Van der Jeugt et al. BMC Bioinformatics (2022) 23:198 B M C B I O I nfo r m atl CS

https://doi.org/10.1186/512859-022-04736-5

SOFTWARE Open Access

- ®
FragGeneScanRs: faster gene prediction iy
for short reads

Felix Van der Jeugt* , Peter Dawyndt and Bart Mesuere

*Correspondence:
unipept@ugent.be

Department of Applied
Mathematics, Computer
Science and Statistics, Ghent
University, Ghent, Belgium

B BMC

Abstract

Background: FragGeneScan is currently the most accurate and popular tool for gene
prediction in short and error-prone reads, but its execution speed is insufficient for use
on larger data sets. The parallelization which should have addressed this is inefficient.
Its alternative implementation FragGeneScan+- is faster, but introduced a number of
bugs related to memory management, race conditions and even output accuracy.

Results: This paper introduces FragGeneScanRs, a faster Rust implementation of the
FragGeneScan gene prediction model. Its command line interface is backward com-
patible and adds extra features for more flexible usage. Its output is equivalent to the
original FragGeneScan implementation.

Conclusions: Compared to the current C implementation, shotgun metagenomic
reads are processed up to 22 times faster using a single thread, with better scaling for
multithreaded execution. The Rust code of FragGeneScanRs is freely available from
GitHub under the GPL-3.0 license with instructions for installation, usage and other
documentation (https://github.com/unipept/FragGeneScanRs).

Keywords: Shotgun metagenomics, Gene prediction, Hidden markov model, Rust

Background
Studying environmental communities of archaea, bacteria, eukaryotes, and viruses is
hampered by problems with isolating and culturing most of these organisms in lab con-
ditions [1-5]. Metagenomics has therefore become a routine technique to bypass the
cultivation step with a combination of high-throughput DNA sequencing and computa-
tional methods [6, 7]. Non-targeted sequencing of genomes in environmental samples,
called shotgun metagenomics, in particular allows profiling of both the taxonomic com-
position and the functional potential of the samples [8]. Identification of protein coding
sequences from shotgun metagenomic reads has therefore become an important precur-
sor to gain insight in the taxonomic and functional diversity of an environmental com-
munity [9].

One approach for shotgun metagenomics gene prediction is assembling reads into
longer contiguous sequences, called contigs, prior to running traditional gene predic-
tion tools [10]. This eases gene prediction, but assembling reads from complex samples

©The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http//creativecommons.org/publi
cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://orcid.org/0000-0003-3168-927X
https://github.com/unipept/FragGeneScanRs
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04736-5&domain=pdf

Van der Jeugt et al. BMC Bioinformatics (2022) 23:198 Page 2 of 8

with many species in different abundances is a challenging problem. It requires special-
purpose algorithms that can be slow, produce artificial contigs, and miss low-abundance
genomes [11, 12]. Direct gene prediction on individual reads can mitigate assembly
problems, speed up computations, and enable profiling of low-abundance organisms
that cannot be assembled de novo. But, it does have to face partial protein coding frag-
ments with missing start/stop codons and read errors [8]. The choice between assem-
bly-based versus read-based gene prediction may depend on the sample type and the
research question at hand.

Various gene prediction tools specialize in directly calling short reads [13-16].
FragGeneScan (FGS) is the most accurate and popular tool that is currently available
[17]. It uses a hidden Markov model (HMM) that incorporates codon usage bias, start/
stop codon patterns, and sequencing error models to predict complete or partial genes
in short error-prone reads. Back in 2010, the gene prediction model of FGS was imple-
mented in C and Perl [18]. Multithreading support was added in release 1.19 (August
2014) and most Perl code was replaced with C functions in release 1.30 (April 2016).
Because FGS was rather slow, a team of researchers at the University of British Columbia
(Canada) forked FGS (presumably from release 1.19) to implement FragGeneScan-Plus
(FGS+): a pure C implementation with speedups for single threaded execution and bet-
ter scaling for multithreading [19].

Both FGS and FGS+ now have pure C implementations that support parallel execu-
tion, but their latest releases suffer from their own issues. FGS implements multithread-
ing in a very inefficient way, making it much slower than FGS+. The implementation
doesn’t preserve input order, breaking for example the synchronisation between pair-
end read files without an extra sorting step in postprocessing. Bugs have also been intro-
duced when replacing Perl code with C functions. In addition, out-of-bound memory
access may corrupt its results and cause the software to crash.

FGS+ has inherited inefficient memory usage from FGS and made it worse by copy-
ing immutable data structures to individual threads and introducing leaks in the allo-
cated memory. Its multithreading model is overly complex and may deadlock due to
race conditions in thread semaphores especially when using a larger number of threads.
Although FGS+ is faster than FGS, its results may significantly deviate due to bugs intro-
duced in the reimplementation and missing bug fixes from later FGS versions. For exam-
ple, FGS+ systematically makes wrong translations of genes encoded on the reverse
strand, may result in out-of-bound memory access when copying FASTA headers from
a dynamically allocated global array to thread-specific arrays that are statically allocated,
uses fixed-length string buffers of 1MB for DNA sequences that overflow for complete
genomes, and also crashes when reading from standard input and writing to standard
output. A list of problematic invocations is included in Additional file 1. In conclusion,
FGS generates more accurate results but is slower, whereas FGS+ is considerably faster
but generates wrong output.

The source code of FGS and FGS+ is no longer actively maintained, but as metagen-
omics datasets continue to grow in size, we still need faster gene predictors. In this man-
uscript we present FragGeneScanRs (FGSrs), a reliable, high-performance, and accurate
Rust implementation of the FGS gene prediction model. We ran a benchmark to show
that FGSrs produces the same results as FGS and is faster than both FGS and FGS+.



Van der Jeugt et al. BMC Bioinformatics (2022) 23:198 Page 3 of 8

Implementation

FGSrs is implemented in Rust, a programming language known for its focus on speed
and memory-efficiency. In addition, segmentation faults that occur while running
FGS or FGS+ are automatically avoided because memory-safety and thread-safety
are guaranteed by Rust’s type system and ownership model. Its zero-cost abstractions
yield more readable code and put optimizations in the hands of the compiler.

We started off with a Rust implementation that was equivalent to FGS release 1.31.
Afterwards, we gradually optimized performance and improved the quality of the
software, while monitoring equivalence with the original implementation. We out-
line some of these optimizations and improvements in what follows and refer to the
source code and its documentation for more details.

FGS uses statically allocated 300 KB buffers for different representations of reads
and 100 KB buffers for protein translations. By using dynamically allocated buffers
that grow when needed instead, we avoid static buffer overflows, increase speed, and
reduce the memory footprint.

FGS stores default training data for its HMM in separate text files. We include a
binary representation of default data in the executable during compilation, but still
support passing custom training data as command line arguments. This improves
usability by reducing dependencies during installation of the software and allowing
to execute FGSrs with default training data anywhere on the system without the need
to run FGS in its own directory or explicitly pass the path to the default training files
(new option -r).

The HMM configurations used by FGS are immutable after initialization, but the origi-
nal implementation wastes memory by copying them to each thread. We store this data
in shared memory that threads can access concurrently. We use mutexes for protected
access to shared input and output file handles. This avoids the need to split input in
chunks upfront, have threads that store results per chunk in a separate file, and merge
these files afterwards. This eliminates disk overhead and speeds up I/0.

HMM gene regions have six inhomogeneous sets of states that represent matches,
insertions and deletions for two successive codons in a read. FGS processes the six
states in a loop, combined with conditional execution to handle topological differences
between state transitions. Unrolling these loops not only makes the condition-less code
more readable, it is also significantly faster. We have further improved readability of the
code by replacing #define constants in C with Rust enum types.

Where FGS uses row-major order to store dynamic programming matrices, we
switched to column-major order for improved locality when accessing matrix elements
in the Viterbi algorithm. This results in a speedup because the reordered memory layout
causes less cache misses.

FGS outputs the DNA sequence, its translated amino acid sequence, and additional
metadata for each coding region found in a read, with optional formatting to indicate
insertions and deletions in the DNA sequence. This requires FGS to compute and store
the DNA sequence twice during the backtracking step at the end of the Viterbi algo-
rithms. Once for reconstructing the formatted DNA sequence and once for reconstruct-
ing the unformatted DNA sequence. We produce a unified representation and delay
formatting until output is generated. We also note that a bug was introduced in FGS



Van der Jeugt et al. BMC Bioinformatics (2022) 23:198 Page 4 of 8

(release 1.30) when the backtracking step was converted from Perl to C, which generates
DNA and protein sequences for complete genomes that are incorrect.

Results

The FGSrs command line interface is backward compatible with FGS, so it can be used
as a faster and memory-friendly drop-in replacement for FGS in bioinformatics pipe-
lines. FGSrs also has some additional features that enable more flexible usage. We sup-
port the conventional standard input and output channels as alternatives for passing files
as arguments to the -s and -o options. This enables embedding FGSrs in POSIX pipes
without storing intermediate results on the file system. Storage locations for generated
DNA sequences (option —-n), translated amino acid sequences (option -a) and meta-
data (option -m) can also be specified individually, which may give additional speedups
because unspecified information does not need to be computed. Where FGS and FGS+
report gene predictions out-of-order, FGSrs by default preserves read order. The prior-
ity queue that guarantees in-order reporting comes with a small overhead on speed and
memory usage, but can be disabled with the option -u.

We ran two benchmarks on a 16-core Intel® Xeon® CPU E5-2650 v2 at 2.60 GHz, to
evaluate the performance improvements of FGSrs (release 1.0.0) over FGS (release 1.31)
and FGS+ (git version 91b0ab6). The first benchmark uses the sample datasets included
in the FGS and FGSrs repositories as input data and measurements are averaged over
5 runs. When all three implementations are executed single threaded (Fig. 1), FGSrs
processes short reads (80 bp) 22.6x faster than FGS and 1.2x faster than FGS+. Long
reads (1328 bp) are processed 4.2 times faster than FGS and 1.6x faster than FGS+.
The bulk of the runtime is consumed by the Viterbi algorithm, having a time complex-
ity of O(s? x 1) with s the number of HMM states and # the length of the sequence that
needs to be processed. Because the HMM of the gene prediction model has a fixed num-
ber of states (s = 49), we can thus expect runtime to grow linearly for reads that are

Short reads (80bp)

T
10 000
Reads per second

T
5000

Long reads (1328bp)
FGS

FGS+
FGSrs

200 ' 400 ' 600 ' 800 " 1000 1200 1400
Reads per second

Fig. 1 Processing speed for single threaded execution of FGS, FGS+ and FGSrs on short (80 bp) and long

(1328 bp) reads. FGS and FGSrs generate DNA sequences, protein translations and metadata, whereas FGS+

only generates protein translations because the software crashes when other output is generated. FGS and

FGS+ report gene predictions out-of-order, where default in-order reporting was used for FGSrs

o -




Van der Jeugt et al. BMC Bioinformatics (2022) 23:198 Page 5 of 8

even longer. FGSrs processes the complete genome sequence of Escherichia coli str. K-12
subst. MG1665 (NC_000913; 4,639,675 bp) 2.2x faster than FGS and 347.6x faster than
FGS+. The latter measurement essentially shows that FGS+ is not fit for processing
complete genomes in practice. FGSrs and FGS+ scale better for multithreaded execu-
tion than FGS (Fig. 2). Increasing the thread count from 1 to 8 results in a speedup fac-
tor of 6.5 for both FGSrs and FGS+ and only 5.4 for FGS. The difference increases for
higher thread counts and the execution even consistently halts due to race conditions
for FGS+ when using more than 10 threads. FGSrs and FGS have a comparable memory
footprint of about (80 + 70£) MB for ¢ threads (Fig. 3). FGS+ consumes more memory
with about (265 + 85¢t) MB for ¢ threads. However, the memory requirements are not
a limiting factor to run any of these tools on a standard laptop, with 4 threads needing
between 350MB and 520MB RAM.

The second benchmark uses a collection of data sets simulated using Mason [21]. Each
data set contains 10K Illumina reads of varying read length simulated from Geobacter
anodireducens str. SD-1. The results for these datasets may be found in Table 1. More
details and a comparison of the predictive performance of FGS and FGSrs on one of
these data sets may be found in Additional file 2.

Conclusions

In conclusion we can state that FGSrs is a reliable implementation of the FGS gene pre-
diction model that is an order of magnitude faster than the original implementation. Its
command line interface is backward compatible with extensions for more flexible usage.

16 1
’
151 ® FGS +T
FGS+ o
14 1 ® FGSrs ’
’
13 A o
.
12 A ’
’
11 4 ’
" e o
S 10 4 °
9] ¢ °
RS i L4
29 s °
g s - " [ J
g’. ’ 'y ) e o °®
n 7 ¢ [}
. 'Y o * °
] ’
6 8 i °
5 4 Y )
o
o8 o
4 A N ©
3 ‘9
.3
2 A e
'U
1 e
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
Number of threads
Fig. 2 Scaling for multithreaded execution of FGS, FGS+ and FGSrs on long reads (1328 bp), computed as
the speedup of concurrent execution with t threads (x-axis) over single threaded execution. Dash line shows
the theoretical upper bound for the speedup. Race conditions consistently halt the execution of FGS+ above
10 threads. FGS and FGSrs generate DNA sequences, protein translations and metadata, whereas FGS+ only
generates protein translations because the software crashes when other output is generated. FGS and FGS+
report gene predictions out-of-order, where default in-order reporting was used for FGSrs




Van der Jeugt et al. BMC Bioinformatics (2022) 23:198 Page 6 of 8

1200MiB -
1100MiB ® FGS
I FGS+ e o
® FGSrs
1000MiB
o o
o 0 8O
900MiB - +
o ©
800MiB
o o
° .
@ 700MiB ]
= ®
£ soomis - * ¢
el
g °
2 soomi A *
400MiB - o ©
o o
300MiB
o 8
200MiB
[ ]
100MiB
oMiB -
i é ::3 4‘1 é é 'Il é é 1‘0 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6
Number of threads
Fig. 3 Memory footprint for multithreaded execution of FGS, FGS+ and FGSrs on long reads (1328 bp).
Total memory footprint (heap, stack and memory-mapped file I/O) measured using the Massif heap profiler
of Valgrind [20] with -pages-as—-heap option. Race conditions consistently halt the execution of FGS+
above 10 threads. FGS and FGSrs generate DNA sequences, protein translations and metadata, whereas
FGS+ only generates protein translations because the software crashes when other output is generated. FGS
and FGS+ report gene predictions out-of-order, where default in-order reporting was used for FGSrs

Table 1 Average execution time and standard deviation for various read lengths

Average read length FGS Mean [s] FGS+ Mean [s] FGSrs Mean [s]
100 4843 +£0.018 0491 £ 0.002 0.396 £ 0.004
200 5.966 £ 0.028 0.842 4+ 0.001 0.748 £ 0.002
300 7.020 £ 0.011 1.168 £ 0.001 1.103 £0.012
400 8.073 £0.020 1487 £+ 0.002 1451 £+ 0.002
500 9.109 £0.016 1.803 £ 0.004 1.795 £ 0.002
600 10.122 £ 0.021 2.115 £ 0.002 2154+ 0015
700 11.137 £ 0.026 2448 £ 0.007 2.505 £ 0.008
800 12.196 £ 0.020 2.790 £ 0.005 2.859 £0.010
900 13218 £0.023 3.132 £ 0.003 3.198 £0.010
1000 14.309 % 0.255 3474 £0.018 3.547 £0.005
2000 24443 £0.025 7.021 £0.020 7.052 £0.024
3000 34.655 £+ 0.038 10913 £ 0.014 10.545 4+ 0.025
4000 45.037 £ 0.051 14.841 £ 0.020 14.042 + 0.022
5000 55315+ 0.059 18.756 £ 0.034 17.525 £ 0.039
6000 65537 +£0.118 22997 £ 0.298 21.007 £0.028
7000 75.791 £ 0.058 27.099 £ 0.080 24.521 £ 0.068
8000 86.172 £ 0.202 31.440 £ 0.051 27.980 £ 0.043
9000 96.354 + 0.347 35.858 % 0.040 31.489 + 0.055
10,000 106.509 £ 0.104 40513 £ 0.071 34.962 £ 0.050




Van der Jeugt et al. BMC Bioinformatics (2022) 23:198 Page 7 of 8

The source code of FGSrs is freely available from GitHub under the GPL-3.0 license
(https://github.com/unipept/FragGeneScanRs), with instructions for installation, usage
and other documentation.

Abbreviations
base pair: (bp); FragGeneScan: (FGS); FragGeneScan+: (FGS+); FragGeneScanRs: (FGSrs); Hidden Markov Model: (HMM).

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/512859-022-04736-5.

Additional file 1. Examples of input problematic for FGS+. A PDF file describing in detail some examples of input
problematic for FGS+

Additional file 2. Performance on simulated reads. Detailed benchmark results on a collection of simulated data
sets

Acknowledgements
We thank the students of the Computational Biology class of 2019-2020 for scrutinizing issues with the code of FGS and
FGS+.

Availability and requirements

Project name FragGeneScanRs

Project home page https://github.com/unipept/FragGeneScanRs
Operating system(s) Platform independent

Programming language Rust

Other requirements Rust edition 2018 or higher

License GNU GPL

Any restrictions to use by non-academics None

Author contributions

BM, PD and FVDJ contributed to the conception of the software. FVDJ created the new software used in the work. BM,
PD and FVDJ drafted the work or substantively revised it. All contributors agree to be accountable for all aspects of the
work in ensuring that questions related to the accuracy of integrety of any part of the work are appropriately investi-
gated and resolved. All authors read and approved the final manuscript.

Funding
This work was supported by the Research Foundation-Flanders (FWO) [1215220N to B.M.]. The funding body did not play
any role in the design of the study, or collection, analysis and interpretation of data, or in writing the manuscript.

Availability of data and materials
The datasets generated and/or analysed during the current study are available in the GitHub repository, https://github.
com/unipept/FragGeneScanRs/tree/main/example.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 9 December 2021 Accepted: 17 May 2022
Published online: 28 May 2022

References

1. Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci. 2016;113(21):5970-5. https://
doi.org/10.1073/pnas.1521291113.

2. Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol. 2003;57(1):369-94. https://doi.
org/10.1146/annurev.micro.57.030502.090759.

3. Pedrds-Ali¢ C, Manrubia S. The vast unknown microbial biosphere. Proc Natl Acad Sci. 2016;113(24):6585-7. https://
doi.org/10.1073/pnas.1606105113.


https://doi.org/10.1186/s12859-022-04736-5
https://doi.org/10.1073/pnas.1521291113
https://doi.org/10.1073/pnas.1521291113
https://doi.org/10.1146/annurev.micro.57.030502.090759
https://doi.org/10.1146/annurev.micro.57.030502.090759
https://doi.org/10.1073/pnas.1606105113
https://doi.org/10.1073/pnas.1606105113

Van der Jeugt et al. BMC Bioinformatics (2022) 23:198 Page 8 of 8

4. Hofer U.The majority is uncultured. Nat Rev Microbiol. 2018;16:716-7.

5. Hahn MW, Koll U, Schmidt J. Isolation and Cultivation of Bacteria, pp. 313-351. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-16775-2_10.

6. Hugenholtz P, Tyson GW. Metagenomics. Nature. 2008;455:481-3. https://doi.org/10.1038/455481a.

7. ThomasT, Gilbert J, Meyer F. MCS), Univ. of New South Wales, S.: Metagenomics - a guide from sampling to data
analysis. Microbial Informatics and experimentation 2(3) (2012). https://doi.org/10.1186/2042-5783-2-3

8. Quince C, Walker A, Simpson J, Loman N, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotech-
nol. 2017,35(9):833-44. https://doi.org/10.1038/nbt.3935.

9. Sharpton TJ. An introduction to the analysis of shotgun metagenomic data. Front Plant Sci. 2014;5:209. https://doi.
0rg/10.3389/fpls.2014.00209.

10. Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly.
Brief Bioinform. 2017;20(4):1125-36. https://doi.org/10.1093/bib/bbx120.

11. Ghurye J, Cepeda-Espinoza V, Pop M. Metagenomic assembly: overview, challenges and applications. Yale J Biol
Med. 2016;89:353-62.

12. Vollmers J, Wiegand S, Kaster A-K. Comparing and evaluating metagenome assembly tools from a microbiologist’s
perspective - not only size matters! PLoS ONE. 2017;12(1):1-31. https://doi.org/10.1371/journal.pone.0169662.

13. Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. Gene and translation initiation site prediction in metagenomic
sequences. Bioinformatics. 2012;28(17):2223-30. https://doi.org/10.1093/biocinformatics/bts429.

14. Hoff KJ, Lingner T, Meinicke P, Tech M. Orphelia: predicting genes in metagenomic sequencing reads. Nucleic Acids
Res. 2009;37(suppl2):101-5. https://doi.org/10.1093/nar/gkp327.

15. Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res.
2010;38(12):132-132. https://doi.org/10.1093/nar/gkq275.

16. Noguchi H, TaniguchiT, Itoh T. MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site
for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res. 2008;15(6):387-96. https://
doi.org/10.1093/dnares/dsn027.

17. Trimble WL, Keegan KP, D'Souza M, Wilke A, Wilkening J, Gilbert J, Meyer F. Short read reading-frame predic-
tors are not created equal: sequence error causes loss of signal. BMC Bioinform. 2012. https://doi.org/10.1186/
1471-2105-13-183.

18. Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res.
2010;38(20):191-191. https://doi.org/10.1093/nar/gkq747.

19. Kim D, Hahn AS, Wu S-J, Hanson NW, Konwar KM, Hallam SJ. Fraggenescan-plus for scalable high-throughput short-
read open reading frame prediction. In: 2015 IEEE Conference on Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB), pp. 1-8 (2015). https://doi.org/10.1109/CIBCB.2015.7300341

20. Nethercote N, Seward J. Valgrind: A framework for heavyweight dynamic binary instrumentation. In: 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI '07), pp. 89-100. Association for
Computing Machinery, New York, NY, USA (2007). https://doi.org/10.1145/1250734.1250746.

21. Holtgrewe M. Mason - a read simulator for second generation sequencing data. Technical Report FU Berlin (2010)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

fast, convenient online submission

thorough peer review by experienced researchers in your field

rapid publication on acceptance

support for research data, including large and complex data types

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions . BMC



https://doi.org/10.1007/978-3-030-16775-2_10
https://doi.org/10.1007/978-3-030-16775-2_10
https://doi.org/10.1038/455481a
https://doi.org/10.1186/2042-5783-2-3
https://doi.org/10.1038/nbt.3935
https://doi.org/10.3389/fpls.2014.00209
https://doi.org/10.3389/fpls.2014.00209
https://doi.org/10.1093/bib/bbx120
https://doi.org/10.1371/journal.pone.0169662
https://doi.org/10.1093/bioinformatics/bts429
https://doi.org/10.1093/nar/gkp327
https://doi.org/10.1093/nar/gkq275
https://doi.org/10.1093/dnares/dsn027
https://doi.org/10.1093/dnares/dsn027
https://doi.org/10.1186/1471-2105-13-183
https://doi.org/10.1186/1471-2105-13-183
https://doi.org/10.1093/nar/gkq747
https://doi.org/10.1109/CIBCB.2015.7300341
https://doi.org/10.1145/1250734.1250746

	FragGeneScanRs: faster gene prediction for short reads
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Implementation
	Results
	Conclusions
	Acknowledgements
	References


