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Protein quality control is maintained by a number of integrated
cellular pathways that monitor the folding and functionality of the
cellular proteome. Defects in these pathways lead to the accumula-
tion ofmisfolded or faulty proteins thatmay become insoluble and
aggregate over time. Protein aggregates significantly contribute to
the development of a number of human diseases such as amyotro-
phic lateral sclerosis, Huntington’s disease, and Alzheimer’s dis-
ease. In vitro, imaging-based, cellular studies have defined key
biomolecular components that recognize and clear aggregates;
however, no unifying method is available to quantify cellular
aggregates, limiting our ability to reproducibly and accurately
quantify these structures. Herewe describe an ImageJmacro called
AggreCount to identify and measure protein aggregates in cells.
AggreCount is designed to be intuitive, easy to use, and customiz-
able for different types of aggregates observed in cells.Minimal ex-
perience in coding is required to utilize the script. Based on a user-
defined image, AggreCount will report a number of metrics: (i)
total number of cellular aggregates, (ii) percentage of cells with
aggregates, (iii) aggregates per cell, (iv) area of aggregates, and (v)
localization of aggregates (cytosol, perinuclear, or nuclear). A data
table of aggregate information on a per cell basis, as well as a sum-
mary table, is provided for further data analysis. We demonstrate
the versatility of AggreCount by analyzing a number of different
cellular aggregates including aggresomes, stress granules, and
inclusion bodies caused by huntingtin polyglutamine expansion.

The dynamic nature of protein folding necessitates constant
surveillance to ensure the production of functional proteins (1).
Errors in transcription, translation, or exposure to chemical or
oxidative stress exacerbates protein misfolding (2). Protein home-
ostasis (proteostasis) is monitored during and after protein syn-
thesis to promote refolding by chaperones or clearance of termi-
nally misfolded proteins by either the ubiquitin proteasome
system or autophagy (3). Components of protein quality control
(PQC) work together to sense and ameliorate cellular stress
caused by proteinmisfolding tomaintain proteostasis.
Recent studies have identified an age-associated decline in the

quantity, capacity, and efficiency of PQC components (4, 5).
Thus, maintaining proteostasis is especially important in postmi-
totic cells such as neurons. This decline is oftenmanifested by the

occurrence of age-related neurodegenerative disorders, in which
misfolded proteins accumulate and overwhelm proteostasis path-
ways (6). The formation of aggregates is observed in a wide range
of neurodegenerative diseases such as Huntington’s disease (7),
amyotrophic lateral sclerosis (8), Parkinson’s disease (9), and Alz-
heimer’s disease (10) and contributes significantly to disease phe-
notypes. The morphology, localization, and composition of
aggregates in neurodegenerative diseases is complex and heterog-
enous. Aggregates can be seeded by protein or RNA-basedmech-
anisms and arise in distinct cellular compartments (11). Certain
types of aggregates such as aggresomes and inclusion bodies are
believed to be protective by sequestering misfolded proteins into
a single structure for disposal (12). Furthermore, the morphology
of aggregates can be quite distinct and impacts the cellular
response. For example, aggregates caused byC9orf72 gene expan-
sions in amyotrophic lateral sclerosis form ribbon-like structures
that trap proteasomes and exclude ribosomes (13). In contrast,
CAG (glutamine, Q) expansions in the huntingtin gene that form
polyglutamine (polyQ) aggregates in Huntington’s disease are
fibrillar and exclude proteasomes (14).
To studymolecular mechanisms behind protein aggregation,

in vitro models of protein aggregation have been crucial. Mi-
croscopy-based studies investigating cellular aggregates have
identified numerous factors that regulate the formation and
dissipation of these structures and have informed our under-
standing of disease (15–17). Quantification of protein aggre-
gates has therefore become a convenient and widely accepted
measure of disease phenotype severity (18). Our survey of liter-
ature relevant to this area suggests that current approaches for
quantifying protein aggregates are often focused on manual
image analysis (19–21). Notably, it is not always clear whether
the images were analyzed in a blinded fashion (22, 23). Manual
analysis of aggregates is typically limited to scoring a single cel-
lular feature, such as, area, number, or localization of the aggre-
gate. Such an approach is incapable of capturing multiple fea-
tures at single-cell resolution from hundreds of images.
Furthermore, because manual analysis often reports a popula-
tion phenotype, it is unable to detect subtle differences in sub-
populations of cells. Finally, manual image analysis is subjec-
tive, error-prone, and labor-intensive. An increasing number of
automatic and semiautomatic image analysis software such as
ImageJ and CellProfiler are available to evaluate fluorescence
images (24, 25). Machine learning algorithms are also increas-
ingly used to aid in the analysis of multiparametric, complex
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cellular phenotypes (26). However, incorporating various image
analysis modules within these systems to create an analysis
pipeline can be time-intensive and unintuitive. These disad-
vantages highlight a clear need for a user-friendly, flexible,
high-throughput cellular image analysis method to quantify
aggregates.
To improve ease, precision, speed, and reproducibility of ag-

gregate quantification, we developed AggreCount, a novel
image-processing macro, using ImageJ as a platform, to pro-
cess, analyze, and quantify images. This automated tool uses
common stains for nuclei, cell bodies, and aggregates as input
and quantifies aggregate number, area, and cellular localization
on a cell-by-cell basis. In addition to delivering an unbiased
analysis of images, this level of detail provides increased analyti-
cal depth and better evaluation of subtle phenotypes that may
otherwise be overlooked. All processing steps use native ImageJ
plugins and functions such that additional downloads or plu-
gins are not necessary. Furthermore, this tool is written in the
ImageJ macro language, which is more accessible to those with
limited programming knowledge. We have used AggreCount
to analyze and quantify a variety of cellular aggregates including
aggresomes, stress granules, aggresome-like induced structures
(ALIS), and Htt polyQ inclusions. AggreCount will permit
researchers to carry out unbiased quantification of diverse pro-
tein aggregates and is particularly suited to high-content
image-based screening approaches.

Results

Defining settings in AggreCount for the multiparametric
quantification of aggregates

The general workflow for analysis with the AggreCount
macro involves three phases: assembling images, macro setup,
and batch analysis. Images that will be analyzed as part of one
experiment must be gathered into a single folder (the macro
code and detailed instructions to run AggreCount are provided
in Figs. S2 and S3). AggreCount is compatible with both com-
mon (e.g. TIFF, JPEG, etc.) and proprietary file formats com-
monly used in microscopy that are recognized by ImageJ. Each
image must consist of one channel for nuclei and one for aggre-
gate quantification. An optional third channel may be used for
cell body identification. After images are compiled, the macro
may be run to determine analysis settings (Fig. 1 and Fig. S1).
The setup will guide the user through selecting appropriate
channels for each fluorophore, adjusting the threshold, deter-
mining appropriate size cutoffs for aggregates, nuclei, and cells,
as well as the best processing strictness for cell bodies. The
main settings window (Fig. S1A) allows further refinement of
themacro options. Once the variables are set, the usermay pro-
ceed to batch analysis for all images in the folder. The collected
data are saved as tab-delimited text files that can be imported
into Excel or another data analysis software.
After selecting the folder of image files to be analyzed and

selecting the “setup” option, the first image in the analysis
folder will be opened. The user will be prompted to select the
channel for the nuclei, aggregates, and cell bodies (Fig. 1A). For
cell body segmentation, we recommend a dedicated channel
using commercially available dyes such as CellMask; however,

an antibody that detects a cytosolic protein (here we have used
ubiquitin) works equally well. The usermay also select the stack
and frame from z-stacks or movies. AggreCount will use the
selected slice and frame for that channel for every image proc-
essed. For z-stacks or movies, it may be preferable to collapse
the image (e.g. average Z projection) before analysis for more
consistent results, although in such instances the nuclear local-
ization of aggregates should be carefully assessed. The user will
then be prompted (“get image”) to select an appropriate thresh-
old in the aggregate channel using the ImageJ threshold tool
(Fig. 1B). AggreCount will continue to loop through the prompt
to allow the user to open multiple images using the “get image”
option and continue refining the threshold. It is suggested that
for each analysis, at least one image with aggregates and one
image without aggregates are used as positive and negative con-
trols, respectively, to set the threshold. The final threshold pa-
rameter defined by the user will be applied to all images. Once
the threshold is established, the user is prompted (“next step”)
to open an image that will be processed for nuclei and aggre-
gates using the previously established threshold. The size and
distance of each aggregate from the nucleus will be displayed
on the composite image (Fig. 1C). This allows the user to
empirically determine appropriate size cutoffs for aggregates
and distance limits to the perinuclear region. The final setup
step allows the user to view three different levels of strictness
for determining cell ROIs (levels 2.5, 5, and 7.5) as examples
(Fig. 1D). The user may use one of these levels or any integer
between 1 and 10 by entering that value into the “cell strictness”
box in themain AggreCount settings window.
The main AggreCount settings window allows for manual

changes to each option (Fig. S1). The values defined by the user
during the setup phase will be autopopulated in the settings
window. The remaining values are default values and may be
changed. Perinuclear distance is the pixel distance on either
side of the nuclear ROI that defines the perinuclear zone. This
setting may be useful for quantification of structures such as
aggresomes that reside adjacent to the nucleus. User-defined
variables are available to set the aggresome, aggregate, nucleus,
and cell body size minimums in microns. Additionally, there is
an option to set a maximum size for aggregates. The selected
channel, slice, and frame for each structure to be analyzed will
be displayed and may be changed manually. If there is no chan-
nel for cell bodies or if the analysis does not require the identifi-
cation of cell bodies, the user should uncheck “Find cell bodies.”
The macro will calculate distances but not assign aggregates to
cells.
Unchecking the “save results” option allows the macro to be

run without any files being saved and may be useful when opti-
mizing settings. Otherwise, the macro will create a new folder
to save the result files. These results consist of summary text
files: (i) summary analysis for all images (AC_analysis\dataset_
summary.txt), (ii) all cells (AC_analysis\dataset_cells.txt), and
(iii) all aggregates (AC_analysis\dataset_aggregates.txt). Addi-
tionally, a detailed results file (‘FileName’_analysis.txt) and a
.zip file containing cell, nuclei, and aggregate ROIs identified
for each image will be saved. Finally, an explanation of each
data field is saved as a text file “dataset_description” for users to
reference. In batch mode, AggreCount will proceed to analyze
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each image in the analysis folder. Images will open in the back-
ground and will not be visible to the user. The status of the
analysis may bemonitored in the summary table.

Identification and classification of aggregates

The nuclei can be visualized using standard dyes (49,6-dia-
mino-2-phenylindole, Hoechst, or DRAQ5, for example), and
processing of nuclei images is minimal (Fig. 2A). The macro
uses the “enhance contrast” function before subtracting back-
ground as a function of the mean pixel intensity. The propor-
tion of the mean that is subtracted can be modulated by chang-
ing the “strictness” setting in the settings window. Then a
median filter is applied to smooth the image while maintaining
borders. Properly defined borders are critical for this analysis
because the nucleus ROIs define subcompartments within the
cell. The image is then thresholded using the “make binary”
function followed by the “dilate” and “fill holes” functions.
“Dilate” is used to better define the border of the nucleus
because the intensity of the fluorescent stain is often reduced at
the edges of nuclei causing the outermost portion to be
excluded during the “make binary” function.
The default method for processing aggregate images aims to

enhance relatively small, bright puncta (Fig. 2B). The first step
uses a crude background subtraction based on the mean pixel
intensity of all areas with fluorescent signal to remove diffuse
fluorescent noise. This is followed by isolating bright puncta
using the difference of Gaussians approach (27). The image is
then converted to 16-bit, and the threshold that was set previ-
ously is applied. This binary image is used with the “analyze
particles” function to capture ROIs, which are filtered based on
the previously set size criteria.
To analyze aggregates at single cell resolution, AggreCount

uses two methods for cell body processing: segmentation and
thresholding (Fig. 2, C–E). The main difference between these
methods is that segmentation defines a cell by the portion of
the image that contains it, whereas thresholding aims to cap-
ture the cell as a ROI without any surrounding area. Segmenta-
tion (Fig. 2D) is often more accurate in differentiating cells that
are in close proximity, whereas thresholding (Fig. 2C) provides
information on the cell itself such as size and pixel intensity but
may omit portions of cells or erroneously merge adjacent cells.
The cell area may be an important metric if treatments collapse
the cytoplasm, which may spatially restrict aggregates to the
perinuclear zone. AggreCount provides both methods so the
user may choose the appropriate one for their images. Images
of differing cell density may require optimization of segmenta-
tion parameters so testingmultiple images is good practice.
Segmentation is achieved using the “find maxima” function

that finds points of maximal fluorescent intensity in local areas in
a merged image of the cell body and nucleus. This function uti-
lizes a prominence setting that determines the trough required
between maxima, which can be changed from the settings win-
dow using the cell body strictness option. After the maxima are

determined, a pixel intensity-based watershed algorithm seg-
ments the image into a Voronoi diagram, which is used for ROI
capture (Fig. 2, D and E). The cell thresholding method uses a
process similar to that of the nuclei processing that enhances
contrast, subtracts background as a proportion of the mean (that
may be changed with the strictness option), and applies a median
filter (Fig. 2C). If cell bodies are not stained, the user may deselect
the “find cell bodies” option in the main settings window. The
macro will proceed with localization analysis but will not be able
to provide analysis on a cell-by-cell basis.

Distance calculation and aggregate localization

Once nuclei and aggregate ROIs have been captured, Aggre-
Count will proceed to calculate the distance between aggre-
gates and nuclei (Fig. 3A, panels i and ii). These distances are
used to spatially classify aggregates within the cell and are cal-
culated based on all the pixel coordinates encompassing the
perimeters of the aggregate and nucleus (Fig. 3A, panel iii). The
distance of each coordinate of the aggregate is calculated for
each coordinate of the nucleus perimeter using the distance
formula (Fig. 3A, panel iv). If the “find cell bodies” option is
unchecked, aggregate distance will be calculated from the near-
est nuclei. This value is used to localize the aggregate within
one of three subcellular compartments: cytosol, perinuclear
zone, or nucleus (Fig. 3B). The user defines the distance by
which the perinuclear zone is determined using the perinuclear
distance option in the settings window. This value is calculated
on either side of the nucleus. Any aggregate that is at least par-
tially contained in this zone is categorized as perinuclear. Thus,
aggregates classified as perinuclear can reside on either side of
the nuclear envelope. We have specified the default value for
perinuclear distance cutoff as 10 pixels for 603 magnification
images; higher values may result in cytosolic and nuclear aggre-
gates being classified as perinuclear. The cutoff value should be
empirically adjusted for images of different magnification using
control images that display the desired phenotype. Aggregates
that are farther inside the nucleus are considered nuclear, and
aggregates that are excluded from both the perinuclear zone and
the nucleus are considered cytosolic. Cell segmentation is per-
formed using a watershed algorithm; thus, cells with complex
morphology are difficult to properly segment. Therefore, aggre-
gates in cell types with long processes such as neurons cannot be
effectively classified by cellular compartment using AggreCount
unless aggregates occur solely in the cell body and nucleus. As
can be seen in Fig. S1C, AggreCount is unable to effectively seg-
ment cells with long processes such asmotor neurons.

Deploying AggreCount to quantify cellular aggregates

We present several examples of different cellular aggregates
to demonstrate the versatility of AggreCount for their quantifi-
cation. First, we quantified ubiquitin-positive aggresomes and
aggregates that arise in cells upon proteasome inhibition.

Figure 1. Overview of AggreCount workflow. A, user selects fluorescent channels corresponding to nuclei, aggregates, and cell bodies. B, threshold for
aggregates is adjusted by the user through the native ImageJ threshold tool. The 0.02% value in the threshold window reflects the number of pixels in the red
box. C, AggreCount displays aggregate size and distance from nucleus for the user to empirically determine the perinuclear cutoff. D, multiple levels of proc-
essing strictness are displayed for segmentation and thresholding of cell bodies. The user may choose any strictness level between 1 and 10. Scale bar, 10mm.
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Aggresomes are perinuclear, membrane-delimited structures
that form via retrograde trafficking of smaller cytosolic aggre-
gates via the dynein motor (28). HeLa Flp-in TRex cells were
treated with the reversible proteasome inhibitor bortezomib
for 8 or 18 hr before being fixed and stained for ubiquitin and
nuclei (Hoechst) (Fig. 4A). Images were analyzed using Aggre-
Count. As shown in Fig. 4B, both time points have an increased
number and size of aggregates compared with the untreated
controls. The AggreCount analysis allows for the stratification

of aggregates by subcellular location at single cell resolution.
This deeper analysis reveals that the 18 hr treatment reduces the
number of cytosolic aggregates while the number of perinuclear
and nuclear aggregates remain stable (Fig. 4C). However, the size
of the perinuclear aggregates greatly increases (Fig. 4,D and E).
We asked how AggreCount compared with other methods

used for aggregate quantification. Asmentioned above, existing
methods primarily involve manual analysis; therefore we deter-
mined how long it took for an experienced ImageJ user to

Figure 2. AggreCount image-processing steps. A, nuclei are processed via fluorescent signal enhancement, conversion to a binary image, and capture of
ROIs. B, aggregates are processed via the default method or user-inserted processing steps before being converted to a binary image for ROI identification. C,
cell thresholding via enhancement of fluorescent signal, conversion to binary image, and capture of ROIs similar to that of nuclei processing.D, cell segmenta-
tion process that identifies fluorescent maxima (top middle panel), segments cell via a watershed algorithm into a Voronoi diagram (bottom middle panel),
which is used to capture ROIs. E, final merged imagewith nucleus, aggregate, and cell body ROIs. Scale bar, 10mm.
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manually analyze the same set of images as AggreCount. In
addition, we also used an existing CellProfiler pipeline that
counts cellular speckles. We found no significant difference in
the findings between these two methods and AggreCount for
analyzing the number of aggregates per cell (Fig. S4A). How-
ever, manual quantification required over an hour for image
analysis, whereas both AggreCount and CellProfiler were able
to analyze the same set of images in;90 s. Importantly, manual
quantification and CellProfiler do not provide any information
pertaining to the subcellular localization of aggregates. Thus, a
significant advantage of AggreCount is the ability to spatially
localize aggregates in a facile manner. Although sample prepa-
ration and good imaging practices yield the most robust analy-
sis (see “Experimental procedures”), we find that the difference
of Gaussians method used for thresholding aggregates enables
AggreCount to be adept at overcoming image thresholding
challenges such as uneven background illumination and image
saturation (Fig. S4, B andC).
Puromycin treatment causes premature chain termination

during translation and the accumulation of defective ribosomal

products (29, 30). Defective ribosomal products are frequently
sequestered into punctate, ubiquitin-positive structures in the
cytosol referred to as ALIS (16, 31). AggreCount was able to
effectively identify ALIS in puromycin-treated cells (Fig. 5A).
We have previously shown that ubiquitin X domain containing
1 (UBXN1) is required for the clearance of ALIS (32). The
increase in ALIS in UBXN1 KO cells was effectively captured
by AggreCount (Fig. 5, A–C). Notably, ALIS in UBXN1 KO
cells were increased in the perinuclear area relative toWT cells
(Fig. 5C), illustrating capability of AggreCount to spatially
localize aggregates when perturbations alter the subcellular
localization of aggregates.
We next addressed RNA-based cellular aggregates such as

stress granules. Stress granules form as a result of a variety of
cellular stressors that cause stalling of translation and disas-
sembly of ribosomes (33). Stress granules contain 40S subunits
of ribosomes, ribonucleoproteins, and RNAs, and their inap-
propriate persistence in neurons is linked to neurodegeneration
(34). We induced stress granule formation in HeLa cells stably
expressing GFP-tagged G3BP1 (a bona fide stress granule

Figure 3. Delineating subcellular compartments. A, after ROIs have been captured (panels i and ii), each coordinate for aggregate ROIs (panel iii) is com-
pared with each coordinate of nucleus ROIs to determine distance using the distance formula (panel iv). The smallest distance value is recorded as the aggre-
gate distance. B, subcellular compartments within the cell are determined by the nucleus ROI and the user-defined distance parameter and labeled as
cytosolic, perinuclear, and nuclear. The 20-pixel distance shown here denotes 10 pixels on either side of the nuclear envelope. This number should be empiri-
cally determined by the user. Scale bar, 10mm in A (panel i) and 3mm in A (panel ii) and B.
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component), using sodium arsenite, a well-established chemi-
cal that robustly induces stress granule formation (Fig. 6A).
Release of cells post-sodium arsenite treatment into drug-free
medium leads to the dissolution of stress granules (Fig. 6,A and
B). Previous studies have demonstrated a role for p97, an essen-
tial, ubiquitin-selective, AAA ATPase that is critical for multi-
ple PQC processes in the cell, in the clearance of stress granules
(35–37). Treatment of cells with an ATP-competitive p97 small
molecule inhibitor (CB-5083) during the formation or release
periods produced distinct outcomes (38). Co-treatment of cells
with both sodium arsenite and CB-5083 results in the forma-
tion of fewer and smaller stress granules comparedwith sodium
arsenite treatment alone (Fig. 6,A and B). Conversely, p97 inhi-

bition during the release period prevents the clearance of stress
granules predominantly in the perinuclear region (Fig. 6,A–D).
Expansion of a CAG tract in the first exon of the huntingtin

(Htt) gene beyond a threshold of ;35–40 repeats causes Hun-
tington’s disease and results in a mutant Htt protein containing
an expanded polyQ segment (39). Expression of exon 1 Htt
fragments longer than 40 residues leads to the formation of in-
soluble amyloid-like aggregates of Htt known as inclusion
bodies and causes neurodegeneration (41).Wemeasured inclu-
sion body formation using a U2OS cell line stably expressing a
doxycycline-inducible Htt polyQ91 construct tagged with
mCherry (40). AggreCount was able to identify polyQ aggre-
gates in cells and classify their localization as predominantly

Figure 4. Analysis of bortezomib-induced aggregates by AggreCount. A, HeLa Flp-in TRex cells were treated with 1 mM bortezomib (Btz) for 8 or 18 hours
(hr), fixed, and stained with an anti-ubiquitin antibody to visualize ubiquitin-positive aggregates and aggresomes. The nuclei were stained with Hoechst. B,
AggreCount was used to determine the average (Avg.) number of aggregates per cell (upper panel) and average aggregate area (lower panel). C, the number
of aggregates in different cellular compartments was quantified. D, the area of aggregates in different cellular compartments was determined. E, prolonged
bortezomib treatment (18 hr) leads to an increase in perinuclear aggresome area. At least 41 cells were analyzed. The graphs show themeans6 S.E. *, p� 0.1;
**, p� 0.05; ***, p� 0.001 as determined by one-way ANOVAwith Bonferroni correction (B–D) or Mann–Whitney (E). Scale bar, 10mm.

Figure 5. ALIS quantification by AggreCount. A, HeLa Flp-in TRex cells (WT and UBXN1 KO) were treated with 5 mg/ml of puromycin for 2 hr, fixed, and
stained with an anti-ubiquitin antibody to visualize ubiquitin-positive ALIS. The nuclei were stained with Hoechst. B, AggreCount was used to determine the
average number of ALIS per cell (black bars) and average ALIS area (green bars). UBXN1 KO cells have a greater number of ALIS with increased areas C, the area
of ALIS in different cellular compartments was determined. At least 96 cells were analyzed. The graphs show the means6 S.E. ***, p� 0.001 as determined by
one-way ANOVA with Bonferroni correction (B) or Kruskal–Wallis test with Dunn correction (C). In B, significance is calculated with respect to WT untreated for
average aggregate per cell (black) and aggregate area/cell (green). Scale bar, 10mm.
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perinuclear as previously reported (Fig. 6, E and F) (41). Previ-
ous studies have suggested that large inclusion bodies formed
by polyQ are largely cytoprotective and smaller soluble aggre-
gates are cytotoxic (42). Because AggreCount can effectively

identify and quantify the area of cytosolic and perinuclear
aggregates (Fig. 6F); conditions that shift the dynamic between
cytosolic aggregates and inclusion bodies can be rapidly
assessed using AggreCount.
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Discussion

ImageJ and CellProfiler are two of the most commonly used
software for immunofluorescent image analysis. Both provide a
robust set of tools for image processing, thresholding, and cap-
ture of data (43). Our survey of literature pertaining to image
analysis of aggregates found no uniform method of image anal-
ysis. In many cases, aggregates were quantifiedmanually, which
is time-intensive and introduces bias and human error. Cell-
Profiler allows for the batch processing and analysis of images,
which helps alleviate these problems. However, there does not
currently exist a pipeline for aggregate quantification and local-
ization. Additionally, CellProfiler is limited by its available
modules, whereas AggreCount may utilize any native ImageJ
tool or user-created plugin. Finally, a moderate level of image-
processing background is required for initial development of
CellProfiler pipelines (24). Here, we present the AggreCount
macro that is based on the widely used FIJI distribution of
ImageJ (44). This macro provides an unbiased automated plat-
form for aggregate quantification on a cell-by-cell basis. Unlike
other available image analysis tools, AggreCount may be used
directly out of the box without any modifications for a wide va-
riety of immunohistochemical stains providing in-depth aggre-
gate quantification. We have deposited AggreCount to GitHub
(https://aggrecount.github.io/) to be downloaded as a macro
for the reproducible and efficient analysis of aggregates by the
research community. Although we believe our method for
processing images with aggregates works well for a wide variety
of applications, we understand that these processing steps may
not be applicable for all experiments. Thus, the portions of the
macro that contain the processing steps for aggregates, nuclei,
and cells are highlighted and may be altered by the user (Fig.
S1B). The ImageJ macro language was designed such that users
with limited programming knowledge may utilize it. The “re-
cord” function in ImageJ may be used to further customize the
script in a user-specific manner.
We demonstrate that AggreCount can capture and quantify

a variety of distinct cellular aggregates that arise because of spe-
cific perturbations, including aggresomes, ALIS, stress gran-
ules, and Htt inclusion bodies. Although the AggreCount
macro was designed for the quantification of aggregates, it may
be used to quantify and localize organelles, such as mitochon-
dria or lysosomes, and disease markers in neurodegeneration,
such as TDP-43 or FUS that relocalize from the nucleus to the
cytoplasm and aggregate. Additionally, because this tool ana-
lyzes ROIs on a cell-by-cell basis, it may be used to parse out
different cell types in a heterogenous population provided indi-
vidual cell populations can be uniquely labeled. The Aggre-
Count macro provides a powerful platform for unbiased, auto-
mated quantification and localization of cellular aggregates.

Experimental procedures

Antibodies and chemicals

The mouse anti-ubiquitin (FK2) used for immunofluores-
cence was from EMD Millipore. Hoechst dye was from Sigma,
and Alexa Fluor–conjugated secondary antibodies were from
Molecular Probes. Bortezomib was obtained from Selleckchem.
Sodium arsenite and puromycin were from Sigma.

Cell culture

HeLa Flp-in TRex (kind gift from Brian Raught, University of
Toronto), HeLa Flp-in TRex GFP-G3BP1 and U2OS HttQ91-
mCherry (kind gift from Ron Kopito, Stanford University) were
cultured in Dulbecco’s modified Eagle’s medium supplemented
with 10% fetal bovine serum and 100 units/ml penicillin. The cells
were maintained in a humidified, 5% CO2 atmosphere at 37 ˚C.
The cells were treated with 1 mM bortezomib, 0.5 mM sodium
arsenite, 5 mM CB-5083, and 5 mg/ml of puromycin for the indi-
cated times. HttQ91-mCherry expression was induced by treat-
ing cells with 1 mg/ml of doxycycline for 48 hr. UBXN1 knockout
cells were previously described (34). GFP-G3BP1 stable HeLa
Flp-in TREX cell lines were generated by lentiviral transduction
as previously reported (45). Cells expressing low levels of GFP-
G3BP1 were isolated by flow cytometry. Care should be taken to
determine whether treatment of cells with specific agents causes
the cytosol to collapse or shrink. In such cases, cytosolic aggre-
gates may be overwhelmingly identified as perinuclear. In such
cases, it is useful to use CellMask and the threshold tool to mea-
sure the area of cells between treatment conditions.

Immunofluorescence and microscopy

HeLa Flp-in T-REX and U2OS cells were grown on cover-
slips (no. 1.5) in a 12-well plate. The cells were washed briefly in
PBS and fixed with either 4% paraformaldehyde at room tem-
perature (puromycin treatment) for 15 min or ice-cold metha-
nol at 4˚C for 10 min. The cells were washed three times in PBS
and then blocked in 2% BSA, 0.3% Triton X-100 in PBS for 1 hr.
For the puromycin treatment, the cells were blocked in 3%
chicken serum plus 0.1% Triton X-100 in PBS for 1 hr. The cov-
erslips were incubated with the indicated antibodies overnight
at 4 ˚C in a humidified chamber, washed, and incubated for 1
hr with the appropriate Alexa Fluor–conjugated secondary
antibodies for 1 hr in the dark at room temperature. The cells
were washed with PBS, and the nuclei were stained with
Hoechst dye and mounted onto slides. Images were collected
by using a Nikon A1R scan head with a spectral detector and
resonant scanners on a Ti-E motorized inverted microscope
equipped with a 603 Plan Apo 1.4–numerical aperture

Figure 6. Analysis of stress granules and inclusion bodies by AggreCount. A, HeLa Flp-in TRex cells stably expressing the stress granule marker GFP-
G3BP1 were treated with 0.5 mM sodium arsenite for 1 hr. The cells were pretreated with 5 mM CB-5083 (p97 inhibitor) for 1 hr prior to addition of 0.5 mM so-
dium arsenite for 1 hr. The cells were released for 4 hr into drug-free medium or in medium containing CB-5083, fixed, and imaged. The nuclei were stained
with Hoechst. B, AggreCount was used to determine the average number of stress granules per cell (upper graph) and average stress granule area (lower
graph). C and D, the area of perinuclear (C) and cytosolic stress granules (D) was quantified. E, U2OS Htt91-mCherry cells were induced with 1 mg/ml of doxycy-
cline for 48 hr. The cells were fixed and imaged for inclusion bodes. The nuclei were stained with Hoechst. F, left panel, a histogram of inclusion body areas
based on their cellular location was quantified and binned based on the indicated size bins. Right panel, the size distribution of individual inclusion bodies by
cellular location. At least 13 cells were analyzed for B–D, and at least 1036 cells were analyzed for E and F. The graphs show the means6 S.E. ***, p� 0.001 as
determined by one-way ANOVAwith Kruskal–Wallis test with Dunn correction. Scale bar, 10mm for A and E. Ctrl, control.
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objective lens. The indicated fluorophores were excited with a
405-, 488-, or 594-nm laser line.
For robust image analysis and quantification, standardized

sample preparation and image acquisition practices must be
followed. Culture conditions must be optimized and observed
regularly. For optimal image analysis, we recommend imaging
low tomoderate cell densities as images with cells in close prox-
imity to one another negatively impact accurate cell counts and
segmentation. Imaging must be carried out on the same micro-
scope at identical magnifications and exposure or laser settings
because they will heavily influence the outcome of thresholding
methods. All the images must be adequately focused using nu-
clear or fluorophore staining. Additionally, imaging is recom-
mended to capture images in the nuclear stain channel to
remove potential unconscious bias in data selection.

Alternative quantification methods

Manual analysis was performed by isolating individual cells
from images, applying a threshold, and utilizing the analyze
particles ImageJ function. CellProfiler analysis used the publicly
available Speckle Counter pipeline with adjustments for file
names, image processing, and thresholding.

Data availability

The AggreCount macro is available in the supporting
information associated with this article and will be uploaded to
GitHub (https://aggrecount.github.io/).
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