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Abstract

In the fetal mouse testis, PIWI Interacting RNAs (piRNAs) guide PIWI proteins to silence 

transposons, but after birth, most post-pubertal pachytene piRNAs map to the genome uniquely 

and are thought to regulate genes required for male fertility. In human males, the developmental 

classes, precise genomic origins, and transcriptional regulation of post-natal piRNAs remain 

undefined. Here, we demarcate the genes and transcripts that produce post-natal piRNAs in human 

juvenile and adult testes. As in mouse, human A-MYB drives transcription of both pachytene 

piRNA precursor transcripts and the mRNAs encoding piRNA biogenesis factors. Although 

human piRNA genes are syntenic to those in other placental mammals, their sequences are poorly 

conserved. In fact, pachytene piRNA loci are rapidly diverging even among modern humans. Our 

findings suggest that during mammalian evolution, pachytene piRNA genes are under few 

selective constraints. We speculate that pachytene piRNA diversity may provide a hitherto 

unrecognized driver of reproductive isolation.
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In animal germ cells, PIWI-interacting RNAs (piRNAs) guide PIWI proteins to silence 

transposons, maintain genome integrity, and promote fertility. Unlike microRNAs or small 

interfering RNAs, piRNAs are processed from long single-stranded precursor transcripts and 

have 2′-O-methyl-modified 3′ termini1–5. Transposon and viral silencing is likely the 

ancestral role of piRNAs6–9, and, in the mouse fetal testis, piRNAs silence active 

transposons10,11. Unlike other animals, placental mammals also produce abundant piRNAs 

from transposon-depleted, unique non-coding sequences transcribed by RNA polymerase II 

(RNAP II)1,2,12–17. In mice, mutations in the proteins required to make these “pachytene” 

piRNAs lead to male sterility, but loss of piRNAs from individual loci rarely has a 

consequence15,18,19.

Immediately after birth, mouse germ cells produce 26–27 nt long, MILI bound, pre-

pachytene piRNAs derived from the coding sequences or 3′ untranslated regions (3′ UTRs) 

of mRNAs1,10–12,14,20. At the onset of the pachytene stage of meiosis, the transcription 

factor A-MYB induces pachytene piRNA precursor transcription, and pachytene piRNAs 

largely replace pre-pachytene piRNAs, coming to account for ~95% of all piRNAs in the 

adult mouse testis14. A-MYB drives the coordinated transcription of ~100 pachytene piRNA 

genes, as well as genes encoding proteins required for pachytene piRNA production, cell 

cycle progression and meiosis14,21. Genes activated by A-MYB include A-Myb itself and 

Miwi, which binds 30 nt pachytene piRNAs2,14,20. A-MYB also maintains MILI expression 

in pachytene spermatocytes; ~84% of pachytene piRNAs are bound to MIWI and ~16% to 

MILI14,20.

Human piRNA-producing loci have been roughly mapped using piRNA sequences1,2,22,23, 

but the classes, precise genomic locations, or transcription factors regulating human piRNA 

loci remain unknown. Here, we use 5′ methyl-guanosine cap sequencing (Cap-seq), poly(A) 

site-sequencing (PAS-seq), and chromatin immunoprecipitation (ChIP) of histone H3 

trimethylated on lysine 4 (H3K4me3) to define the juvenile and adult piRNA-producing 

genes and transcripts in human testis. As in mouse, human pre-pachytene piRNAs mainly 

derive from mRNA coding sequences or 3′ UTRs, whereas pachytene piRNAs derive from 

long non-coding RNAs, often divergently transcribed from a central promoter. Interestingly, 

ChIP data suggest that A-MYB coordinates the transcription of ~55% of human pachytene 

piRNA-producing genes and macaque piRNA-producing genes. A-MYB also binds the 

promoters of ~74% of genes encoding piRNA biogenesis proteins in macaques but only 

~30% in humans. One-third of human pachytene piRNA-producing genes can be found at 

the syntenic location in the genomes of other Eutherian mammals; half are restricted to 

primates; ~18% are human-specific. While pachytene piRNA gene promoters are well 

conserved, piRNA sequences themselves have diverged rapidly among placental mammals. 

Moreover, the sequences of pachytene piRNAs vary within the human population more than 

any other genomic feature. We speculate that pachytene piRNA diversity may provide a 

hitherto unrecognized driver of Eutherian reproductive isolation.
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Results

Three classes of piRNA-producing loci in post-natal human testis

To begin to classify the piRNAs produced during human spermatogenesis, we used strand-

specific RNA sequencing to assemble the RNA transcripts and small (25–31 nt) RNA 

sequencing to define the piRNA repertoire of the post-natal human testis (Supplementary 

Table 1). De novo assembly identified 306,503 mRNA and long non-coding RNA (lncRNA) 

transcripts mapping to 125,526 discrete genomic loci (Extended Data 1a). Mapping the 

piRNA sequences from one juvenile and seven adult testes to the testis transcriptome 

identified 9,891 piRNA-producing transcripts corresponding to 724 genomic loci. 

Comparing the juvenile and adult abundance of piRNAs from each of these loci revealed 

three distinct classes of temporal expression (Extended Data 1b): (1) 618 loci (9,065 

transcripts) whose piRNAs changed <2-fold between juvenile and adult samples, consistent 

with little or no change in piRNA concentration14; (2) 10 loci (147 transcripts) whose 

piRNA abundance increased ≥2-fold but less than 4-fold in adult testis; and (3) 96 loci (679 

transcripts) whose piRNA abundance in adult was ≥4-fold higher than in juvenile. These 

three classes of human piRNA-producing loci are analogous to the three well-defined 

piRNA types in the mouse post-natal testis: pre-pachytene, hybrid, and pachytene14.

To polish our annotations, we manually curated the annotations for the 100 most abundant 

pre-pachytene loci and all 10 hybrid and 96 pachytene loci. We removed 17 pre-pachytene 

and seven pachytene loci that overlapped with small nucleolar RNAs or had unusually long 

transcripts likely generated by transcript assembly errors. The resulting 182 loci—83 pre-

pachytene loci, 10 hybrid, and 89 pachytene—together account for ~92% of piRNAs in the 

adult human testis (Fig. 1a). Supporting our classification of piRNAs that increase <2-fold 

from juvenile to adult, re-analysis of published RNA-seq data for purified germ cell 

subtypes24 showed that the steady-state abundance of precursor transcripts for these 83 pre-

pachytene piRNA-producing loci remained constant from quiescent spermatogonia to late 

pachytene spermatocytes. In contrast, transcript abundance for the 89 pachytene piRNA loci 

increased ~4-fold from quiescent spermatogonia (median = 5.9 rpkm) to pachytene 

spermatocytes (median = 22.7 rpkm).

To further test our set of 182 annotated piRNA-producing genes, we obtained and analyzed 

an additional two juvenile and seven adult human testes. Analysis of the abundance of 

piRNAs in these samples using our annotated 182 loci recapitulated the differential 

expression of pre-pachytene, hybrid, and pachytene piRNA genes between juvenile and 

adult (Fig. 1b and Extended Data 1c). As in mice, all human pachytene piRNA genes reside 

on autosomal chromosomes, likely because most genes on the sex chromosomes are silenced 

during meiosis25 (Extended Data 1d and Supplementary Table 2).

Of the 83 pre-pachytene piRNA loci, 75 correspond to protein-coding genes (Extended Data 

2a). Pre-pachytene piRNAs dominate the juvenile testis piRNA pool, comprising 93% of all 

piRNAs (median = 630 rpm), but just 9.5% of piRNAs in adult testis (median = 333 rpm). 

Conversely, pachytene piRNAs dominate adult piRNA production, accounting for ~90% of 

all piRNAs in adult human testes. The median abundance of piRNAs mapping to the 89 

pachytene piRNA genes was 82-fold greater in adult (931 rpm) than in juvenile testis (11 

Özata et al. Page 3

Nat Ecol Evol. Author manuscript; available in PMC 2020 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rpm). Most pachytene piRNA genes (75 of 89) reside in genomic regions that do not encode 

proteins; 35 of 89 loci are divergently transcribed from a bidirectional central promoter 

(Extended Data 2b). None of the 83 annotated pre-pachytene piRNA genes show evidence of 

bidirectional transcription. We conclude that, like mice, humans produce piRNAs from 

discrete loci that are transcribed, spliced, and processed into pachytene piRNAs when 

primary spermatocytes enter the pachytene stage of meiosis.

Human piRNA-producing loci are transcribed by RNAP II

We performed chromatin immunoprecipitation sequencing (ChIP-seq) of histone H3 

trimethylated at lysine 4 (H3K4me3), Cap-seq, and PAS-seq to curate the location of 

transcription start sites (TSS) and transcript 3′ ends for the 182 piRNA-producing loci 

(Extended Data 3a). As in mice, canonical RNAP II transcription generates human piRNA 

precursors: in human post-natal testes, pre-pachytene, hybrid, and pachytene piRNA 

precursor transcripts contained 5′ caps and 3′ poly(A) tails (Extended Data 3a and 3b). 

Moreover, human piRNAs derive from spliced transcripts (Extended Data 3c): median 

piRNA density within the exons of pre-pachytene piRNA genes (26 rpkm) was 65-fold 

higher than in introns (0.4 rpkm), and median piRNA density within the exons of the 

pachytene piRNA genes (260 rpkm) was 144-fold greater than that of the introns (1.8 rpkm).

The 182 piRNA-producing loci defined here account for >2 million distinct piRNA species 

in adult and ~0.7 million in juvenile testis. Previous annotations of human piRNA-producing 

loci relied on piRNA density2,22,23. Our annotations, based on piRNA abundance and 

transcript and gene structure, represent fewer genomic base pairs (2,601,201 bp), but 

account for ~92% of all uniquely mapped piRNAs with at least two reads in adult testis 

(Extended Data 4a).

Human pachytene piRNA exons are depleted of transposons

One ancestral function of piRNAs is to silence germline transposons1,2,6–8,10–12,26–28. As 

expected, the transposon content of human pre-pachytene piRNA precursors (median = 7%), 

which are typically mRNAs, resembled that of other mRNAs (Extended Data 4b). Hybrid 

(median = 20%) and pachytene (median = 28%) piRNA precursors contained more 

transposon sequence than mRNAs, but less than lncRNAs (median = 29%). Notably, the 

introns of pachytene piRNA precursors, which are removed before piRNAs are generated, 

have a transposon content (median = 41%) similar to the introns of mRNAs (median = 43%) 

and lncRNAs (median = 44%). We observed that LTR retrotransposons (14.2%) were more 

prevalent within pachytene piRNA genes than other classes of transposable elements 

(Extended Data 4c). However, LINE elements were particularly depleted from the pre-

pachytene piRNA genes, suggesting selection against insertion of LINE elements into 

coding sequences (Extended Data 4c). The depletion of transposon sequences from the 

exons of pachytene piRNA genes suggests that these piRNAs have functions beyond 

transposon silencing.

Further supporting this idea, transposons in the exons of human pachytene piRNA genes 

have greater divergence rates (average divergence rate = 0.193) than transposons in pre-

pachytene piRNA genes (0.176) or transposons across the genome as a whole (average 
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divergence rate = 0.186). Because older transposons experience greater sequence drift than 

young, active transposons, we conclude that the transposons in the exons of pachytene 

piRNA-producing loci are, on average, older than those in pre-pachytene piRNAs or the 

genome as a whole. Older transposons are less likely to be active, consistent with the idea 

that the primary function of pachytene piRNAs is to regulate gene expression rather than to 

silence transposons.

A-MYB regulates human pachytene piRNA production

In mice, the transcription factor A-MYB (MYBL1) drives the expression of most pachytene 

piRNA loci and many mRNAs that encode piRNA biogenesis factors14,21. To test whether 

A-MYB regulates pachytene piRNA production in humans, we performed A-MYB ChIP-seq 

from adult human testis (Fig. 1a). A-MYB peaks (FDR <0.05) were located within 500 bp of 

the transcription start sites of 655 genes (Supplementary Table 3), including 49 pachytene 

piRNA genes (16 bidirectional, 33 unidirectional; ~55% of all pachytene piRNA genes; Fig. 

1a and Extended Data 2b). The median distance from pachytene piRNA transcription start 

sites to the nearest A-MYB peak was 0 bp (Fig. 1c). We used ChIP-seq of H3K4me3 to map 

the promoters of the 182 pre-pachytene, hybrid, and pachytene piRNA-producing loci 

(Extended Data 3a). All 49 pachytene piRNA gene promoters bound by A-MYB were 

enriched for the canonical A-MYB-binding motif, CAGTT, beneath the ChIP-seq peak (E = 

1 × 10−44; Fig. 1d). Human A-MYB also bound the promoters of HIWI, HENMT1, HILI2, 

DDX39A, and FKBP6, all genes encoding proteins required for piRNA production, as well 

the A-MYB promoter itself (Fig. 1d and Supplementary Table 3). Unlike mice, where A-

MYB binds the promoters of 99% of pachytene piRNA genes and 95% of known piRNA 

biogenesis protein genes14, the promoters of ~45% of human pachytene piRNA-producing 

genes and 70% of genes encoding proteins known to participate in piRNA biogenesis were 

not bound by A-MYB. Accordingly, the promoters of ~45% of human pachytene piRNA 

genes lack an identifiable A-MYB-binding motif, compared to just 11% in mice. (Similar 

numbers of piRNA biogenesis genes lack an A-MYB-binding motif in both humans and 

mice.) Thus, additional transcription factors may be required to coordinate transcription of 

human pachytene piRNA precursors and biogenesis factors.

To test the idea that additional transcription factors may act with A-MYB to drive pachytene 

piRNA production, we sequenced piRNAs from purified spermatogonia and primary 

spermatocytes from mice homozygous for the A-Mybrepro9 mutation21, in which a point 

mutation within exon 6 leads to alternative splicing that truncates the A-Myb mRNA 

(Extended Data 5a). For comparison, we sequenced the piRNAs in primary spermatocytes of 

Miwi−/− mutant mice, which lack the 30 nt pachytene piRNAs normally bound to MIWI but 

retain the 26–27 nt pachytene piRNAs associated with MILI1,10–12. Overall pachytene 

piRNA abundance in A-Mybrepro9 primary spermatocytes was reduced ~25-fold (median = 

112 rpm) compared to wild-type primary spermatocytes (median = 2801 rpm). Nonetheless, 

pachytene piRNA abundance was 2.1-fold greater in A-Mybrepro9 mutant primary 

spermatocytes than in mutant spermatogonia (median = 53 rpm), suggesting that even 

without A-MYB, some pachytene piRNA loci are transcriptionally activated as 

spermatogonia differentiate into primary spermatocytes (Extended Data 5b). The abundance 

of MIWI-bound, 30-nt piRNAs increased just 1.8-fold in A-Mybrepro9 primary 
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spermatocytes (median = 16 rpm vs. 9 rpm for spermatogonia), whereas the abundance of 

MILI-bound, 26–27-nt piRNAs increased 2.6-fold in mutant primary spermatocytes (median 

= 45 rpm vs. 17 rpm). This likely reflects the 50-fold reduced transcription of Miwi in A-
Mybrepro9 (Ref. 14), making less MIWI available for piRNA loading. We conclude that in 

both mice and humans, the regulation of pachytene piRNA transcription involves additional 

factors beyond A-MYB.

Pachytene piRNA precursor expression defines three groups of adult testis samples

Unsupervised hierarchical clustering of the transcriptomes (Fig. 2a) of all 14 adult samples 

revealed three groups with distinct patterns of pachytene piRNA abundance (Fig. 2b) or 

modal piRNA length (Extended Data 6a). Group 1 testes had the most pachytene piRNAs 

(median = 1924 rpm) compared to group 2 (median = 971 rpm) or group 3 (median = 395 

rpm). Median piRNA abundance in the juvenile samples was 14 rpm. While 30 nt piRNAs 

predominated in group 1 (median of average piRNA length = 28.2 nt), group 2 testes 

contained fewer 30 nt and more 26 nt piRNAs (median of average piRNA length = 27.5). 

Group 3 testes contain few 30 nt piRNAs (median of average piRNA length = 27.2), even 

though they are from post-pubertal men (Extended Data 6a). Group 3 had ~2.1-fold more 

26–27 nt pre-pachytene piRNAs and ~4.5-fold fewer 30 nt pachytene piRNAs than group 1, 

while group 2 had twice as many 26–27 nt pre-pachytene piRNAs and half as many 

pachytene piRNAs as group 1 (Fig. 3a). For all three groups of adult testes, piRNA precursor 

transcript abundance mirrored piRNA levels (Fig. 2c), suggesting that group 2 and group 3 

testes make fewer pachytene piRNAs at least partly because they transcribe fewer pachytene 

piRNA precursors.

Impaired A-MYB expression in Group 3 testis

Our data suggest that A-MYB drives transcription of pachytene piRNA genes, HIWI, and 

other piRNA biogenesis genes in human testis (Fig. 1a, 1c, and 1d). In addition to reduced 

piRNA precursor transcript abundance, group 2 and 3 testes showed reduced expression of 

140 genes regulated by A-MYB, including three genes encoding piRNA biogenesis proteins 

(Fig. 3b, and Supplementary Table 3), suggesting that A-MYB function might be 

compromised in these testes. Indeed, compared to group 1, A-MYB mRNA levels were 

reduced ~1.7-fold in group 2 and ~4.8-fold in group 3. Consistent with the reduced levels of 

30 nt pachytene piRNAs, HIWI mRNA levels were similarly reduced compared to group 1: 

~1.7-fold lower in group 2 and ~6.2-fold lower in group 3 (Fig. 3c). HILI mRNA abundance 

in group 3 was half that of group 1. In mice, A-MYB increases transcription of Mili14. Both 

A-MYB and HIWI protein levels were reduced in group 2 and barely detectable in group 3 

testes (Fig. 3d, and Extended Data 6b and 6c).

In addition to reduced steady-state transcript abundance for genes producing pachytene 

piRNAs and genes encoding piRNA pathway proteins, group 3 testes had a ~2.3-fold lower 

median mRNA abundance for 1,416 reproduction-related genes (median abundance = 2.5 

rpkm) compared to group 1 (median abundance = 4.4 rpkm; Fig. 3b). In contrast, the median 

mRNA abundance for 3,237 immunity-related genes was comparable among all three groups 

(Fig. 3b). Group 3 testes appear to be azoospermic. The cause of this azoospermia is not 

known; RNA sequencing did not detect non-synonymous mutations in the A-MYB or HIWI 
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coding sequences in the samples. Because information about the health of the testes donors 

is unavailable, we cannot exclude that the individuals were exposed to mutagens or 

chemotherapy toxic to the male gonad29.

Pachytene piRNA expression accompanies the progression of human spermatogenesis

The three groups of testes afforded an opportunity to examine the developmental timing of 

pachytene piRNA expression in human spermatogenesis (Extended Data 7a). All germ cell 

types were present in group 1 testes, whereas group 2 testis had disorganized seminiferous 

tubules and contained fewer primary spermatocytes as well as fewer round and elongating 

spermatids. Group 2 testis were arrested early in spermatogenesis; the most abundant group 

3 germ cells were spermatogonia adjacent to the basal lamina.

The transcript levels of 5,988 genes decreased and 2,172 increased in group 3 testes 

compared to group 1 (>2-fold change and FDR <0.001; Extended Data 7b). Among the 

RNAs with decreased abundance in group 3, 44% (2,605) corresponded to protein-coding 

genes, and these were enriched for genes involved in male reproduction (597), including 81 

genes related to meiosis and 111 genes related to cilium organization, assembly, and 

movement (Extended Data 7c). Among mRNAs with significantly increased abundance in 

group 3 testes, 22 genes were related to transposition (n = 8) or viral defense (n = 14), 

suggesting that group 3 comprises unhealthy testis samples. Therefore, we reanalyzed the 

change in expression of the 182 annotated piRNA-producing genes between juvenile and 

adult samples using only Groups 1 and 2. Analysis of the abundance of piRNAs using our 

annotated 182 genomic loci recapitulated the differential expression of pre-pachytene, 

hybrid, and pachytene piRNA genes between juvenile and healthy adult samples (Extended 

Data 8a and 8b). We conclude that as in mice, pachytene piRNA expression accompanies the 

progression of spermatogenesis through meiosis in human testis.

In mice, A-Myb and Miwi mRNAs and pachytene piRNAs appear at the onset of pachytene 

spermatocyte development14,21,30. Similarly, human group 1 testes showed strong nuclear 

localization of A-MYB in pachytene spermatocytes and cytoplasmic localization of HIWI in 

pachytene and round spermatids (Extended Data 7a), suggesting that the feedforward 

regulation of piRNA production orchestrated by A-MYB is evolutionarily conserved. A-

MYB and HIWI proteins were below the limit of detection for immunohistochemistry in 

group 2 and group 3 testes.

Feedforward regulation of piRNA production by A-MYB is conserved in macaque

A-MYB is conserved across vertebrates31,32. A-MYB ChIP-seq of Macaca mulatta (rhesus 

macaque) testis identified 18,579 genomic regions with significant A-MYB peaks (FDR 

<0.05). These include 7,209 protein-coding genes with A-MYB peaks within 500 bp 

upstream of their annotated transcription start sites (Supplementary Table 3). As in humans 

and mice, the promoters of macaque A-MYB, Macaca mulatta PIWIL1 and other piRNA 

biogenesis genes were bound by A-MYB (Fig. 4a and Supplementary Table 3). For the 12 

M. mulatta genes both known to function in piRNA production and bearing an A-MYB 

peak, the median distance between the transcription start sites and the nearest A-MYB peak 

was 0 bp (Fig. 4b).
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We used piRNA density to define 189 piRNA-producing loci in M. mulatta (Supplementary 

Table 4): A-MYB was bound to ~55% (33 protein-coding and 71 non-coding) of piRNA-

producing loci (Fig. 4c and Supplementary Table 3). Among those piRNA-producing loci 

bound by A-MYB, the median distance between the transcription start site and the nearest 

A-MYB peak was 0 bp (Fig. 4b). Fig. 4d shows an example of A-MYB occupancy on the 

promoter of a bidirectionally transcribed, non-coding, M. mulatta piRNA cluster that is 

syntenic to piRNA clusters in both humans and mice.

Human pachytene piRNA genes evolve rapidly despite conservation of their promoters

To investigate how human piRNA genes have diverged from piRNA-producing loci in other 

mammals, we used piRNA density to define the piRNA-producing loci in marmoset 

(Callithrix jacchus) and rat (Rattus norvegicus), both placental mammals; platypus 

(Ornithorhynchus anatinus), a monotreme; and gray short-tailed opossum (Monodelphis 
domestica), a marsupial. Our analyses identified 172 piRNA-producing loci in marmoset, 

124 in rat, 95 in platypus, and 207 in opossum (Supplementary Table 4). Many of these 

piRNA-producing genes appear to be non-coding: 69% (130) in macaque, 77% (133) in 

marmoset, 92% (114) in rat, 95% (89) in platypus, and 94% (194) in opossum.

Post-natal piRNA sequences are highly diverse1,2,14, suggesting that they evolve rapidly. We 

compared the conservation among 46 placental mammals of the 5′ UTRs, coding 

sequences, 3′ UTRs, and introns of protein-coding genes; the exons and introns of lncRNA 

genes; the exons and introns of piRNA-producing genes; and randomly selected, non-

transcribed sequences that do not produce piRNAs (Fig. 5a and Extended Data 9a). As 

expected, protein-coding sequences not making piRNAs were the most conserved 

transcribed feature (median phastCons score = 0.74) among 46 Eutheria (Fig. 5a and 

Extended Data 9b). Given that most human and mouse pre-pachytene piRNAs derive from 

protein-coding genes, the coding sequence of pre-pachytene genes (median phastCons score 

= 0.81) was conserved at a similar rate as the coding sequence of other protein-coding genes, 

suggesting that mRNAs are exposed to similar selective pressures regardless of whether they 

produce piRNAs (Fig. 5a and Extended Data 9b).

The promoters of human pachytene piRNA genes are far more conserved than their 

transcribed sequences (Fig. 5a; right). In fact, pachytene piRNA precursor transcripts appear 

to be among the least well conserved transcribed genomic feature we examined, including 

the exons of lncRNAs and randomly selected non-transcribed sequences (Fig. 5a and 

Extended Data 9b). Across placental mammals, the lack of DNA sequence conservation of 

nucleotides making pachytene piRNAs reflects the immense diversity of pachytene piRNA 

sequences.

Most pre-pachytene piRNA genes started producing piRNAs after the divergence of 
marsupials and placental mammals

The sequences of the 83 human pre-pachytene piRNA loci are often found at syntenic sites 

in other placental mammals: of the 74 that reside in regions of synteny in at least one other 

mammal, 55 are present at the syntenic location in not only placental mammals, but also in 

opossum, platypus, or rooster. Yet none of these 55 protein-coding genes produces piRNAs 
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in non-placental mammals or birds, suggesting that the ability to produce piRNAs from 

these mRNAs was acquired after the divergence of placental and non-placental mammals, 

~160 million years ago33. In fact, just nine of the 83 human pre-pachytene piRNA-

producing genes produce piRNAs at the syntenic location in placental mammals other than 

primates. Another 10 human pre-pachytene piRNA-producing genes generate piRNAs at the 

syntenic location only in primates (Fig. 5b and Supplementary Table 5). We currently cannot 

explain why some mRNAs produce piRNAs in humans but not in other Eutheria. We note 

that differences in mRNA abundance are unlikely to explain this phenomenon: mRNAs of 

comparable abundance often produce piRNAs in humans but not other species (Extended 

Data 10a). Extended Data 10b provides examples of genes producing pre-pachytene piRNAs 

in humans, indicating the evolutionary depth of synteny and piRNA abundance in other 

species.

Many human pachytene piRNA genes arose after primates diverged from other placental 
mammals

Among the 89 human pachytene piRNA-producing genes, 29 produce piRNAs from the 

syntenic location in both primates and at least one additional placental mammal (Figs. 5b 

and 5c, and Supplementary Table 5), suggesting that these 29 human piRNA-producing 

genes antedate the divergence of primates from other placental mammals, ~90 million years 

ago. Another 44 loci produce piRNAs from the syntenic location only in other primates. The 

remaining 16 pachytene piRNA loci produce piRNAs only in humans. The absence of these 

loci in macaque and marmoset implies that the loci are no older than ~30 million years. 

Notably, more deeply conserved human pachytene piRNA loci produce more piRNAs than 

younger loci: the abundance of pachytene piRNAs from human loci conserved in at least one 

other placental mammal (median = 5,188 rpm) was twice the abundance of piRNAs from 

loci conserved only in primates (median = 2,184 rpm) and 11-fold higher than loci unique to 

humans (median = 460 rpm) (Extended Data 10c).

Pachytene piRNA genes are highly variable among humans

Among 2,504 human genomes sequenced by the 1000 Genomes Project34, the mean 

derived-allele frequency—a measure of sequence divergence among individuals within a 

species—for human pachytene piRNA precursor exons was higher than that of any other 

transcribed feature we examined and was comparable to the derived-allele frequency of 

randomly selected, non-transcribed sequences (Fig. 6a). To further test the results of the 

derived-allele frequency analysis, we measured the nucleotide diversity (π value) at each 

nucleotide position of human piRNA genes and other transcribed features. Consistently, the 

π value of human pachytene piRNA precursor exons was higher than that of any other 

transcribed feature (Fig. 6a). Counterintuitively, loci with synteny among placental 

mammals are diverging faster than loci with synteny only among primates or loci unique to 

humans (Fig. 6a), a phenomenon typically associated with old transposons and pseudogenes, 

not genes under positive selection to retain function. In fact, loci with synteny are diverging 

faster than even randomly selected, non-transcribed sequences (Fig. 6a). Moreover, the 

exons of pachytene piRNA genes—the sources of piRNAs—were more polymorphic than 

the introns of pachytene piRNA genes, which are removed before piRNA precursors are 

processed into piRNAs (Figs. 6a and 6b). The slower divergence of pachytene piRNA 

Özata et al. Page 9

Nat Ecol Evol. Author manuscript; available in PMC 2020 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



introns likely reflects conservation of splicing signal sequences (Fig. 6b), suggesting that 

intron removal is required for piRNA processing or function.

Discussion

Here, we report the structure of the piRNA-producing genes expressed in the post-natal 

human testis. We use these data to examine the evolutionary conservation of the 

transcriptional mechanisms that regulate piRNA production and of the sequences of the 

piRNAs themselves.

A-MYB regulation is conserved across mammals

In mouse testis, pachytene piRNA genes are transcribed at the onset of the pachynema when 

the A-Myb gene is activated14,21. Three lines of evidence suggest A-MYB coordinates the 

expression and processing of pachytene piRNAs across Eutherian mammals, including 

humans. First, A-MYB protein is readily detectable in human pachytene spermatocytes but 

not spermatogonia. Second, A-MYB is bound to the promoters of many human pachytene 

piRNA genes, genes encoding piRNA biogenesis proteins, and the A-MYB promoter itself. 

Third, A-MYB binds to the promoters of macaque piRNA-producing genes, genes encoding 

piRNA biogenesis proteins, and A-MYB. Given that A-MYB regulation of piRNA-

producing genes can be detected in rooster testes14, control of piRNA production by this 

transcription factor appears to have emerged at least ~300 million years ago, in the last 

common ancestor of birds and mammals33, long before the emergence of pachytene piRNAs 

in Eutheria.

Nevertheless, A-MYB does not account for all pachytene piRNA production. At least half 

the promoters of human pachytene piRNA and macaque piRNA-producing genes are not 

occupied by A-MYB, and some pachytene piRNAs are still made in mouse or human testes 

with little or no A-MYB. The transcription of pachytene piRNA genes might therefore be 

sustained by cooperative or compensatory transcription factors that, together with A-MYB, 

ensure the burst of piRNA production at the pachytene stage of meiosis.

In Drosophilids, germline dual-strand piRNA clusters are transcribed by a non-canonical, 

heterochromatin-dependent, promoter-independent mechanism that distinguishes the 

transcription of piRNA precursors from the promoter-dependent, canonical transcription of 

mRNA6,37–40. In contrast, Eutherian pachytene piRNA genes appear to be canonical 

euchromatic transcription units regulated by A-MYB. But A-MYB also regulates 

transcription of many genes that are not sources of piRNAs, including genes required for 

meiosis and genes that encode piRNA biogenesis factors14,21. How then are pachytene 

piRNA precursor transcripts distinguished from mRNAs? What marks these genes or their 

transcripts to produce pachytene piRNAs? If the fate of a piRNA precursor transcript is 

determined by cis-acting RNA elements, these must be more complex than simply promoter 

architecture, because several mammalian pachytene piRNA genes are transcribed 

divergently from a central promoter, yet produce an mRNA or lncRNA from one arm and a 

piRNA precursor from the other14,41,42.
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Rapid evolution of pachytene piRNA-producing genes

The genomic locations and promoter sequences of many pachytene piRNA genes are 

conserved among placental mammals. Nevertheless, the transcribed sequences of the genes 

have diverged rapidly, suggesting that they are under little selective pressure. Different 

pachytene piRNA sequences emerge from syntenic pachytene piRNA genes in different 

species and presumably regulate different targets. Indeed, a mouse expressing the human pi6 
pachytene piRNA gene is male sterile because it inappropriately silences an mRNA essential 

for spermatogenesis13. We envision that rapid divergence of piRNA sequences may lead to 

acquisition of distinct set of targets during mammalian evolution.

Pachytene piRNAs are among the most variable sequences in the human population. Our 

finding that modern human pachytene piRNA loci with deeper evolutionary conservation are 

diverging more rapidly than younger loci implies that increased sequence variation plays an 

intrinsic role in piRNA function. We speculate that the sequences recognized by piRNAs in 

specific mRNAs drift in parallel with the overall drift of the pachytene piRNA sequences 

among individuals. Testes express a more complex repertoire of transcripts than other 

tissues43, allowing a large fraction of the human transcriptome to interact with pachytene 

piRNAs. In theory, such interactions might probe the compatibility of the paternal and 

maternal genomes. For example, target RNA cleavage directed by piRNAs from the paternal 

genomic haplotype could decrease the abundance of mRNA sequence variants encoded by 

the maternal genome. Such piRNA-dependent transcriptional repression may reduce or 

enhance the fitness of an individual’s sperm. We speculate that pachytene piRNA diversity 

may therefore be a hitherto unrecognized driver of Eutherian reproductive isolation.

Methods

Human tissue samples

De-identified, frozen human testis and other tissue samples included in the study were 

obtained from the University of Massachusetts Medical School Tissue and Tumor Bank 

except for two adult and two juvenile testis tissue samples that were a gift of Kyle Orwig 

(University of Pittsburg, USA). Additionally, one sample of human testis total RNA was 

from Ambion (ThermoFisher; AM7972). The maximum delay from excision of human testis 

specimens to flash freezing was ~2 h. After receiving frozen samples, they were stored at 

−80°C. Tissues were handled on dry ice. Seventeen adult and three pre-pubertal (juvenile) 

human testis samples were included in the study (Supplementary Table 1).

Mice

All mice were maintained and used according to the guidelines of the Institutional Animal 

Care and Use Committee of the University of Massachusetts Medical School. C57BL/6J 

mice (RRID: IMSR_JAX:000664) were used as wild-type controls. A-Myb mutant mice 

(B6(C3)-A-Mybrepro9/JEbfJ, IMSR Cat# JAX:027889; Ref. 21) and Miwi (B6;129-

Miwitm1Hfl/Mmmh, RRID:MMRRC_029995-MU; Ref. 30) mutant mice were genotyped as 

previously described20.
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To characterized the repro9 mutation21 residing within the exon 6 of A-Myb, we isolated 

total RNA from wild-type adult and 17 dpp testes and 14.5 dpp heterozygous and 

homozygous A-Mybrepro9 mutant testes. After oligo(dT) primed cDNA synthesis, the region 

spanning the repro9 mutation was amplified by PCR. Sanger sequencing of the amplicon 

revealed that the C-to-A Mybl1repro9 mutation creates a strong splice donor at the 5′ end of 

exon 6, leading to an out-of-frame deletion in the mRNA (Extended Data 5a).

Isolation of mouse germ cells by FACS

Germ cell sorting was performed as previously described20. In brief, isolated testes were de-

capsulated and incubated in 1× Gey′s Balanced Salt Solution (GBSS, Sigma, G9779) 

containing 0.4 mg/ml collagenase type 4 (Worthington; LS004188) for 15 min at 33°C, 

rotating at 150 rpm. The seminiferous tubules were washed twice with 1× GBSS and 

incubated with 1× GBSS containing 0.5 mg/ml Trypsin and 1 μg/ml DNase I for15 min at 

33°C, rotating at 150 rpm. After Trypsin and DNase treatment, tubules were homogenized 

on ice by gentle, repeated pipetting through a Pasteur pipette for 3 min. Thereafter, Trypsin 

was inactivated with fetal bovine serum (FBS; 7.5% f.c., v/v). The cell suspension was 

passed through a 70 μm pre-wetted cell strainer, and cells collected by centrifugation at 300 

× g at 4°C for 10 min. The pelleted cells were further resuspended in 1× GBSS containing 

5% (v/v) FBS, 1 μg/ml DNase I, and 5 μg/ml Hoechst 33342 (Thermo Fisher, 62249) and 

incubated for 45 min at 33°C, rotating at 150 rpm. Thereafter, Propidium iodide (0.2 μg/ml, 

f.c.; Thermo Fisher, P3566) was added, and cells were passed through a 40 μm pre-wetted 

cell strainer. Finally, cells were sorted at UMass Medical School FACS Core as previously 

described44.

Testis histology and immunohistochemistry

Paraffin embedded human testis tissue fixed with 4% (v/v) formaldehyde were obtained 

from the UMass Medical School Tissue and Tumor Bank or Kyle Orwig. Embedded tissues 

were sectioned at 4 μm thickness and stained with hematoxylin and eosin (H&E) by the 

UMass Medical School Morphology Core Facility.

Immunohistochemical (IHC) staining was performed using standard protocols. Briefly, testis 

sections were de-paraffinized with xylene, dehydrated with ethanol, and heated with 1 mM 

citrate buffer (pH 6.0) to retrieve antigen. Endogenous peroxidase activity was inactivated 

with 3% (w/v) hydrogen peroxide for 10 min at room temperature. Tissues were blocked 

with 5% (v/v) horse serum using ImmPRESS HRP Anti-Rabbit IgG (Peroxidase) Polymer 

Detection Kit (Vector labs; MP-7401). Sections were then incubated with rabbit anti-A-

MYB (Sigma, HPA008791; 1:400 dilution) or rabbit anti-MIWI (Abcam, ab12337; 1:400 

dilution) antibody overnight at 4°C. Secondary HRP anti-rabbit antibody (Vector labs; 

MP-7401) was applied for 1 h at room temperature, followed by incubation with substrate/

chromogen (Fisher Scientific, TA-125-QHDX). Finally, slides were counterstained with 

hematoxylin, dehydrated and sealed with a coverslip. H&E and IHC images were captured 

using a Leica DMi8 microscope.
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Western blotting

Frozen testis tissue was homogenized in RIPA buffer (25 mM Tris-HCl, pH 7.6, 150 mM 

NaCl, 1% (v/v) NP-40, 1% (w/v) sodium deoxycholate, and 0.1% (w/v) SDS) containing 1× 

E-64 protease inhibitor (Sigma; E3132). Lysed tissue was sonicated (Branson Digital 

Sonifier; 450 Cell Disruptor) to break nuclei, then samples were centrifuged at 20,000 × g 
for 30 min at 4°C. The supernatant was transferred to a new tube, and the protein 

concentration measured (Pierce BCA Protein Assay Kit; ThermoFisher; 23225). For each 

sample, 75 μg total protein was mixed with 1/3 volume loading dye (106 mM Tris-HCl, pH 

6.8, 141 mM Tris base, 2% SDS, 10% glycerol, 0.51 mM EDTA, 0.22 mM SERVA Blue G 

and 0.175 mM Phenol Red) containing 0.2 M DTT and heated at 95°C for 6 min. After 

denaturing proteins, samples were resolved by electrophoresis through a 4–20% gradient 

polyacrylamide/SDS gel (Thermo Fisher, XP04205BOX) and electro-transferred to PVDF 

membrane (Millipore, IPVH00010). The membrane was blocked (Blocking Buffer; 

Rockland Immunochemicals, MB-070) for 1 h at room temperature and incubated with 

rabbit anti-A-MYB (Sigma, HPA008791; 1:700 dilution) or rabbit anti-MIWI (Abcam, 

ab12337; 1:1000 dilution) antibody overnight at 4°C. The membrane was washed three 

times with 1× PBS-T (0.1% (v/v) Tween-20 in 1× PBS) for 30 min at room temperature and 

then incubated with secondary donkey anti-rabbit IRDye 680RD antibody (LI-COR, 926–

68073; 1:5000 dilution) for 1.5 h at room temperature. Afterwards, the membrane was 

washed three times with 1× PBS-T for 30 min at room temperature, and signal detected 

(Odyssey Infrared Imaging System; LI-COR). As a loading control, membrane was 

incubated with mouse anti-ACTIN (Santa Cruz Biotechnology, sc-47778; 1:3000 dilution) 

antibody for 2 h at room temperature and then goat anti-mouse IRDye 800RD secondary 

antibody (LI-COR, 926–32210; 1:5000 dilution) as described.

Small-RNA library construction and analysis

Total RNA was extracted from frozen human testis tissue using mirVana miRNA isolation 

kit (Thermo Fisher, AM1560). Small RNA library construction was performed as 

described45. In brief, 18–34 nt was isolated by separating total RNA by denaturing 

electrophoresis through a 15% polyacrylamide gel. To prevent microRNAs and siRNAs 

entering to the library, small RNAs were oxidized with sodium periodate (NaIO4) prior to 3′ 
adaptor ligation. The 3′ adaptor (5′-rApp NNN TGG AAT TCT CGG GTG CCA 

AGG/ddC/−3′ or 5′-rApp TGG AAT TCT CGG GTG CCA AGG/ddC/−3′; Supplementary 

Table 1) was ligated to the RNA in the presence of 50% (w/v) PEG-8000 (Rigaku, 

1008063). After 3′ ligation, ligated small RNAs (42–60 nt) were purified by denaturing 

electrophoresis (15% PAGE). Thereafter, 5′ adaptor was ligated, and libraries were 

sequenced with 79 nt single-end reads (NextSeq500; Illumina).

The 3′ adaptor sequence was removed from the reads. and those reads with PHRED score 

<5 were mapped to human genome hg19 using piPipes46 with bowtie 2.2.5 (Ref. 47) 

allowing one mismatch. We quantified the length distribution of sRNA reads by normalizing 

to genome mapping reads reported as reads per million (rpm). Juvenile sample J1 was 

sequenced twice (correlation for technical replicates: Pearson’s ρ = 0.99). Supplementary 

Table 1 reports small RNA sequencing statistics.
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Long RNA library construction and analysis

Total RNA was extracted from frozen tissues (mirVana miRNA isolation kit; Thermo Fisher, 

AM1560). Library construction was as described48 except rRNA was removed using a pool 

of antisense oligonucleotides. Briefly, 186 different antisense DNA oligonucleotides (AS 

oligos) complementary to rRNA sequences were designed and pooled (0.05 μM each;49,50). 

Total RNA (1 μg) was mixed with 1 μl pooled rRNA AS oligos in the presence of 100 mM 

Tris-HCl (pH 7.4) and 200 mM NaCl at 95°C and cooled to 22°C (−0.1°C/sec) then held at 

that temperature for 5 min. The DNA:RNA hybrids were incubated with 10 U Thermostable 

RNase H (Epicentre, H39500) in 50 mM Tris-HCl (pH 7.4), 0.1 M NaCl, and 20 mM MgCl2 

at 45°C for 30 min. Next, samples were incubated with 4 U Turbo DNase (Thermo Fisher, 

AM2238) at 37°C for 20 min, then purified with RNA Clean & Concentrator-5 (Zymo 

Research, R1015) to isolate RNA >200 nt. RNA libraries were sequenced as 79 nt paired-

end reads (NextSeq500; Illumina).

rRNA reads were removed using Bowtie 2.2.5 with default parameters47 and the remaining 

reads mapped to human genome (hg19) using STAR 2.3 (Ref. 51). Duplicate reads were 

removed using SAMtools 1.8 (Ref. 52). Finally, mapped reads were assigned to protein-

coding genes, lncRNAs, or piRNA genes using HTSeq 0.9.1 (Ref. 53). Transcript abundance 

was reported as reads per million uniquely mapped reads per thousand nucleotides mapped 

(RPKM). Unsupervised hierarchical clustering based on the abundance of protein-coding 

and non-coding transcripts was performed as described54. Supplementary Table 1 reports 

RNA sequencing statistics.

PAS-seq library construction and analysis

Total RNA was extracted from frozen tissues using mirVana miRNA isolation kit (Thermo 

Fisher, AM1560). Poly(A) Site Sequencing (PAS-seq) library construction was performed as 

described55. Briefly, poly(A)+ RNA was extracted from total RNA using Dynabeads mRNA 

purification beads (Ambion, 61006), then fragmented to 60–80 nt at 70°C for 7 min by 

chemical hydrolysis. Fragmented RNA was reverse transcribed using barcoded oligo(dT) 

oligonucleotides containing sites for forward and reverse Illumina sequencing primers 

separated by a hexa-ethyleneglycol (Sp18) linker. The oligonucleotides contained unique 

molecular identifiers (UMIs), to enable duplicate removal, preceded by 5′p-GG for efficient 

cDNA circularization. cDNA was further circularized using Circligase ssDNA ligase 

(Illumina, CL4111K) at 60°C for 4 h. Following cDNA circularization, fourteen cycles of 

PCR amplification was performed using KAPA HiFi library amplification kit (Kapa 

Biosystems, KK2611), and libraries sequenced as 79 nt single-end reads (NextSeq500; 

Illumina).

Poly(A) tracts and residual adaptor sequences were trimmed from the 3′ ends of reads 

passing quality checks. Reads were mapped to human genome hg19 using Bowtie 2.2.5 

(Ref. 47) with parameters –m –best –p4. Poly(A) sites were determined as described55. We 

filtered out internal priming events caused by genomic poly(A) tracts using a naïve Bayes 

classifier approach56. Supplementary Table 1 reports poly(A) site sequencing statistics.
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Cap-seq library construction and analysis

Total RNA was extracted from frozen tissues using mirVana miRNA isolation kit (Thermo 

Fisher, AM1560). Cap-seq libraries were prepared as described with slight modifications57. 

Briefly, following rRNA removal, poly(A)+ RNA was extracted from total RNA using 

Dynabeads mRNA purification beads (Ambion, 61006). RNA was heated to 68°C for 5 min, 

then immediately chilled on ice. To prevent 5′ phosphorylated RNA entering the library, 

RNA samples were treated with 10U Antarctic Phosphatase (NEB, M0289) at 37°C for 1h. 

Antarctic Phosphatase was inactivated at 70°C for 5 min, and then RNA extracted with 

phenol:chloroform:isoamyl alcohol (25:24:1; pH 6.7). The 5′ cap was removed using 20U 

Tobacco Decapping Enzyme (Enzymax, LLC, 87) in the presence of 1 mM MnCl2 at 37°C 

for 2 h followed by phenol:chloroform:isoamyl alcohol extraction. After 5′ ligation, RNA 

was reverse transcribed using a primer containing 5′-NNN NNN NN-3′ followed by a 3′ 
adaptor sequence, then amplified by PCR for two cycles with left (5′-CTA CAC GTT CAG 

AGT TCT ACA GTC CGA-3′) and right (5′-GCC TTG GCA CCC GAG AAT TCC A-3′) 

primers using 2× NEBNext Q5 High-Fidelity DNA Polymerase Master Mix (NEB; M0541). 

PCR products 200–400 bp long were purified from a 1% agarose gel run in TAE buffer 

(QIAquick; QIAGEN, 28706). After ten additional PCR cycles, Cap-seq libraries were 

sequenced as 79 nt single-end reads (NextSeq500; Illumina). Supplementary Table 1 reports 

Cap-seq statistics.

Chromatin immunoprecipitation and sequencing

Chromatin Immunoprecipitation (ChIP) was performed as described14 except using frozen 

tissue. Briefly, frozen tissue was cut into small pieces on dry ice and transferred to 1.7 ml 

tubes containing ice-cold PBS. Samples were cross-linked with 2% (w/v) formaldehyde at 

room temperature for 30 min using tumbling end-over-end. Thereafter, fixed tissues were 

crushed in ChIP lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.1) using 40 

strokes with a “B” pestle in a Dounce homogenizer (Kimble-Chase, Vineland, USA), then 

sonicated (Ultrasonicator, Covaris, E220) to shear the chromatin to 150–200 bp. Lysate was 

then diluted 1:10 with ChIP dilution buffer (0.01% SDS, 1.1% Triton X-1001.2 mM EDTA, 

16.7 mM Tris-HCl, pH 8.1, 167 mM NaCl) and immunoprecipitated using 5.5 μg anti-A-

MYB (Sigma, HPA008791) or 4.5 μg anti-H3K4me3 (Abcam, ab8580). DNA was extracted 

from the immunoprecipitate with phenol:chloroform:isoamyl alcohol (25:24:1) (pH 8), and 

libraries generated as described48, and sequenced as 79 nt paired-end reads (NextSeq500, 

Illumina).

Raw reads were mapped to the genome using Bowtie 2.2.5 (Ref. 47) using the parameter –

very-sensitive. Duplicate reads were removed using SAMtools 1.8 (Ref. 52). We used 

model-based analysis of ChIP-seq (MACS 1.1.2; Ref. 58) with parameter −q 0.01 to detect 

A-MYB peaks that were significantly enriched relative to input (1,296 genomic regions; 

false discovery rate [FDR] < 0.05). Supplementary Table 1 reports ChIP-seq statistics.

Human piRNA precursor transcript annotation

After mapping reads to the genome using STAR, we used StringTie 1.3.3 (Ref. 59) to 

perform genome-based transcriptome assembly. Gene annotations were from Ensembl 90. 

One juvenile (two technical replicates) and seven adult testes samples were used individually 
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for transcriptome assembly, and then each assembly was merged into a final transcript 

assembly using the merge function with parameter −m 100 −F 1 −T 1. We retained those 

transcripts both present in more than one sample and producing ≥100 rpm piRNAs in more 

than one sample.

Human piRNA gene nomenclature

As in mouse14, human piRNA-producing genes overlapping ≥50% with annotated protein-

coding genes were named pi-(GeneName); non-coding piRNA genes were named according 

to their genomic location and piRNA abundance: (chromosome)-(chromosome segment)-

(piRNA rpm).

piRNA gene annotation in other species

We defined piRNA genes in rhesus, marmoset, rat, opossum and platypus as previously 

described6 using sRNA-seq data from testis downloaded from GEO (rhesus, GSE40499; 

marmoset, GSE52927; rat GSE19054; opossum, GSE40499; platypus, GSE40499). Briefly, 

we scanned the whole genome using 5 kb sliding windows tiled every 1000 nt to capture the 

regions mapped by 24–32 nt long sRNA at a density of more than 100 rpm. We then merged 

5 kb windows within 20 kb of each other. We defined two types of genomic sources of 

piRNAs: (1) piRNA-producing genomic regions that overlap an annotated protein-coding 

gene and (2) piRNA-producing sequences unlikely to encode protein, i.e., non-coding RNA-

producing genes. Genomic sources of piRNAs overlapping a protein-coding gene were 

named pi-(GeneName). For piRNA clusters derived from non-coding sequences, clusters 

were named pi-(suffix), where the suffix indicates the rank order of the genomic coordinates 

of the piRNA cluster.

Synteny analysis

Synteny analysis was performed using liftOver from UCSC toolkit. Human (hg19) piRNA 

genes were aligned to rhesus (rheMac8), marmoset (calJac3), mouse (mm10), rat (rn6), 

opossum (monDom5) and platypus (ornAna1) genomes with the command liftOver-

minMatch=0.1. piRNA-producing genes which were successfully identified in another 

genome were considered to be syntenic. Loci producing piRNAs from a syntenic location in 

other species were considered to be evolutionarily conserved.

Calculation of derived-allele frequency and nucleotide diversity (π value)

Vcf files of 2,504 human genomes containing the derived allele frequency (DAF) of each 

single nucleotide polymorphism (SNP) were downloaded from the 1000 Genomes Project 

Consortium34. In brief, the 1000 Genomes Project Consortium considers those alleles that 

are different from the ancestral allele—compared to chimpanzee—as derived alleles. We 

then took those alleles in non-CpG autosomal-chromosome regions and calculated the 

frequency of derived alleles in each human genome. Mean nucleotide diversity60 (π) is 

defined as 2 × DAF × (1 – DAF).
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Statistics

Statistics were calculated using R console (https://www.rstudio.com); graphs were generated 

using R console and Igor Pro 6.37. For box plots, 95% confidence intervals were calculated 

using Wilcoxon rank-sum test.

Extended Data
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Extended Data Fig. 1. Strategy for defining human post-natal piRNA genes.
a) Strategy for transcriptome assembly, identification of piRNA precursor transcripts, and 

annotation of genomic loci. Pink rectangles: input for analyses; gray rectangles: 

bioinformatic tools. Green hexagons: output from analyses. (b, c) Histograms showing the 

change in the abundance of piRNAs produced from piRNA genes between juvenile and adult 

samples. The analysis was conducted twice: once with the set of samples used to define the 

piRNA genes (b) and then with an independent set of samples to validate the annotations (c). 

(d) Genomic positions of 182 human piRNA-producing loci on the 22 autosomal 

chromosomes. Two pre-pachytene piRNA genes were identified on the X chromosome.
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Extended Data Fig. 2. Examples of human post-natal piRNA genes.
(a) An exemplary pre-pachytene piRNA gene. (b) uni- and bidirectional pachytene piRNA 

genes. Human piRNA cluster boundaries annotated in Ref. 10 (dark green) and Ref. 11 

(purple).
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Extended Data Fig. 3. Analyses of transcription start sites (TSS) and transcript 3′ ends for 
human piRNA genes.
(a) Heatmaps displaying the H3K4me3 ChIP-seq signal around the transcription start sites 

of piRNA-producing genes from adult testis and the results of Cap-seq and PAS-seq around 

TSS and transcript 3′ ends for piRNA-producing genes from adult testes. Kidney serves as a 

negative control. Data are reported as uniquely mapping reads per million reads (rpm). (b) 

Metagene plot of Cap-seq and PAS-seq signals 5 kb upstream of the TSS and 5 kb 

downstream of the transcript 3′ ends of pre-pachytene and pachytene piRNA genes for 

juvenile and adult testis samples. Graphs report trimmed mean (i.e., lowest and highest 5% 

removed). (c) piRNA density per 1 kb within exons and introns of the pre-pachytene and 

pachytene piRNA genes defined by our analysis.
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Extended Data Fig. 4. Three classes of human post-natal piRNA genes.
(a) Cumulative distributions of the percentage of 25–31 nt long piRNAs explained by the 

length of annotated genomic sequence for the piRNA-producing loci defined here or 

previously10–12. (b) Percentage of transposon sequences present in piRNA-producing, 

protein-coding, and lncRNA genes. Gray line indicates the transposons content of the entire 

human genome. (c) Percentage of different classes of transposons within the piRNA-

producing genes.
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Extended Data Fig. 5. Characterization of the mouse repro9 mutation within exon 6 of A-Myb.
(a) The repro9 mutation creates a stronger 5′ splice site within exon 6 of A-Myb, leading to 

a truncated mRNA. Splice site strength was determined using MaxEntScan13. (b) Heatmaps 

of the relative abundance of mouse piRNAs mapping to previously defined piRNA genes14. 

piRNA abundance was normalized to the total number of mapped reads. Spg: 

spermatogonia; SpI: primary spermatocytes.
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Extended Data Fig. 6. Three groups of adult testes defined by length distribution of total piRNAs 
and A-MYB and HIWI expression.
(a) The abundance of piRNAs was normalized to the total number of genome-mapping 

reads. Relative protein abundance of A-MYB (b) and HIWI (c) in adult testis samples. 

ACTIN serves as a loading control, while mouse A-Mybrepro9 and Miwi−/− mutant testis 

lysates provide negative controls. Each lane contained 75 μg protein of testis lysate.
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Extended Data Fig. 7. Molecular characterization of group 3 testes.
(a) piRNA length distribution, hematoxylin and eosin (H&E) stained testis sections, and 

immunohistochemical detection of A-MYB and HIWI for representative samples from 

groups 1, 2, and 3. (b) Scatter plot of steady-state transcript abundance of transcripts in 

group 1 versus group 3 testes. Each dot represents mean abundance of an mRNA. (c) Gene 

ontology analysis of mRNAs detected in group 3 samples and whose abundance changed 

>3-fold (FDR <0.05) compared to group 1.
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Extended Data Fig. 8. Three classes of human post-natal piRNA genes expressed by group 1, 
group 2, and juvenile testis samples.
(a) Histogram shows the change in the abundance of piRNAs produced from piRNA genes 

between juvenile and healthy adult testis samples (groups 1 and 2). (b) MA plot showing 

change in mean piRNA abundance comparing healthy adult (groups 1 and 2) to juvenile 

testis samples for 182 annotated piRNA-producing loci.
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Extended Data Fig. 9. Comparative analysis of human piRNA-producing genes.
(a) Long RNA and piRNA abundance for different genomic features including piRNA-

producing genes; protein-coding genes; lincRNA genes; and 22,604 randomly selected, 10 

kb, non-transcribed genomic regions. (b) DNA sequence conservation of different genomic 

features for 46 eutherian mammals calculated using PhyloP15. The 22,604 randomly 

selected, 10 kb, non-transcribed genomic regions, which do not produce piRNAs, provide a 

background control.

Özata et al. Page 26

Nat Ecol Evol. Author manuscript; available in PMC 2020 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 10. mRNA abundance of transcripts from orthologous genes that produce 
pre-pachytene piRNAs in humans and evolutionary classes of human pachytene piRNA genes.
(a) Transcript abundance in representative primate, rodent, marsupial, and bird species for 

mRNAs that produce piRNAs in placental mammals and for mRNAs expressed in other 

species but that make piRNAs only in humans. Expression data for species other than human 

testis was obtained from EMBL-EMI Expression Atlas. (b) An exemplary pre-pachytene 

piRNA gene that is syntenic across other species, but piRNA source in placental mammals 

only, in primates only, in humans only. (c) Abundance of piRNAs from the syntenic 

locations for human pachytene piRNA loci in other animals.
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Figure 1. Three classes of human post-natal piRNA genes.
(a) Heatmap representation of A-MYB occupancy on the promoters of piRNA-producing 

genes and of the abundance of piRNA precursor transcripts and mature piRNAs from seven 

adult and one juvenile testis (mean of two technical replicates; Correlation for technical 

replicates: piRNA sequencing, Spearman’s ρ = 0.99, Pearson’s ρ = 0.99; RNA sequencing, 

Spearman’s ρ = 0.91, Pearson’s ρ = 0.96). Rpkm: reads per million unique mapped reads per 

thousand nucleotides; rpm: reads per million. (b) Heatmap representation of the abundance 

of piRNA precursor transcripts and mature piRNAs from a second set of human testis 

samples. (c) The distance from the nearest A-MYB peak to the transcription start sites (TSS) 

for each gene class: piRNA-producing, piRNA-biogenesis protein encoding, other protein-

coding, or lncRNA-producing. Whiskers show 95% confidence intervals. (d) A-MYB ChIP-
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seq signal on the promoter of a divergently transcribed human pachytene piRNA gene and of 

the A-MYB and HIWI genes. Only uniquely mapping reads were analyzed.
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Figure 2. Three groups of adult samples.
(a) Unsupervised hierarchical clustering of samples based on the abundance of protein-

coding and non-coding transcripts. Three groups of adult samples were defined according to 

their transcriptome. (b) Heatmap representation of the abundance of piRNAs from human 

testis samples analyzed in this study. (c) Top: changes in the abundance of pre-pachytene 

and pachytene precursor transcripts between juvenile and adult samples. Bottom: box plots 

display the change in pre-pachytene and pachytene piRNA abundance for three juvenile 

samples. YO, year old. Whiskers show 95% confidence intervals.
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Figure 3. Dysregulated expression of A-MYB and HIWI in group 3 adult testes.
(a) Change in abundance of HILI-bound 26–27 nt piRNAs and HIWI-bound 30 nt piRNAs 

mapping to pre-pachytene and pachytene piRNA-producing genes among different groups of 

adult and juvenile samples. (b) Box plots showing the mRNA abundance among the 

different groups of adult and juvenile samples for genes encoding piRNA biogenesis factors, 

140 additional A-MYB-regulated genes, as well as reproduction-related genes and immune 

response-related genes. (c, d) A-MYB and HIWI mRNA (c) and protein abundance (d).
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Figure 4. Feedforward regulation of piRNA production by A-MYB is conserved in macaque.
(a) A-MYB ChIP-seq signal at the transcription start sites of macaque A-Myb and PIWIL1. 

(b) The distance from the transcription start site of each piRNA-producing, piRNA-

biogenesis protein encoding, or other protein-coding genes. (c) Heatmap showing A-MYB 

occupancy around the transcription start sites of macaque piRNA-producing loci. (d) A-

MYB ChIP-seq peak on the promoter of a divergently transcribed, piRNA-producing locus 

from macaque, compared with major syntenic pachytene piRNA genes from human and 
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mouse. Bar graphs show the number of A-MYB-bound pachytene piRNA genes in humans, 

macaque, and mouse.
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Figure 5. Comparative genomic analysis of human piRNA genes.
(a) DNA sequence conservation across 46 Eutherian mammals for human piRNA genes 

compared with other genomic features. Randomly selected 22,604, 10-kb non-transcribed 

genomic regions, which do not produce piRNAs, was used as a background control. (b) 

Synteny analysis reveals conservation of location of human piRNA genes across placental 

mammals, non-placental mammals, and chicken. Mouse and chicken piRNA-producing 

regions were defined previously14. (c) The syntenic genomic coordinates of three human bi-

directional pachytene piRNA genes for mouse, rat, marmoset, and macaque.
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Figure 6. Sequence variation for different genomic features within the human population.
(a) Mean derived-allele frequency of autosomal single-nucleotide polymorphisms (SNPs) 

and mean nucleotide diversity (π value) for 2,504 human genomes representing 26 different 

human populations34. Whiskers show 95% confidence generated by random sampling 100 

times. Derived-allele frequency from 22,604, 10 kb-long randomly selected non-transcribed 

genomic regions served as a control. (b) Metagene plots representing the piRNA abundance, 

derived-allele frequency, and conservation score for intron-containing pachytene piRNA 

genes (n = 51).
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