.

Visualization Menu:
The Visualization Menu allows the user to integrate modeling

tasks directly with PyMOL using Rosetta’s PyMOLMover. A user

can set Rosetta to continually send models to the PyMOL

program upon structural change or send the current structure (or

pose in Rosetta parlance). The small Advanced PyMOL

Visualization window allows users to color and label per-residue

energies based on the score function or individual score term and

send other useful information including DSSP secondary structure,

identified hydrogen bonds, and the polar identity of each residue.

This window becomes an integral part of interactive Rosetta

Figure 1. PyRosetta Toolkit GUI. Top-Left: Energy and RMSD analysis functions. Bottom-Left: Region selection. Top-Right: Output options. Bottom-
Right: Decoy and Protocol options as well as some common modeling protocols.
doi:10.1371/journal.pone.0066856.g001

PyRosetta Toolkit GUI

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e66856

modeling through the PyRosetta Toolkit. Note that PyMOL needs

to be run separately alongside the GUI to take advantage of these

visualization tools.

Advanced Menu:
The Advanced Menu houses a variety of sub-windows and

useful functions for analyzing Rosetta results. Four Rosetta-specific

analyzers are implemented, including the Void Identification and

Packing Analyzer (VIP) [14], Packstat [15], InterfaceAnalyzer [6],

and LoopAnalyzer [6]. A user can also enable constraints for the

pose and score function in the menu. A sub-window for setting up

and exporting a Rosetta resfile, a file for specifying mutatable

residues for a design run, is shown in Figure 4. Commonly used

data for accessible surface area, surface probability [16], and

relative mutability [17] are given for each current residue and

potential mutant. In addition, a user can select all conservative

mutations for a given position or a range of positions as well as all

residues of a specific type (hydrophobic, hydrophilic, charged,

etc.). A Rosetta resfile for the pose can then be exported, and the

fixed-backbone protocol can be run from within the GUI, making

setting up and running the Rosetta design protocol easier.

Table 1. Function Overview.

Input filetypes

PDB File Rosetta Loop File

RCSB PDB ID ParameterPath list

PDBList GUI Session

Output filetypes

PDB File

FASTA for protein and/or regions Rosetta Flag File

Rosetta Loop File SCWRL Seq File

Rosetta Resfile Parameter PathList

Rosetta Blueprint file GUI Session

Protocols

Fixed Backbone Design Rotamer Repacking (With SCWRL Integration)

Low Resolution Docking Low Resolution Loop Modeling (CCD + KIC)

High Resolution Docking High Resolution Loop Modeling (CCD + KIC)

FastRelax Grafting

ClassicRelax FloppyTail

Energy Minimization

Server Links

ROSIE [32] Robetta – Fragments [35]

Rosetta Backrub server [36] Robetta – Interface Alanine Scan [37]

Rosetta Scaffold Select [38] Robetta – DNA Interface Scan

Analysis

RMSD Tools Packing Analyzer

Energy Analysis Design Result Breakdown

Interface Analyzer Rotamer/Per-Residue analysis

Loop Analyzer Arbitrary data insertion into B-Factor column

VIP Analyzer

PDBList Functions

Design Result Breakdowns Top % or # by energy

Rescore PDBList Energy vs RMSD

FASTA output of proteins and regions

PDB Prep functions

Water removal Insertion code expansion

HETATM removal Residue and atom renaming

Renumber from 1 Detection of unknown residues/Loading of params for off-by-default
residues

Other

Constraints Scorefunction Creation

Non-Canonical AA integration Resfile Creation

Variant + NCAA Mutagenesis

doi:10.1371/journal.pone.0066856.t001

PyRosetta Toolkit GUI

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e66856

Two other integral sub-windows are housed in the Advanced

Menu. These include the Ligand/Post-Translational Modification

(PTM)/Non-canonical Amino Acid (NCAA) Manager and a

window for per-residue control and analysis.

The Ligand/PTM/NCAA Manager (Figure 5) deals with the

various parameter and patch files housed in the Rosetta chemical

database. Due to memory restrictions, not all of these are enabled

by default in Rosetta. Besides functioning to enable these non-

canonical amino acids, post-translational modifications, and

ligands that the parameter files describe, a user can explore these

files in a way that enables identification of the three letter residue

code Rosetta reads, determination of whether it is on by default,

and of what variant type it is if any. In addition, functions that

change the score function to model the physical properties of the

non-standard residues or residue modifications, such as the

mm_std score function developed by Renfrew et al.[18], are

provided. Users may also mutate any residue to these non-

canonical amino acids from this window, as long as they are

enabled and the appropriate rotamer library has been included.

Finally, the Per-Residue Control and Analysis Window

(Figure 6) allows a user to manipulate, design, and analyze

individual residues of a pose. Per-residue information includes

rotamer energy, approximate rotamer probability calculated by

p = e2E, residue energy, and energy of the residue by individual

score term. Users can change individual dihedral angles, mutate to

any canonical amino acid, add variant types such as phosphor-

ylations or acetylations, and repack rotamers and relax individual

residues and residues in the vicinity of the chain.

Protocols Menu:
Protocols in the GUI are handled by Python’s multiprocessing

module, allowing the user to specify the number of processors for

production runs. Many protocols have their own setup windows

associated with them. Currently available protocols include fixed-

backbone design [2,19,20,21], FastRelax [22], ClassicRelax [23],

rotamer repacking [21,24], Floppytail [25], grafting, high- and

low-resolution docking [26,27,28,29], and high- and low-resolu-

tion loop modeling with both CCD [9,28,30] and KIC [31]; with

more to be added in the future. In addition, the protocols menu

has links to Rosetta online servers such as ROSIE [32] and

Robetta [33].

PDBLists Menu:
A PDBList is a very simple text file listing a path to a PDB file

on each line. This PDBList is generally used for analysis of the

large number of decoy files created in a typical Rosetta simulation.

Methods for loading, creating, and using this list to analyze and

group results are housed in the PDBLists Menu.

Through a function in the menu, a user can create a PDBList

from all the coordinate files that match user-defined filename

identifiers in a given directory or recursively. This PDBList can

then be used not only for the GUI but also for command-line

Rosetta runs using the in: file:l flag designation. A PDBList

becomes a major point of analysis after a Rosetta protocol run

when a user is left with thousands upon thousands of decoy

structures, even those in multiple directories with identical PDB

filenames.

Using the PDBList, a user can output a FASTA-format file

containing the sequence for each PDB specified or each region

specified, which can then be used by many online servers for

further analysis. If a user has results from a design simulation, a

design breakdown can be performed that analyzes percentages of

each residue type of each region specified and outputs data into a

text file, an SQLITE3 database format, and auto-generated

graphs in PDF format from the R program [34]. This can be

extremely useful for rational design. For energy analysis, a

PDBList can be rescored or a Rosetta scorefile can be read. A

user can then get the top score or best-scoring poses by number or

percent. These energies are then output to a file with full paths to

each decoy or structure for further analysis, and if the user wishes,

the top scoring poses may be copied to a directory. In addition, an

energy vs. RMSD calculation for the full protein or each region

can be performed using the PDBList compared to the loaded pose.

Figure 2. Rosetta Flag File Builder. Top-Left: All Rosetta applications found in a user-specified directory. Top-Middle: All options parsed from
Rosetta Doxygen documentation housed in rosetta_source. Clicking an option gives a description, if any is found, in the textbox on the right. Bottom-
Middle: Text window that functions in building a config file. Adding an option will add it to this textbox, while the PathBuilder allows users to search
for various files and add them to the textbox. Right: Information textbox which gives information on individual options as well as each major
component of Rosetta Doxygen documentation (Purpose, Unparsed Options, Code and Demo, References, Algorithm, Limitations, Modes, Input Files,
Tips, Expected Outputs, and Post Processing).
doi:10.1371/journal.pone.0066856.g002

PyRosetta Toolkit GUI

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e66856

Finally, a help menu is available with links to the RosettaCom-

mons bug tracker, the RosettaCommons user forum, general

Rosetta manuals, as well as help for specific GUI tasks and setup

instructions for both SCWRL and PyMOL integration.

Discussion

The PyRosetta Toolkit was designed for ease of use and

modification by incorporating the simplicity of PyRosetta and

Python’s Tkinter Application Programming Interface (API). We

hope that the community will adopt and expand the GUI as a way

to interface with their own applications, classes, and scripts. Long-

term future projects may involve an interface of the PyRosetta

Toolkit with the Chimera Suite, and/or the creation of a native

C++ GUI. The lab will continue to develop the GUI for use with

the growing number of applications and tools in Rosetta, while

adding functions and tools to aid in molecular modeling and

design as a whole.

Methods

The GUI was written in python, using ActiveState’s Komodo 6

Integrated Development Environment (IDE). The Netbeans

(Oracle) and Eclipse (Eclipse Foundation) IDE’s were used to

explore, edit, and debug Rosetta C++ code where necessary. The

open-source Clang LLVM compiler was used to compile

PyRosetta binaries from the Rosetta C++ source code during

development. Subversion (Apache Software Foundation) and Git

(open-source) were used for version control. The GUI was tested

Figure 3. Score Function Control and Creation. Top: All score function weights and patch files found in the Rosetta chemical database. These
weights and patches can be set as the current GUI score function or saved as the default. Bottom-Left: Terms in the current score function and their
associated weights. Weights can be changed by double-click. Bottom-Right: All Rosetta energy terms can be enabled at a certain weight by double-
click.
doi:10.1371/journal.pone.0066856.g003

PyRosetta Toolkit GUI

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e66856

on Ubuntu linux release versions 10.04 LTS and 12.04 LTS

(Canonical, Ltd) as well as Apple Mac OS 10.6, 10.7, and 10.8.

The PyRosetta Toolkit and RosettaFlagFileBuilder require

Python 2.6 or higher and are included in both the precompiled

PyRosetta binaries available at www.pyrosetta.org (/GUIs direc-

tory) and Rosetta version 3.5. Complete documentation for the

GUIs can be found at http://www.pyrosetta.org/documentation

and within the documentation directory each GUI. A sub project

in the Rosetta Mantis Bugtracker (bugs.rosettacommons.org) is

available for toolkit-specific bugs and feature requests.

Figure 4. Design – Setup Resfile. Left: A resfile for design is constructed for individual residues or stretches of residues. Biochemical data is given
for each current residue. Right: Selections of residue types. Once selected, individual residues in the category are added to the box on the right.
Added residues are found in the lower box, where the current designable residues can be edited or cleared.
doi:10.1371/journal.pone.0066856.g004

Figure 5. Ligand/NCAA/PTM Manager. Top: Selection is grouped first by patch/ligand/polymer, then by specific biochemical property. Middle:
Rosetta related information is given about the particular selection. Bottom: Functions for optimizing the current energy function for use with ligands,
non-canonical amino acids (NCAA), and post-translational modifications (PTM).
doi:10.1371/journal.pone.0066856.g005

PyRosetta Toolkit GUI

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e66856

Figure 6. Per-Residue Control and Analysis. A collection of functions for analyzing, modeling, and designing individual residues. Per-residue
energies, probabilities, and dihedral angles are given. Variants may be added or removed from residues, any residue may be designed or mutated,
and individual rotamers may be optimized.
doi:10.1371/journal.pone.0066856.g006

PyRosetta Toolkit GUI

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e66856

Acknowledgments

We acknowledge helpful comments from Sergey Lyskov, Jason Labonte,

Steven Lewis, Brian Weitzner, Steven Combs, Mark Andrake, Benjamin

North, and the RosettaCommons community.

Author Contributions

Conceived and designed the experiments: JAB RLD. Performed the

experiments: JAB. Analyzed the data: JAB. Wrote the paper: JAB RLD.

References

1. Das R, Baker D (2008) Macromolecular modeling with rosetta. Ann. Rev.

Biochem. 77: 363–382.
2. Hu X, Wang H, Ke H, Kuhlman B (2007) High-resolution design of a protein

loop. Proc. Natl. Acad. Sci. USA 104: 17668–17673.
3. Huang PS, Ban YE, Richter F, Andre I, Vernon R, et al. (2011)

RosettaRemodel: A Generalized Framework for Flexible Backbone Protein

Design. PLoS ONE 6: e24109.
4. Kaufmann KW, Lemmon GH, Deluca SL, Sheehan JH, Meiler J (2010)

Practically useful: what the Rosetta protein modeling suite can do for you.
Biochemistry 49: 2987–2998.

5. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, et al. (2011)
Chapter nineteen – Rosetta3: An Object-Oriented Software Suite for the

Simulation and Design of Macromolecules. In: Michael LJ, Ludwig B, editors.

Methods Enz.: 545–574.
6. Lewis SM, Kuhlman BA (2011) Anchored design of protein-protein interfaces.

PLoS ONE 6: e20872.
7. Chaudhury S, Lyskov S, Gray JJ (2010) PyRosetta: a script-based interface for

implementing molecular modeling algorithms using Rosetta. Bioinformatics 26:

689–691.
8. Eiben CB, Siegel JB, Bale JB, Cooper S, Khatib F, et al. (2012) Increased Diels-

Alderase activity through backbone remodeling guided by Foldit players. Nature
Biotech. 30: 190–192.

9. Parslow GR (2013) Commentary: Crowdsourcing, foldit, and scientific discovery
games. Biochem. Mol. Biol. Ed. 41: 116–117.

10. Delano WL (2002) The PyMOL Molecular Graphics System.

11. Baugh EH, Lyskov S, Weitzner BD, Gray JJ (2011) Real-time PyMOL
visualization for Rosetta and PyRosetta. PLoS ONE 6: e21931.

12. Krivov GG, Shapovalov MV, Dunbrack RL Jr (2009) Improved prediction of
protein side-chain conformations with SCWRL4. Proteins 77: 778–795.

13. Shapovalov MV, Dunbrack RL Jr (2011) A smoothed backbone-dependent

rotamer library for proteins derived from adaptive kernel density estimates and
regressions. Structure 19: 844–858.

14. Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Marchesini S, et al.
(2004) Phasing diffuse scattering. Application of the SIR2002 algorithm to the

non-crystallographic phase problem. Acta Cryst. A 60: 331–338.

15. Elser V (2003) Solution of the crystallographic phase problem by iterated
projections. Acta Cryst. A 59: 201–209.

16. Payne PR, Borlawsky TB, Kwok A, Greaves AW (2008) Supporting the design
of translational clinical studies through the generation and verification of

conceptual knowledge-anchored hypotheses. AMIA Annual Symposium Proc.:
566–570.

17. Winum JY, Cecchi A, Seridi A, Scozzafava A, Montero JL, et al. (2006)

Carbonic anhydrase inhibitors. N-cyanomethylsulfonamides–a new zinc binding
group in the design of inhibitors targeting cytosolic and membrane-anchored

isoforms. J. Enz. Inh. Med. Chem. 21: 477–481.
18. Dunbrack RL Jr, Cohen FE (1997) Bayesian statistical analysis of protein side-

chain rotamer preferences. Protein Sci. 6: 1661–1681.

19. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, et al. (2003) Design
of a novel globular protein fold with atomic-level accuracy. Science 302: 1364–

1368.

20. Dantas G, Kuhlman B, Callender D, Wong M, Baker D (2003) A large scale test

of computational protein design: folding and stability of nine completely
redesigned globular proteins. J. Mol. Biol. 332: 449–460.

21. Leaver-Fay A, Kuhlman B, Snoeyink J (2005) An adaptive dynamic
programming algorithm for the side chain placement problem. Pac. Symp.

Biocomputing: 16–27.

22. Tyka MD, Keedy DA, Andre I, Dimaio F, Song Y, et al. (2011) Alternate states
of proteins revealed by detailed energy landscape mapping. J. Mol. Biol. 405:

607–618.
23. Bradley P, Misura KM, Baker D (2005) Toward high-resolution de novo

structure prediction for small proteins. Science 309: 1868–1871.
24. Kuhlman B, Baker D (2000) Native protein sequences are close to optimal for

their structures. Proc. Natl. Acad. Sci. USA 97: 10383–10388.

25. Kleiger G, Saha A, Lewis S, Kuhlman B, Deshaies RJ (2009) Rapid E2-E3
assembly and disassembly enable processive ubiquitylation of cullin-RING

ubiquitin ligase substrates. Cell 139: 957–968.
26. Dunbrack RL Jr, Karplus M (1994) Conformational analysis of the backbone-

dependent rotamer preferences of protein sidechains. Nature Struct. Biol. 1:

334–340.
27. Wang C, Schueler-Furman O, Baker D (2005) Improved side-chain modeling

for protein-protein docking. Protein Sci. 14: 1328–1339.
28. Wang C, Bradley P, Baker D (2007) Protein-protein docking with backbone

flexibility. J. Mol. Biol. 373: 503–519.
29. Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, et al. (2011)

Benchmarking and analysis of protein docking performance in Rosetta v3.2.

PLoS ONE 6: e22477.
30. Qian B, Raman S, Das R, Bradley P, McCoy AJ, et al. (2007) High-resolution

structure prediction and the crystallographic phase problem. Nature 450: 259–
264.

31. Mandell DJ, Coutsias EA, Kortemme T (2009) Sub-angstrom accuracy in

protein loop reconstruction by robotics-inspired conformational sampling.
Nature Methods 6: 551–552.

32. Lyskov S, Chou F-C, Connor SÓ, Der BS, Drew K, et al. (2013) Serverification
of Molecular Modeling Applications: the Rosetta Online Server that Includes

Everyone (ROSIE). PLoS ONE 8: e63906.

33. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis
using the Robetta server. Nucleic Acids Res. 32: W526–531.

34. R Development Team (2011) R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing.

35. Simons KT, Kooperberg C, Huang E, Baker D (1997) Assembly of protein
tertiary structures from fragments with similar local sequences using simulated

annealing and Bayesian scoring functions. J. Mol. Biol. 268: 209–225.

36. Lauck F, Smith CA, Friedland GF, Humphris EL, Kortemme T (2010)
RosettaBackrub–a web server for flexible backbone protein structure modeling

and design. Nucleic Acids Res. 38: W569–575.
37. Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of

protein-protein interfaces. Science’s STKE 2004: pl2.

38. Choi EJ, Jacak R, Kuhlman B (2013) A structural bioinformatics approach for
identifying proteins predisposed to bind linear epitopes on pre-selected target

proteins. Prot. Eng. Des. Selection 26: 283–289.

PyRosetta Toolkit GUI

PLOS ONE | www.plosone.org 8 July 2013 | Volume 8 | Issue 7 | e66856

