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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease
2019 (COVID-19) is a novel coronavirus not previously recognized in humans until late 2019. On 31
December 2019, a cluster of cases of pneumonia of unspecified etiology was reported to the World
Health Organization in China. The availability of adequate SARS-CoV-2 drugs is also limited, and the
efficacy and safety of these drugs for COVID-2019 pneumonia patients need to be assessed by further
clinical trials. For these reasons, there is a need for other strategies against COVID-19 that are capable
of prevention and treatment. Physical exercise has proven to be an effective therapy for most chronic
diseases and microbial infections with preventive/therapeutic benefits, considering that exercise
involves primary immunological mediators and/or anti-inflammatory properties. This review aimed
to provide an insight into how the implementation of a physical exercise program against COVID-19
may be a useful complementary tool for prevention, which can also enhance recovery, improve
quality of life, and provide immune protection against SARS-CoV-2 virus infection in the long term.
In summary, physical exercise training exerts immunomodulatory effects, controls the viral gateway,
modulates inflammation, stimulates nitric oxide synthesis pathways, and establishes control over
oxidative stress.

Keywords: COVID-19; physical exercise; health care; immune system; inflammation; oxidative stress;
nitric oxide

1. Introduction

1.1. Origin of COVID-19

Acute viral respiratory infections are essential public health trouble, with high morbidity and
mortality in the world. Coronavirus (CoV) viral pathogens are a considerable family of viruses
that cause illnesses ranging from the common cold to more severe diseases, such as Middle East
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Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS) [1]. The severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19)
is a novel coronavirus not previously recognized in humans until late 2019. On 31 December 2019,
a cluster of bouts of pneumonia of unspecified etiology came to the attention of the World Health
Organization (WHO) in Wuhan, China. SARS-CoV-2 was identified by the Coronavirus Study Group
of the International Committee on Virus Taxonomy in affected patients [2].

1.2. Respiratory Clinical Symptoms

A large number of patients show flu-like symptoms and recover at home [3]. However, the most
significant concern is for patients who develop a severe condition associated with respiratory difficulties
and pneumonia. Pneumonia represents approximately 20% of patients infected by this new coronavirus,
and 5% of patients require critical care, characterized by the presence of respiratory failure, severe
acute respiratory syndrome, renal failure, septic shock, and multi-organ failure. These patients must
be admitted to the hospital or even to intensive care units to increase their chances of survival [4].

1.3. Strategies to Fight COVID-19

The availability of safe and effective drugs to treat the infection COVID-19 causes remains
limited and needs to be assessed by extra clinical trials [5]. In this line, drugs regularly use clinical
assistance, such as neuraminidase inhibitors (oseltamivir, paramivir, and zanamivir), and antiviral
agents (ganciclovir, acyclovir, and ribavirin) are not practical for SARS-CoV-2. Drugs possibly useful
for 2019-nCoV include: remdesivir, lopinavir/ritonavir, lopinavir/ritonavir combined with interferon-β,
convalescent plasma, and monoclonal antibodies [6]. Chloroquine phosphate, an anti-malarial drug,
its efficacy, and safety against COVID-19 respiratory disease also appear to be satisfactory in recent
clinical trials in China in treating patients infected by SARS-CoV-2 [7].

However, there is a need for other strategies against COVID-19 that are competent in prevention
and treatment. Physical exercise (Ex) (planned structured and repetitive activity performed with
purpose) has proven to be an effective therapy for most chronic diseases, with preventive/therapeutic
benefits and considering the primary immunological mediators involved [8]. Even an Ex-induced shift
in immune response may be dependable for improved survival after respiratory virus infection [9].
Exercise’s immune response effects accumulate over time and form the immunological adaptations in both
systems (innate and adaptive), and these often work in conjunction with the overall immune response [10].
During incubation and non-severe stages, the adaptive immune response must remove the SARS-CoV-2
and avoid disease progression to severe stages. Innate immune cells also need to recognize the invasion
of the virus, often by pathogen-associated molecular patterns [11]. Other potential effects of Ex have
been described that could help control COVID-19, such as attenuation of the inflammatory response [12],
modulation of oxidative stress [13], and increase in nitric oxide (NO) synthesis [14]. Therefore, Ex may
confer protection against COVID-19 by enhancing the functioning of some physiological systems.
This insight may help to design the adequate physical exercise multimodal tool that is preventive
and/or therapeutic against COVID-19.

2. Intervention through Physical Exercise on the Immune Function in COVID-19

2.1. Interferon Modulation by Physical Exercise

COVID-19 virus is inhaled and binds to non-specific receptors on the respiratory epithelium,
such as intercellular adhesion molecule 1 (ICAM-1), that permit the cell to become infected.
The pathogen-associated molecular patterns (PAMPs) on SARS-CoV-2 are likely to be recognized
by Toll-like receptors (TLR) 2, 3, and 4, initiating a rapid innate immune response against viral
invasion [15,16]. PAMPs-TLRs interaction stimulates production of the interferon regulatory factor
(IRF), which in turn produces interferon (IFN) type I (IFN-α and IFN-β), and subsequent binding
to the IFN receptor gives rise to the expression of a diversity of interferon-stimulated genes (ISGs),
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with outcome antiviral and immunomodulatory effects to control and destroy the virus disease [17,18].
However, the viral proteins involved in the modulation of this hosting type I IFN response are E, M,
N (structural proteins), and ORF (non-structural), which inhibit IFN signaling by downregulating
janus kinase/signal transducers and the activators of transcription (JAK/STAT) pathway, concretely
decreasing STAT1 phosphorylation [19].

The resistance Ex training elicits similar mitogen-activated protein kinase (MAPK) activation in
resistance-trained men with significant elevations in STAT1 phosphorylation [20–22]. The activation
MAPK could partly restore the mechanism of inhibition established by the viral infection of COVID-19,
and probably continue a downstream cascade that culminates in control of SARS-CoV-2. IFN I also
activates p38 MAPK to induce gene transcription for the antiviral response [23]. Ex stimulates p38 [24],
which, in addition to the effects on the muscle, could promote antiviral and anti-proliferative effects
specific to IFN type I resulting from p38 signaling.

Regular Ex modulates another novel INF pathway, with a probable COVID-19 prevention activity.
Ex is beneficial for maintaining the improvement of the immune status, associated with a rise in IFN-2
(γ) in the plasma [25]. Thus, regular moderate Ex seems to modulate its release and increase its levels
to those necessary for the human body to maintain good health [26]. Recently, Kang et al. [27] have
described the antiviral properties of IFN-γ with its ability to block the virus’s entry into the extracellular
and intracellular phases of replication. The pathways of action of IFN-γ are diverse: alteration of the
niche of replication, stopping of the process of gene expression, unstructuring the virus by breaking
the assembly of the nucleocapsid, and prevention of viral reactivation by inhibiting the transcription of
a master regulator of the virus. This mechanism is to accentuate the direct antiviral pathways of IFN-γ
that may be stimulated by Ex practice [26]. Effective innate immune response is associated with IFN-α,
IFN-β, and IFN-γ, and may play a role in a protective or destructive response against COVID-19 [28].
Therefore, physical exercise could be a tool, through the immune system, that modulates the reactions
of the INF pathway that could control viral replication and induce a more adequate immune response.

2.2. Modulation of the Response to Viral Infection by Innate Immune Cells through Physical Exercise

The expression of PAMPs by immune and tissue cells provides the host with the ability to detect
and respond to infection by viruses by resistance to viral replication in all cells, induction of apoptotic
cell death in infected cells, increased major histocompatibility complex (MHC) class I expression to
enhance antigen presentation, activation of dendritic cells (DCs) and macrophages, and stimulation
of natural killer (NK) cells to improve their activity [29]. SARS-CoV-2 has mechanisms to evade
PAMPs-mediated responses or to subvert these pathways actively (which should be investigated),
which could reduce the innate antiviral immune response that triggers severe states in patients [29].

The neutrophils, innate immune cells, respond to exercise-derived stimuli. The chemotaxis
and phagocytosis increase after moderate activity Ex (50% maximal oxygen uptake (VO2max))
but not in strenuous Ex (80% VO2max), where neutrophils oxidative activity is attenuated [30].
Monocyte cells are mobilized with moderate duration (<60 min) and intensity (<60% VO2max) Ex [10].
Both non-lymphocyte cells (monocytes and phagocytes) present phenotypes related to: (i) effector
or cytotoxic functions and differentiated or mature (CD16+ monocytes and CD16− neutrophils);
and (ii) integrin and intracellular adhesion molecules, and a range of chemokine receptors, such as
CCR5, CCR6, CXCR1, CXCR2, CXCR3, and CXCR4, that have ligands for activated endothelium
and permit tissue migration [31]. Lower et al. [9] exercised mice using a motorized treadmill at a
speed of 8–12 min at a 1 and 5% grade for 30 min. The treadmill speed was approximately 55–65% of
VO2max [9]. In this study [9], this increased the expression of IL-4 and the eotaxins. The eotaxins act
as a chemoattractant for eosinophils with granules [32]. The granules contain abundant ribonucleases
that degrade single-stranded RNA viruses [32], such as SARS-CoV-2. Moreover, Qin et al. [33] have
demonstrated a pronounced lymphopenia (decrease CD3+) in COVID-19. However, Ex stimulates
natural killer T (NKT) cells, which have a regulatory effect depending on IL-4 and considerably increase
two-fold by Ex [9]. NKT cells are a broad group of CD3+ T cells co-expressing the T cell antigen
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receptor (TCR) and NK cell markers [34]. The cell trafficking in response to Ex could be a strategy
of boosting the innate immune response [26,30] required to eliminate COVID-19 and to prevent the
advance of the virus.

NK cells have various mechanisms to kill virus-infected cells, such as increased expression of
extracellular death receptors and the release of granules with cytolytic actions by exocytosis [35]. Still,
respiratory viruses (influenza virus and respiratory syncytial virus) have evolved a mechanism to
evade NK cell response [36]. Ex plays a role in increasing the NK cell number and subset distribution
and functional capability of NK cells at the individual cell level [30]. Forty-five minutes of high (80%
VO2max) and moderate (50% VO2max) intensity treadmill Ex was associated with significant shifts in
circulating proportions of NK cells during and 2 h after Ex [37]. A study on sixteen healthy cyclists also
concluded that Ex (3 × 30 min cycling at −5%, +5%, and +15% of lactate threshold) evokes a preferential
redeployment of NK cell subsets with a high differentiation phenotype [38]. This phenotype leads
to increased surface expression of inhibitory killer immunoglobulin-like receptor (KIR) molecules as
CD158b and augments NK cell cytotoxic activity (NKCA) [38,39], which could improve the degree
of immunity to SARS-CoV-2. Another mechanism capable of inducing virus death by apoptosis of
NK cells and CD8+ effector T cells is through direct interaction between the surface Fas receptor
and the FasL ligand [40]. FasL was stimulated in day three post-infection of the influenza virus in
mice that practiced moderate Ex (55–65% VO2max) [9]. An Ex immune program may positively
modulate cytotoxic NK cell and CD8+ activity in blood [30,38,39], and may be a therapeutic preventive
intervention to help combat SARS-CoV-2.

Furthermore, in post-exercise or recovery periods, some leukocytes (mainly monocytes
and lymphocytes) mobilize between tissues and blood. Monocytes and lymphocyte leucocytes
are overexpressing adreno-receptors (β2-ARs) and glucocorticoid receptors, which improves their
sensitivity to catecholamines and/or cortisol [41]. This indicates that a mobilization/response is
mediated by activation of the sympathetic nervous system and the hypothalamus pituitary adrenal
(HPA) axis, which are strongly activated by Ex [42]. This redistribution of the leukocytes may control
the SARS-CoV-2 infection in early periods of the disease.

2.3. Modulation of the Adaptive Immune Response to Viral Infection through Physical Exercise

Helper T cells orchestrate the overall adaptive immune response, but initially, PAMP signaling
activates the dendritic cells. Dendritic cells’ cytokines (CCL3, CXCL9, and CXCL10), generated
by antigen presenting cells in the respiratory tract, dictate the direction of T cell responses to the
viral infection [43]. T cells response, CD4+, and CD8+ can clear the virus and protect the host from
lethal diseases or respiratory illnesses, such as influenza A and para-influenza virus [44]. However,
when comparing healthy individuals to critically ill patients in the acute phase of SARS, 80% presented
lymphopenia with a significantly alarming decrease between 80–100% of CD4+ and CD8+ [45].
The dysregulation of the adaptive immune response in the severe patient group with COVID-19 in
Wuhan (China) was probably a pronounced decrease of CD4+, CD8+, and regulatory T cells [33],
which hastens the exceptional production of proinflammatory cytokines [1]. The senescence in T cells
(inverted CD4+/CD8+ T cell ratio; increased frequency and proportion of senescent T cells) increases
infection susceptibility to novel pathogens [10], such as COVID-19. Regular Ex may facilitate the
selective apoptosis of these senescent T cells and stimulate T cells’ replacement [26,30].

The new T cells are capable of responding to novel antigens because they expand the naıve T cell
repertoire, alleviate symptoms, and produce biomarkers associated with immunosenescence and the
immune risk profile (IRP) [46]. In 102 healthy non-smoker males with 43.0 ± 0.6 VO2max average,
this was associated with a lower proportion of senescence and a higher proportion of naïve cells
in CD8+ T cells [47]. These may signify that acceptable levels of aerobic status could alone utilize
preserving effects on the aging immune system. A healthy lifestyle with practiced regular physical
exercise may decrease the risk of host infection. Therefore, Ex could represent the safest and least
expensive immunotherapy treatment [48].
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Moreover, IL-7 therapy could enhance immune responses in patients with limited naïve T cell
numbers, as in aged patients or after disease-induced or iatrogenic T cell depletion [49]. SARS-CoV-2
induces dysregulation and a lack of T cells [11]. In this sense, by immunoblotting and real-time reverse
transcription polymerase chain reaction (RT-PCR), the IL-7 expression was confirmed with both protein
and mRNA increased levels by regular moderate Ex [50], which could stimulate thymus function when
IL-7 increases in plasma. Ex could improve the immune response of T cells, through IL-7, in patients
with deficiencies in their defenses, who are more susceptible to severe stages of COVID-19.

The activation and proliferation of CD8+ T cells against SARS-CoV were of higher frequency and
intensity than CD4+ T cells. Still, both T cell responses were essential to control viral infection [19].
Conversely, a decreasing trend in T cell proliferation during and after Ex has been reported, suggesting a
compromise of immune function. Migration of CD4+ and CD8+ T cells (ex vivo) reduced to supernatants
of human rhinovirus (HRV)-infected bronchial epithelial cell line 1 h after completing a 2 h of running
with an intensity of 60% VO2max [51]. However, some T cells (CD4+, CD8+, and γδ T cells) with a higher
migration capacity and more efficient power appear to fall during Ex recovery and may have gone into
the peripheral blood earlier [25]. Concretely, Simpson et al. [52] have observed T cells’ activation and
proliferation after exercise. T cells increased significantly after 30 min in a moderate state, following
their viral peptides’ stimulation against common viral antigens, such as cytomegalovirus (CMV) and
Epstein–Barr virus (EBV). Many of the expanded T cell clones are also specific for the CMV and EBV
antigen [42]. In this way, Ex may be an immune enhancer able to recognize the antigen that caused the
initial response and destroy any infected cell.

2.4. Impact of Physical Exercise on the Humoral Immune Response

B cells develop an essential immune response activity to fight respiratory viral infections such as
SARS-CoV-2 [53]. Contact between CD4+ T cells and naive B cells in secondary lymphoid tissues results
in their proliferation and antibody class-switching, with neutralizing virus-specific antibodies crucial
for optimal viral clearance [53]. B cell subsets with phenotypes characteristic of naive, non-isotype
switched memory cells and antibody-secreting cells accumulate in CoVs. Thus, humoral immunity is
essential to control the continuous phase of CoV infection [53].

The information on seroconversion for SARS-CoV has shown peak specific IgM at day nine
after disease onset and the switching to IgG by week two [54]. In patients infected with COVID-19,
antibody responses to SARS-CoV-2 in 285 patients with COVID-19 were within 19 days after symptom
onset, with 100% of patients testing positive for antiviral IgG. Seroconversion for IgG and IgM
occurred simultaneously or sequentially. Both IgG and IgM titers plateaued within six days after
seroconversion [55]. Therefore, the immune system generates its defense strategy against SARS-CoV-2
by secreting antibodies by antigenic activation. These antibodies neutralize the ability of the virus to
infect and identify them to facilitate their elimination [54,55].

In past epidemics, two strategies of immunization have been employed. The antigen stimulation of
MERS-CoV infection by using the specific 9-mer epitope within the S1 protein (CYSSLILDY) generated
the highest B cell antigenicity plot, and can form the most considerable number of interactions of
MHCI alleles [56]. Subsets of antibodies, called neutralizing antibodies (NAbs), reduce the viral load
by binding to the epitopes of the viral particles’ external surface, thus blocking entry of the virus into
the cells and viral replication. These have proven useful in several viral infections, such as MERS-CoV,
SARS, Chikungunya, Ebola, and Zika virus infections [57].

In this context, Ex might have a function, as immuno-enhancing exploited this natural Ex
stress-response to augment immunization efficacy. Ex builds a local inflammatory response that gives
rise to natural stress that boost immunization efficacy. Ex increases the production and presence
of antibodies against the vaccine strain in the serum and the memory T cell response to antigen
stimulation [10,30].

Ex practice has modulated positive plasticity of the immune system [26,30]. A study [58] with
10-month aerobic exercise training showed antibody titers to the H1N1 and H3N2 strains of influenza
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A virus enhanced in older adults immunized with a trivalent influenza vaccine. Similarly, in different
population groups, moderate-intensity Ex improved the response against vaccine strains (influenza,
tetanus toxoid, diphtheria, pneumococcal, and meningococcal). However, it caused a significantly
more inadequate immune response in the non-exercising group [59]. Finally, in a randomized trial in
risk groups susceptible to respiratory virus infections, a 24-week program of moderate cardio-vascular
aerobic training was found to significantly increase the seroprotection of subjects from those who only
stretched their muscles after receiving the influenza vaccine [60].

In the future, when the COIVID-19 vaccine will be developed, individuals who exercise
continuously and regularly may develop higher antibody titers to the SARS-CoV-2 strain contained in
the vaccine compared to individuals who do not exercise.

3. Angiotensin 2 Converting Enzyme (ACE2) in COVID-19: What Role Could Physical Exercise Play?

The renin-angiotensin system (RAS) plays an essential role in maintaining homeostasis blood
pressure. The angiotensin-converting enzyme (ACE) is involved in producing angiotensin II (Ang
II), so the activity of ACE triggers vasoconstriction [61]. The ACE-Ang II-AT1 receptor (R) pathway
represents the RAS axis and the ACE2-Ang 1-7-Mas receptor (R)-based pathway represents the
counter-regulatory RAS axis. The RAS axis, whose effects increase sympathetic nervous system
tension, causes vasoconstriction, increases blood pressure, and promotes inflammation, fibrosis,
and myocardial hypertrophy [62]. However, ACE2 generates Ang 1-9 from Ang I’s hydrolysis, which is
then split by ACE, resulting in Ang 1-7. Ang 1-7 binds to a specific receptor, MasR, which is also a
G-protein-coupled receptor (counter-regulatory RAS axis), and triggers anti-inflammatory, anti-fibrotic,
and anti-proliferative actions [63]. Thus, in the RAS system, the same component can produce opposite
physiological effects through different pathways [62].

Acute respiratory distress syndrome (ARDS) is the most severe form of acute lung injury.
Interestingly, SARS-CoV uses ACE2 as an essential receptor for cell fusion and infections in vivo.
Therefore, the downregulation of ACE2 expression in SARS-CoV infection may play a causal role in
SARS’ pathogenesis, which provides a reasonable explanation for the progression of SARS patients
into ARDS [64]. However, a recent study has shown that ACE2 protects the murine lungs from acute
lung injury as well as SARS-spike protein-mediated lung injury [65]. These results suggest a dual role
for ACE2 in SARS infections and protection against ARDS.

When the protective immune response is impaired or inadequate, the virus will increase and
destroy the affected cells, especially in tissues/organs that have high expression of ACE2 (lung, heart,
kidney, brain, and intestinal epithelial cells), which serves as the main entry point into cells for
SARS-CoV-2 [66]. SARS-CoV-2 infection dysregulates the natural balance between the ACE2-Ang
1-7-Mas receptor axis and the ACE-Ang II-AT1 receptor pathway, with a subsequent high risk of severe
consequences after exposure [67]. In this way, it allows development of severe lung damage, respiratory
complications, and reduced survival rates. Additionally, COVID-19 can develop gastrointestinal
disorders by permeabilizing the intestine wall, which favors the development of endotoxemia [62].

Nunes-Silva et al. have showed that physical Ex could stimulate the ACE2-Ang 1-7-MasR axis in
parallel with the inhibition of the ACE-Ang II-AT1 receptor pathway [61] by activation of mechanism
expression of microRNA. Thus, the activation of the ACE2-Ang 1-7-Mas receptor axis may have a role
as a possible preventive mechanism to COVID-19 infection [67].

Besides, ACE2-Ang 1-7-Mas receptor axis stimulation could likely reduce post-COVID-19
cardiopulmonary sequelae, because physical exercise has been reported to reduce pulmonary fibrosis
by inhibiting the TGF-ß1 signaling pathway [67]. This could be a recovery tool for patients who
were infected with SARS-CoV-2. On balance, Ex may partially counteract the detrimental effect
of SARS-CoV-2 binding to the ECA2 receptor by reducing the inflammatory response, creating a
anti-fibrosis effect and better skeletal muscle response, promoting renal and cardiovascular protection,
and improving central nervous system reflexes [61].
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4. Effects of Physical Exercise on the Inflammatory Profile in COVID-19 Patients: Is It Useful as a
Modulator of Cytokine Release Syndrome in COVID-19?

Three key factors contribute to the pathogenesis of COVID-19: excessive inflammation, immune
system depression/inhibition, and a set of proinflammatory cytokines [68]. In the early stages of
coronavirus invasion, some cytokines that are proinflammatory are expressed as IL-1β, IL-2, IL-6, IL-8,
both IFN-α/β, tumor necrosis factor (TNFα), and three on the occasion of CeC (CCL3), CCL5, CCL2,
and IP-10. These inflammatory mediators control the immune system, mainly in these initial stages
by dendritic cells and activated epithelial cells [43,56]. Thus, the overproduction of these cytokines
and chemokines may contribute to developing diseases that cause lung damage and fatal respiratory
complications [69].

In this way, evidence suggests that cytokine release syndrome (CRS) produces an uncontrolled
and overwhelming release of proinflammatory mediators, including IL-6, IL-1β, IL-10, and TNF-α,
induced protein 10 (IP10), and monocyte chemoattractant protein 1 (MCP-1), which were significantly
elevated in patients with COVID-19. Some were seen more often in severe patients than in non-severe
patients [70,71]. The immunological mechanism of CRS is due to the delayed kinetics of virus clearance.
In the initial phase, SARS-CoV evades recognition receptors and antagonizes the IFN type I response in
the respiratory tract, and alveolar epithelial cells produce rapid viral replication [19,23]. The cytokine
storm probably down-regulates innate and adaptive immunity against SARS-CoV-2 infection [69].

Anti-inflammatory cytokines after an acute Ex episode may also contribute to the reduction of
systemic inflammation caused by CRS [72]. IL-6 released from skeletal muscle during Ex (more powerful
mediator of acute-phase Ex response) results in a subsequent increase in IL-10 and IL-1 receptor
antagonists (IL-1ra), which are considered anti-inflammatory agents [73]. IL-6 appears to be the
significant contributor to Ex’s anti-inflammatory effects. Human skeletal muscles’ contraction produces
and releases substantial amounts of IL-6 into the circulation to mobilize energy substrates similar to
stress hormones [74]. Hormones released during Ex have an anti-inflammatory effect because cortisol
acts as an anti-inflammatory mediator, and adrenaline regulates the production of the inflammatory
cytokines IL-1β and TNF-α [30]. In summary, we believe Ex training may confer attenuating the
CRS because changes in these proinflammatory cytokines may be modulated by anti-inflammatory
cytokines, such as IL-1ra, IL-6, and IL-10, and cytokine inhibitors, such as cortisol, prostaglandin E2,
and soluble receptors against TNF and IL-2 [26,30].

Other pathways of the anti-inflammatory response are the regulation of the expression of
proinflammatory TLRs after completion of concurrent exercise programs (aerobic plus strength) [75].
Specifically, they decrease the expression of TLR4 on the surface of monocytes and macrophages,
allowing control of inflation states in patients with chronic diseases, such as diabetes and/or obesity [71].
Another effect that Ex has on macrophage cells is the possibility of stimulating the transformation of
inflammatory macrophages (M1) to anti-inflammatory ones (M2) [76]. This isotype change makes it
possible to reduce the infiltration of macrophages into the fatty tissue, which could reduce the synthesis
of inflammatory cytokines [76].

Furthermore, Ex reduced the expression of TLR4 and NF-κB, suggesting an anti-inflammatory
response. It probably originates from the blockage of NF-κB translocation to the cell nucleus, resulting
in murine models of neuroinflammation [77]. In this regard, exercised mice (8–12 min of moderate
aerobic Ex for four consecutive days) infected with influenza virus showed significantly elevated
levels of soluble TNF receptors in lung cells without modifications in TNF-α, which could trigger an
inflammation control response [9]. Ex may be a medicine tool to help lower the risk of a cytokine storm
in COVID-19 infection and minimize the sequela during the inflammatory condition.

5. The Behavior of Nitric Oxide in SARS-CoV-2 during Physical Exercise

The biological stimuli of INF up-regulate the nitric oxide inducible (iNOD) up-regulation during
infection in activated cells as human airway epithelial cells and alveolar macrophages [78]. Nitric
oxide (NO) is an important molecule that plays a role in neurotransmission, vasodilation, and immune
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responses [14]. The antimicrobial activity of NO has been described for several bacteria, protozoa,
and some viruses, such as CoV [79]. However, the SARS-CoV proteins involved in the modulation of
this hosting type I IFN response inhibit IFN signaling [19], which would alter the expression levels of
iNOD and the production of NO [78]. Physical Ex training leads to increased blood flow and stress,
which contributes to the endothelial expression of nitric oxide endothelial (eNOS). This enzyme is
calcium-dependent, constitutively expressed, and releases NO [14]. Thus, Ex practice could partly
restore the mechanism of control of COVID-19 by NO-releasing.

The inhibitory effect of NO on SARS-CoV infection was demonstrated in Vero E6 cells. NO inhibits
viral protein, replication cycle, and RNA synthesis [78]. Åkerström et al. [78] have described that NO
inhibits SARS-CoV replication by two distinct mechanisms: (i) NO or its derivatives cause a reduction
in nascent expressed protein (S) palmitoylation, which affects the fusion between the S protein and its
cognate receptor, the angiotensin-converting enzyme 2; (ii) NO or its derivatives cause a reduction in
viral RNA production in the early stages of viral replication, and this could be due to an effect on one
or both of the cysteine proteases encoded in the Orf-1a of SARS-CoV.

Ex therapy to stimulate the production of NO could be used for post-infection recovery of
COVID-19 by alleviating lung damage because of its potent and selective pulmonary vasodilation [80].
Nowadays, inhaled NO is applied to treat pulmonary hypertension, ARDS, and other respiratory
diseases with a relatively good safety profile [81].

6. Oxidative Stress Modulation through Physical Exercise of Oxidative Stress in Lung Cells
Caused by COVID-19

Endogenous oxidants are formed when the lung becomes infected with bacteria or viruses and
when inflammation occurs in response to physiological defense mechanisms. The lungs also receive
all of the cardiac debit by exposure to oxidative sources in the blood, further increasing the lung’s
oxidative stress by increasing reactive oxygen species (ROS). ROS has been observed to increase
significantly in circumstances such as adult respiratory distress syndrome. Finally, severe lung injury
makes mechanical ventilation with high concentrations of inspired oxygen mandatory, which further
contributes to tissue damage by increasing oxygen radicals’ production [82].

SARS-CoV-2 infection triggers massive production of ROS, and excessive oxidative damage is
responsible for secretion of the cytokine storm, impaired immunity, and the emergence of pulmonary
dysfunction in response to COVID-19 infectio [83].

Oxidative stress (OS) occurs when protective antioxidant mechanisms do not react adequately due
to defects in the antioxidant enzyme systems and increased ROS. ROS maintains inflammation and a
high degree of OS by stimulating the NF-κB pathways and regulating the production of inflammatory
energy, and is involved in cellular damage, including lung cells [12]. Against this background,
Ex may be useful because it has been described to suppress the expression of TLR4 and NF-κB [77]
and stimulate the promotion of the antioxidant response by activation of Nrf2 transcription; it may
neutralize these harmful effects related to ROS [84]. Optimization of redox status through Ex may
reduce oxidative stress, stimulate immunity, and reduce the adverse clinical effects of COVID-19
infection in the population.

7. Summary

Ex training exerts immunoregulatory effects, controls the viral gateway, modulates inflammation,
stimulates NO production pathways, and establishes control over OS. Adaptation to usual Ex appears
to affect immune function, particularly innate and adaptive immunity, and improve humoral immunity
with increased vaccination responses. Ex may at least partially counteract the detrimental effect of
SARS-CoV-2 binding to the ECA2 receptor. Ex training can activate anti-inflammatory signaling
pathways. In this regard, the release of anti-inflammatory cytokines from skeletal muscle contraction,
cortisol elevations, prostaglandin E2, and soluble receptors against TNF and IL-2, and increased
mobilization of immunoregulatory leukocyte subtypes may be relevant in attenuating the CRS in
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COVID-19. Ex may enhance alternative routes of NO production, stimulating eNO with antiviral effects
and post-infection lung recovery of COVID-19. The control of OS and ROS production, which produce
cell damage, is modulated by the practice of physical activity by two mechanisms, the inhibition of
NF-κB and the stimulation of Nrf2 pathways.

8. Perspectives

The prospects of Ex against COVID-19 infection, outlined in this manuscript, lead us to believe
that the implementation of Ex programs appropriate to individuals is a useful complementary tool
for prevention, enhancing recovery, improving quality of life, and providing immune protection in
the long term. The intensity should be adjusted to the patient’s current situation and previous sports
history. Therefore, Ex programs should be individualized.
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