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Abstract: Antimicrobial bioassay-guided fractionation of the endophytic fungi Neofusicoccum australe
led to the isolation of a new unsymmetrical naphthoquinone dimer, neofusnaphthoquinone B (1),
along with four known natural products (2–5). Structure elucidation was conducted by nuclear
magnetic resonance (NMR) spectroscopic methods, and the antimicrobial activity of all the natu-
ral products was investigated, revealing 1 to be moderately active towards methicillin-resistant
Staphylococcus aureus (MRSA) with a minimum inhibitory concentration (MIC) of 16 µg/mL.

Keywords: antimicrobial; natural product; fungi; MRSA; naphthoquinone dimer

1. Introduction

In 2014, the World Health Organization (WHO) described how drug-resistant mi-
crobes are present in every region of the world [1]. The report concluded that within a
decade, antimicrobial resistance will make routine surgery, organ transplantation, and
cancer treatment life-threateningly risky [1]. Key to managing this crisis is to boost the
number of new antibiotic classes reaching the clinic [2,3]. The International Collection of
Microorganisms from Plants (ICMP), curated by the Crown Research Institute Manaaki
Whenua, has over 10,000 fungal cultures derived from plants and soil from Aotearoa New
Zealand and the South Pacific. The collection has a great diversity of fungal species, host
substrates, and collection localities, with the earliest cultures dating from the early 1960s [4].

In our search for new bioactive compounds, we began screening ICMP isolates for
antibacterial activity [5] against members of the WHO’s “priority pathogens” list [6],
including Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. Bioassay di-
rected investigation of an isolate of the endophytic fungi, Neofusicoccum australe, led to
the isolation of a novel unsymmetrical naphthoquinone dimer 1 and four other known
natural products (2–5) (Figure 1). Other reported unsymmetrical naphthoquinone dimers
include kirschsteinin (6) isolated from Kirschsteiniothelia sp. [7], deacetylkirschsteinin (7)
isolated from Phaeosphaeria sp. [8] and neofusnaphthoquinone A (8) isolated from Neofu-
sicoccum australe [9] (Figure 2). Structure verification of the four known natural products,
which included two naphthalene monomers (2 and 3) [10], pramanicin A (4) [11] and
4-hydroxyscytalone (5) [8], was conducted by comparison of 1H NMR data with those
reported in the literature. Herein, the isolation, structure elucidation and bioactivity of
neofusnaphthoquinone B (1) are described.
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in the literature. Herein, the isolation, structure elucidation and bioactivity of neofusnaph-
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Figure 1. Structures of isolated compounds 1–5. 

 
Figure 2. Structures of known naphthoquinone dimers 6–8. 

2. Results and Discussion 
Antimicrobial screening of ICMP isolates against antibiotic-sensitive and antibiotic-

resistant strains of Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus identi-
fied Neofusicoccum australe as a hit (see supporting information). During the testing of fun-
gal crude extracts against E. coli ATCC 25922 and S. aureus ATCC 29213, activity was ob-
served primarily against S. aureus (Figure 3). Initial fractionation of the crude extract was 
conducted by C8 reversed-phase column chromatography, eluting with a gradient of 
H2O/MeOH, to afford five fractions (F1–F5). Antimicrobial testing of F1–F5 against the 
same two microbes identified S. aureus activity in F3, F4 and F5 (Figure 3). The most potent 
inhibitory activity was observed in F5, which displayed inhibition of S. aureus ATCC 29213 
in a dose-dependent manner with a minimum inhibitory concentration (MIC) of 32 
µg/mL. Further purification of combined F4 and F5 led to the isolation of compounds 1–
4, while purification of F3 afforded compound 5. 

Figure 1. Structures of isolated compounds 1–5.
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2. Results and Discussion

Antimicrobial screening of ICMP isolates against antibiotic-sensitive and antibiotic-
resistant strains of Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus identified
Neofusicoccum australe as a hit (see supporting information). During the testing of fun-
gal crude extracts against E. coli ATCC 25922 and S. aureus ATCC 29213, activity was
observed primarily against S. aureus (Figure 3). Initial fractionation of the crude extract
was conducted by C8 reversed-phase column chromatography, eluting with a gradient of
H2O/MeOH, to afford five fractions (F1–F5). Antimicrobial testing of F1–F5 against the
same two microbes identified S. aureus activity in F3, F4 and F5 (Figure 3). The most potent
inhibitory activity was observed in F5, which displayed inhibition of S. aureus ATCC 29213
in a dose-dependent manner with a minimum inhibitory concentration (MIC) of 32 µg/mL.
Further purification of combined F4 and F5 led to the isolation of compounds 1–4, while
purification of F3 afforded compound 5.

Compound 1 was isolated as the sodiated adduct with a molecular formula C27H24O11
by high resolution ESI mass spectrometry (HRESIMS) m/z 547.1203 [M + Na]+ (calcd.
547.1211). The 1H-NMR spectrum (Figure S1) showed the presence of 24 protons, which
included three aromatic signals at δH 6.24 (s, H-3′), 7.11 (s, H-8) and 7.12 (s, H-8′);
three methoxy signals at δH 3.86 (s, H3-11′, H3-12′) and 3.92 (s, H3-11); two methyl signals
at δH 1.41 (d, J = 6.7 Hz, H3-10) and 1.60 (d, J = 7.0 Hz, H3-10′); two methine signals at δH
4.80 (q, J = 7.0 Hz, H-9′) and 5.20 (dq, J = 7.0, 6.7 Hz, H-9); and four hydroxyl signals at δH
4.61 (d, J = 7.0 Hz, 9-OH), 10.89 (br s, 2-OH), 12.95 (s, 5′-OH) and 13.38 (br s, 5-OH) (Table 1).
The 13C-NMR spectrum (Figure S2) identified the presence of 27 carbons, which included
four quinone carbons (δC 178.7, 180.7, 189.9, 190.3), six oxygenated sp2 carbons (δC 159.6,
159.7, 160.2, 160.7, 161.3, 162.5), three protonated sp2 carbons (δC 102.1, 102.9, 109.3), seven
other sp2 quaternary carbons (δC 108.3, 108.6, 123.5, 126.6, 126.8, 129.6, 130.0), four sp3

oxygenated carbons (δC 56.2, 56.3, 56.8, 60.6) and three other sp3 carbons (δC 17.6, 21.7,
27.5). Comparison of the NMR data of 1 with kirschsteinin (6) [8], another unsymmetrical
naphthoquinone, which has an acetyl moiety instead of a hydroxyethyl moiety as well
as the presence of an additional methoxy group, showed similarities. Only two COSY
cross correlations were observed, one between H-9′ (δH 4.80, q, J = 7.0 Hz) and H3-10′ (δH
1.60, d, J = 7.0 Hz) on the ethylidene linker and the other between H-9 (δH 5.20, dq, J = 7.0,
6.7 Hz) and H3-10 (δH 1.41, d, J = 6.7 Hz) on the hydroxyethyl fragment (Figure 4). Key
HMBC correlations were observed (Figure 4) between H3-10′ (δH 1.60, d, J = 7.0 Hz) and
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C-3 (δC 123.5) and C-6′ (δC 126.8), which identified connectivity between the two naphtho-
quinone fragments with additional correlations between H3-10 (δH 1.41, d, J = 6.7 Hz) and
C-6 (δC 126.6) and between H-9 (δH 5.20, dq, J = 7.0, 6.7 Hz) and C-5 (δC 159.7), showing
connectivity of the hydroxyethyl fragment to the naphthoquinone ring. This confirmed the
chemical structure of neofusnaphthoquinone B (1) as shown.
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The stereochemistry at C-9 and C-9′ was not assigned, as neofusnaphthoquinone B
(1) was optically inactive and exhibited no electronic circular dichroism (ECD) absorp-
tion curves. Attempts were made to determine the configuration at C-9 using the chiral
derivatising agent α-methoxyphenylacetic acid (MPA) to prepare diastereomeric esters at
C-9 [12]. Treatment of 1 with (S)-MPA in the presence of EDC.HCl and DMAP overnight
resulted in degradation products, suspected to be due to reaction of MPA with the phenols
present in 1 (data not shown). Thus, attempts were made to first protect the phenols
using TMS-diazomethane before reaction with (S)-MPA [13,14]. Reaction of 1 with TMS-
diazomethane with DIPEA for 15 h resulted in degradation products as did the reaction for
6 h (data not shown).

The isolation of 1 as a racemic mixture is not uncommon for this class of natural
products [8,9]. To the best of our knowledge, this is the fourth example of an unusual
class of natural products which contain two naphthoquinone subunits connected in a
head-to-tail fashion by an ethylidene linker [7–9]. The known compounds were identified
as 6-(1-hydroxyethyl)-2,7-dimethoxyjugalone (2) [10], 6-(1-ethyl)-2,7-dimethoxyjugalone
(3) [10], pramanicin A (4) [11] and (3S,4S)-4-hydroxyscytalone (5) [8].

https://doi.org/10.17608/k6.auckland.11868675


Molecules 2021, 26, 1094 4 of 10

Table 1. 1H and 13C-NMR data for compound 1 (DMSO-d6).

δH (m, J in Hz) a δC
b Selected HMBC Correlations

1 180.7
2 - 159.6
3 - 123.5
4 - 189.9
4a - 108.6
5 - 159.7
6 - 126.6
7 - 161.3
8 7.11 (s) 102.1 1, 4a, 6, 7, 8a,
8a - 129.6
9 5.20 (dq, 7.0, 6.7) 60.6 5, 7, 10
10 1.41 (d, 6.7) 21.7 6, 9
11 3.92 (s) 56.2 7
1′ - 178.7
2′ - 160.7
3′ 6.24 (s) 109.3 1′, 2′, 4′, 4a’
4′ - 190.3

4a′ - 108.3
5′ - 160.2
6′ - 126.8
7′ - 162.5
8′ 7.12 (s) 102.9 1′, 4a’, 6′, 7′, 8a’

8a′ - 130.0
9′ 4.80 (q, 7.0) 27.5 2, 4, 5′, 7′

10′ 1.60 (d, 7.0) 17.6 3, 6′, 9′

11′ 3.86 (s) 56.3 7′

12′ 3.86 (s) 56.8 2′

2-OH 10.89 (br s) -
5-OH 13.38 (br s) -
9-OH 4.61 (d, 7.0) - 9, 10
5′-OH 12.95 (s) -

a Data recorded at 500 MHz. b Data recorded at 125 MHz.
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The antimicrobial activity of 1–3 and 5 was evaluated against a panel of Gram-positive
(methicillin-resistant S. aureus) and Gram-negative (Pseudomonas aeruginosa, E. coli, K.
pneumoniae and Acinetobacter baumanii) bacteria and two fungal strains (Candida albicans
and Cryptococcus neoformans) (Table 2). The antimicrobial activity of pramanicin A (4) was
not investigated in the present study due to lack of sample; however, the antifungal activity
of the natural product has been previously reported [15]. Both neofusnaphthoquinone
B (1) and monomer 2 exhibited activity against MRSA with 1 exhibiting more potent
activity than 2. Interestingly, during initial ZOI screening, ICMP 21498 (see supporting
information) appears equally potent against both S. aureus and E. coli isolates; however,
this indiscriminate killing does not appear to have persisted past extraction. It is, therefore,
a possibility that several compounds may be responsible for the antibacterial activity of
ICMP 21498 and the other compound(s) were not extracted.
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Table 2. Antimicrobial and antifungal activities of 1–3 and 5.

Compound
MIC (µg/mL)

S. a a P. a b E. c c K. p d A. b e C. a f C. n g

1 16 >32 h >32 h >32 h >32 h >32 h >32 h

2 16 >32 h >32 h >32 h >32 h >32 h >32 h

3 >32 h >32 h >32 h >32 h >32 h >32 h >32 h

5 >32 h >32 h >32 h >32 h >32 h >32 h >32 h

All values are presented as the mean (n = 2). a Staphylococcus aureus ATCC 43300 (MRSA) with vancomycin
(MIC 1 µg/mL) used as a positive control; b Pseudomonas aeruginosa ATCC 27853 with colistin (MIC 0.25 µg/mL);
c Escherichia coli ATCC 25922 with colistin (MIC 0.125 µg/mL); d Klebsiella pneumoniae ATCC 700603 with colistin
(MIC 0.25 µg/mL) as a positive control; e Acinetobacter baumanii ATCC 19606 with colistin (MIC 0.25 µg/mL)
as a positive control; f Candida albicans ATCC 90028 with fluconazole (MIC 0.125 µg/mL) as a positive control;
g Cryptococcus neoformans ATCC 208821 with fluconazole (MIC 8 µg/mL) as a positive control; h not active at a
single dose test of 32 µg/mL.

Both natural products 1 and 2 were also screened for cytotoxicity against human
embryonic kidney cells (HEK293) and red blood cell haemolytic properties (Table 3). No
cytotoxicity or haemolytic activity was observed for both 1 and 2, which, combined with
the moderate antimicrobial activity against MRSA, makes these compounds of interest.

Table 3. Cytotoxicity and haemolytic properties of 1 and 2.

Compound HEK-293 a CC50 (µg/mL) HC10 (µg/mL) b

1 >32 c >32 c

2 >32 c >32 c

All values presented as the mean (n = 2). a Concentration of compound at 50% cytotoxicity on HEK293 human
embryonic kidney cells. Tamoxifen was the positive control (IC50 9 µg/mL, 24 µM); b concentration of compound
at 10% haemolytic activity on human red blood cells. Melittin was the positive control (HC10 2.7 µg/mL); c not
active at a single dose test of 32 µg/mL.

3. Materials and Methods
3.1. General Experimental Procedures

Melting points were measured on a Reichert melting point apparatus (Reichert, Vienna,
Austria). Infrared spectra were recorded on a Perkin Elmer Spectrum 100 Fourier Transform
infrared spectrometer (PerkinElmer, Boston, MA, USA) equipped with a universal ATR
accessory. Vmax are expressed with units of cm−1. Ultraviolet-visible spectra were acquired
using a UV-2101 PC UV-Vis scanning Shimadzu spectrophotometer (Shimadzu, Kyoto,
Japan) with a pair of 1 cm path length rectangular quartz cuvettes (3 mL, type 3) to
measure λmax and log ε expressed in units of nm. NMR spectra were recorded using
a Bruker Avance DRX-400 spectrometer or an Avance III-HD 500 spectrometer (Bruker,
Karlsruhe, Germany) operating at 400 or 500 MHz for 1H nuclei and 100 or 125 MHz for
13C nuclei utilizing standard pulse sequences at 298 K. Chemical shifts are expressed in
parts per million (ppm) relative to the residual non-deuterated solvent in 1H-NMR and
to deuterated solvent in 13C-NMR (CD3OD: δH 3.31, δC 49.0; DMSO-d6: δH 2.50, δC 39.52).
For 1H-NMR, the data are quoted as position (δ), relative integral, multiplicity (s = singlet,
d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dq = doublet of quartets,
m = multiplet, br = broad), coupling constant (J, Hz) and assignment of the atom. The
13C-NMR data are quoted as position (δ) and assignment of the atom. High resolution mass
spectra were recorded on a Bruker micrOTOF QII (Bruker Daltonics, Bremen, Germany).
Analytical thin layer chromatography (TLC) was carried out on 0.2 mm thick plates of
DC-plastikfolien Kieselgel 60 F254 (Merck, Munich, Germany). Reversed-phase column
chromatography was carried out on C8 support with a pore size of 40–63 µm (Merck,
Munich, Germany). Gel filtration chromatography was carried out on Sephadex LH-20
(Pharmacia). Flash chromatography was carried out on Diol-bonded silica with a pore
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size of 40–63 microns (Merck, Munich, Germany). Analytical reversed-phase HPLC was
run on a Dionex UltiMate 3000RS system (Waltham, MA, USA) using a C8 column (3 µm
Econosphere Rocket, 7 × 33 mm) (Grace, Columbia, MA, USA) and eluting with a linear
gradient of H2O (0.05% TFA) to MeCN over 20 min at 2 mL/min. All solvents used were
of analytical grade or better and/or purified according to standard procedures. Chemical
reagents used were purchased from standard chemical suppliers and used as purchased.

3.2. Fungal Material

The ascomycete fungus Neofusicoccum australe (ICMP 21498) was isolated from dis-
eased grapevines in New Zealand [16]. The isolate was identified based on a match of the
sequence of the fungal barcode locus ITS (GenBank: MT107904) to reference specimens.

3.3. Fermentation, Extraction and Isolation

Cultures of Neofusicoccum australe were grown on forty-two PDA plates at room
temperature for 3 weeks and freeze-dried. The dry cultures (23.74 g, dry weight) were
extracted with MeOH (2 × 800 mL) for 4 h followed CH2Cl2 (800 mL) overnight. Concen-
tration of the combined organic extracts under reduced pressure afforded an orange oil
(1.69 g). The crude extract was subjected to C8 reversed-phase column chromatography
eluting with gradient H2O/MeOH to afford five fractions (F1–F5). Purification of F3 (3:1,
H2O/MeOH) by Sephadex LH20 (MeOH) afforded 4-hydroxyscytalone (5) (4.60 mg). F4
and F5 were combined and purified by Sephadex LH20 (MeOH) to afford four fractions
(A1–A4). Further purification of A4 by diol-bonded silica gel column chromatography
(gradient n-hexane/EtOAc) afforded 8 fractions (B1–B8). Fraction B2 was triturated with
CH2Cl2 to give 6-(1-ethyl)-2,7-dimethoxyjugalone (3) (2.18 mg) as an orange solid. Frac-
tions B3 and B4 were subjected to diol-bonded silica gel column chromatography (gradient
n-hexane/EtOAc) to afford 6-(1-hydroxyethyl)-2,7-dimethoxyjugalone (2) (1.05 mg) as an
orange solid. Fraction B7 was triturated with CH2Cl2 to afford neofusnaphthoquinone B
(1) (5.30 mg) as an orange solid. Fraction B8 afforded pramanicin A as a pale orange solid
(4) (0.90 mg).

Neofusnaphthoquinone B (1): orange solid; [α]D
21 = 0.0 (c = 0.09, CH2Cl2); UV (MeOH)

λmax [log ε] 415.5 (4.30), 312.5 (4.65), 265.0 (4.96), 219.5 (5.11), 204.0 (5.05); m.p. 213–215 ◦C;
IR (ATR) νmax 3374, 2918, 2851, 1625, 1610, 1586, 1346, 1306, 1243, 1210, 1111, 857, 789 cm−1;
1H-NMR (DMSO-d6, 500 MHz) δ 12.95 (1H, s, 5′-OH), 10.89 (1H, br s, 2-OH), 7.12 (1H, s,
H-8′), 7.11 (1H, s, H-8), 6.24 (1H, s, H-3′), 5.20 (1H, dq, J = 7.0, 6.7 Hz, H-9), 4.80 (1H, q,
J = 7.0 Hz, H-9′), 4.61 (1H, d, J = 7.0 Hz, 9-OH), 3.92 (3H, s, H3-11), 3.86 (6H, s, H3-11′,
H3-12′), 1.60 (3H, d, J = 7.0 Hz, H3-10′), 1.41 (3H, d, J = 6.7 Hz, H3-10); 13C-NMR (DMSO-d6,
125 MHz) δ 190.3 (C-4′), 189.9 (C-4), 180.7 (C-1), 178.7 (C-1′), 162.5 (C-7′), 161.3 (C-7), 160.7
(C-2′), 160.2 (C-5′), 159.7 (C-5), 159.6 (C-2), 130.0 (C-8a’), 129.6 (C-8a), 126.8 (C-6′), 126.6
(C-6), 123.5 (C-3), 109.3 (C-3′), 108.6 (C-4a), 108.3 (C-4a’), 102.9 (C-8′), 102.1 (C-8), 60.6 (C-9),
56.8 (C-12′), 56.3 (C-11′), 56.2 (C-11), 27.5 (C-9′), 21.7 (C-10), 17.6 (C-10′); (+)-HRESIMS m/z
547.1203 [M + Na]+ (calcd. for C27H24NaO11, 547.1211).

6-(1-Hydroxyethyl)-2,7-dimethoxyjugalone (2): orange solid; [α]D
23 = 0.0 (c = 0.07, CH2Cl2)

(lit optically inactive [10]); m.p. 202–204 ◦C (lit 201–204 ◦C [10]); 1H-NMR (CD3OD,
400 MHz) δ 7.26 (1H, s, H-8), 6.15 (1H, s, H-3), 5.38 (1H, q, J = 7.2 Hz, H-9), 3.93 (3H,
s, H3-11), 3.91 (3H, s, H3-12), 1.72 (3H, t, J = 7.2 Hz, H3-10); (+)-HRESIMS m/z 301.0687
[M + Na]+ (calcd. for C14H14NaO6, 301.0680).

6-(1-Ethyl)-2,7-dimethoxyjugalone (3): orange solid; m.p. 187–189 ◦C (lit 186–188 ◦C [10]);
1H NMR (CD3OD, 400 MHz) δ 7.30 (1H, s, H-8), 6.18 (1H, s, H-3), 4.00 (3H, s, H3-11), 3.93
(3H, s, H3-12), 2.76 (2H, q, J = 7.3 Hz, H2-9), 1.13 (3H, t, J = 7.3 Hz, H3-10); 13C-NMR
(CD3OD, 100 MHz) δ 191.7 (C-4), 180.8 (C-1), 163.7 (C-7), 162.3 (C-2), 161.3 (C-5), 131.5
(C-8a), 128.0 (C-6), 110.3 (C-4a), 110.2 (C-3), 103.4 (C-8), 57.2 (C-12), 56.6 (C-11), 17.0 (C-1′),
13.2 (C-2′); (+)-HRESIMS m/z 285.0729 [M + Na]+ (calcd. for C14H14NaO5, 285.0733).

Pramanicin A (4): pale orange solid; [α]D
20 = −35 (c = 0.09, MeOH) (lit [α]D

25 = −35
(c = 0.21, MeOH) [15]); m.p. 112–114 ◦C (lit 110–113 ◦C [15]); 1H-NMR (CD3OD, 400 MHz)
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δ 7.30–7.24 (1H, m, H-9), 6.73 (1H, d, J = 15.2 Hz, H-8), 6.31–6.28 (2H, m, H-10, H-11),
4.14 (1H, d, J = 6.6 Hz, H-4), 3.80 (1H, dd, J = 11.0, 2.4 Hz, H2-6A), 3.54 (1H, dd, J = 11.0,
5.5 Hz, H2-6B), 3.50 (1H, dd, J = 5.5, 2.4 Hz, H-3), 2.23–2.18 (2H, m, H2-12), 1.47–1.42
(2H, m, H2-13), 1.32–1.26 (12H, m, H2-14, H2-15, H2-16, H2-17, H2-18, H2-19), 0.89 (3H,
t, J = 6.6 Hz, H3-20); 13C-NMR (CD3OD, 100 MHz) δ 198.8 (C-7), 175.3 (C-2), 148.7 (C-
11), 145.6 (C-9), 130.5 (C-10), 124.2 (C-8), 88.1 (C-3), 79.0 (C-4), 62.1 (C-6), 60.4 (C-5), 34.2
(C-12), 33.1 (C-18), 30.7 (C-14/C-15/C-16/C-17), 30.6 (C-14/C-15/C-16/C-17), 30.5 (C-
14/C-15/C-16/C-17), 30.3 (C-14/C-15/C-16/C-17), 29.9 (C-13), 23.7 (C-19), 14.5 (C-20) [1H
and 13C-NMR data agreed with the literature [11]]; (+)-HRESIMS m/z 376.2077 [M + Na]+

(calcd. for C19H31NNaO5, 376.2090).
(3S,4S)-4-Hydroxyscytalone (5): colourless gum; [α]D

20 = +43.4 (c = 0.03, MeOH) (lit
[α]D

26 = +57.92 (c 0.07, MeOH) [8]); 1H-NMR (CD3OD, 400 MHz) δ 6.62 (1H, d, J = 2.4 Hz,
H-5), 6.18 (1H, d, J = 2.4 Hz, H-7), 4.50 (1H, d, J = 7.4 Hz, H-4), 4.00–3.96 (1H, m, H-3), 2.96
(1H, dd, J = 17.0, 4.3 Hz, H2-2A), 2.63 (1H, dd, J = 17.0, 8.8 Hz, H2-2B); 13C-NMR (CD3OD,
100 MHz) δ 201.2 (C-1), 167.8 (C-8), 166.4 (C-6), 148.4 (C-4a), 110.2 (C-8a), 108.7 (C-5), 102.6
(C-7), 73.7 (C-4), 71.8 (C-3), 44.3 (C-2); (+)-HRESIMS m/z 233.0424 [M + Na]+ (calcd. for
C10H10NaO5, 233.0420).

3.4. Antimicrobial Activity of Fungal Cultures

Pre-screening of the ICMP fungal cultures for antimicrobial activity involves briefly
growing the cultures on potato dextrose agar (PDA) before small wells are cut into the
agar and each well inoculated with 5 × 106 colony forming units of luciferase-tagged
derivatives of Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. The cultures
are incubated, and the inhibitory activity of the ICMP isolates monitored by the extent of
reduction in bacterial light production compared to bacteria isolated with no fungus.

3.5. Antimicrobial Testing of Extracts

Dry samples of extracts were dissolved in DMSO to make a 25 mg/mL solution
and then further diluted into Mueller Hinton broth II (MHB) to achieve a maximum
concentration of 2 mg/mL. Each extract (200 µL) was added to two adjacent wells along the
top of the 96-well plate (Thermo Fisher, NUN167008, Waltham, MA, USA). MHB (100 µL)
was then added to the remaining wells and extract solution (100 µL) serially diluted two-
fold down the plate and discarded. Aliquots of bacteria, S. aureus ATCC 29213 and E. coli
ATCC 25922, at an optical density at 600 nm of 0.01 (approximately 1 × 106 colony forming
units (CFU)/mL) were then added to all the wells. This gave a maximum concentration of
1 mg/mL and a minimum concentration of 16 µg/mL. The maximum volume/volume
concentration of DMSO in all extracts was 4%; therefore, the negative control was tested at
an identical concentration.

Absorbance was measured at 600 nm using an Enspire plate reader (Perkin Elmer,
MA, USA) at 0, 2, 4 and 20 h to determine the minimum inhibitory concentration (MIC),
between which times the plates were incubated at 37 ◦C with shaking at 100 rpm. After
20 h, 10 µL of liquid from all wells showing inhibition of bacterial growth was pipetted
onto a plate of MH agar. Once all liquid had evaporated, the plates were then incubated
inverted at 37 ◦C for 16–20 h, and the minimum bactericidal concentration (MBC) was
measured [5,17].

3.6. Antimicrobial Assays of Pure Compounds

Bacterial strains (S. aureus ATCC 43300 (MRSA), E. coli ATCC 25922, P. aeruginosa
ATCC 27853, Klebsiella pneumoniae ATCC 700603, Acinetobacter baumannii ATCC 19606) were
cultured in either Luria broth (LB) (In Vitro Technologies, USB75852, Victoria, Australia),
nutrient broth (NB) (Becton Dickson, 234,000, New South Wales, Australia) or MHB at
37 ◦C overnight [5,18]. A sample of culture was then diluted 40-fold in fresh MHB and
incubated at 37 ◦C for 1.5−2 h. The compounds were serially diluted 2-fold across the
wells of 96-well plates (Corning 3641, nonbinding surface), with compound concentrations
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ranging from 0.015 to 64 µg/mL, plated in duplicate. The resultant mid log phase cultures
were diluted to the final concentration of 1 × 106 CFU/mL; then, 50 µL was added to each
well of the compound containing plates, giving a final compound concentration range of
0.008–32 µg/mL and a cell density of 5 × 105 CFU/mL. All plates were then covered and
incubated at 37 ◦C for 18 h. Resazurin was added at 0.001% final concentration to each well
and incubated for 2 h before MICs were read by eye.

Fungi strains (Candida albicans ATCC 90028 and Cryptococcus neoformans ATCC 208821)
were cultured for 3 days on YPD agar at 30 ◦C. A yeast suspension of 1× 106 to 5× 106 CFU/mL
was prepared from five colonies. These stock suspensions were diluted with yeast nitrogen
base (YNB) (Becton Dickinson, 233,520, New South Wales, Australia) broth to a final con-
centration of 2.5 × 103 CFU/mL. The compounds were serially diluted 2-fold across the
wells of 96-well plates (Corning 3641, nonbinding surface), with compound concentrations
ranging from 0.015 to 64 µg/mL and final volumes of 50 µL, plated in duplicate. Then,
50 µL of a previously prepared fungi suspension, in YNB broth to the final concentration of
2.5 × 103 CFU/mL, was added to each well of the compound-containing plates, giving a fi-
nal compound concentration range of 0.008–32 µg/mL. Plates were covered and incubated
at 35 ◦C for 36 h without shaking. C. albicans MICs were determined by measuring the
absorbance at OD530. For C. neoformans, resazurin was added at 0.006% final concentration
to each well and incubated for a further 3 h before MICs were determined by measuring
the absorbance at OD570–600.

Colistin and vancomycin were used as positive bacterial inhibitor standards for Gram-
negative and Gram-positive bacteria, respectively. Fluconazole was used as a positive
fungal inhibitor standard for C. albicans and C. neoformans. The antibiotics were provided
in 4 concentrations, with 2 above and 2 below their MIC value, and plated into the first
8 wells of Column 23 of the 384-well NBS plates. The quality control (QC) of the assays was
determined by the antimicrobial controls and the Z’-factor (using positive and negative
controls). Each plate was deemed to fulfil the quality criteria (pass QC), if the Z’-factor
was above 0.4, and the antimicrobial standards showed full range of activity, with full
growth inhibition at their highest concentration, and no growth inhibition at their lowest
concentration [5,18].

3.7. Cytotoxicity Assays

To a 384-well plate containing the 25× (2 µL) concentrated compounds, HEK-293
cells, counted manually in a Neubauer haemocytometer, were plated at a density of
5000 cells/well into each well [18,19]. The medium used was Dulbecco’s modified eagle
medium (DMEM) supplemented with 10% fetal bovine serum (FBS). Cells were incubated
together with the compounds for 20 h at 37 ◦C, 5% CO2. Resazurin (5 µL (equals 100 µM
final)) was then added to each well and incubated for further 3 h at 37 ◦C with 5% CO2. Af-
ter final incubation, fluorescence intensity was measured as Fex 560/10 nm, em 590/10 nm
(F560/590) using a Tecan M1000 Pro monochromator plate reader. CC50 values (concentra-
tion at 50% cytotoxicity) were calculated by normalizing the fluorescence readout, with
74 µg/mL tamoxifen as negative control (0%) and normal cell growth as positive control
(100%). The concentration-dependent percentage cytotoxicity was fitted to a dose–response
function (using Pipeline Pilot) and CC50 values determined [18,19].

3.8. Haemolytic Assay

Human whole blood was washed three times with 3 volumes of 0.9% NaCl and then
resuspended in the same solution to a concentration of 0.5 × 108 cells/mL, as determined
by manual cell count in a Neubauer haemocytometer. The washed cells were then added
to the 384-well compound-containing plates for a final volume of 50 µL. After a 10 min
shake on a plate shaker, the plates were then incubated for 1 h at 37 ◦C. The plates were
then centrifuged at 1000 g for 10 min to pellet cells and debris; 25 µL of the supernatant
was then transferred to a polystyrene 384-well assay plate. Haemolysis was determined
by measuring the supernatant absorbance at 405 mm (OD405) using a Tecan M1000 Pro
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monochromator plate reader. HC10 and HC50 (concentration at 10% and 50% haemolysis,
respectively) were calculated by curve fitting the inhibition values vs. log(concentration)
using a sigmoidal dose–response function with variable fitting values for top, bottom and
slope [18,19].

4. Conclusions

A new unsymmetrical naphthoquinone dimer 1 was isolated from the organic ex-
tract of the mangrove endophytic fungus Neofusicoccum australe along with four other
known natural products. Neofusnaphthoquinone B (1) exhibited moderate activity against
methicillin-resistant Staphylococcus aureus (MRSA) with no detectable cytotoxicity or red
blood cell haemolytic properties. These results identify 1 as a suitable candidate worthy of
further investigation in antimicrobial drug discovery.

Supplementary Materials: The following are available online. The 1H (Figure S1), 13C (Figure S2),
COSY (Figure S3), HSQC (Figure S4), HMBC (Figure S5) and ROESY (Figure S6) NMR spectra,
HRESIMS (Figure S7) and HPLC trace (Figure S8) for neofusnaphthoquinone B (1) and initial
antibacterial screening results from zone of inhibition assays (Figure S9).
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