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Predicting disease genes for a particular genetic disease is very challenging in bioinformatics. Based on current research studies,
this challenge can be tackled via network-based approaches. Furthermore, it has been highlighted that it is necessary to consider
disease similarity along with the protein’s proximity to disease genes in a protein-protein interaction (PPI) network in order to
improve the accuracy of disease gene prioritization. In this study we propose a new algorithm called proximity disease similarity
algorithm (ProSim), which takes both of the aforementioned properties into consideration, to prioritize disease genes. To illustrate
the proposed algorithm, we have conducted six case studies, namely, prostate cancer, Alzheimer’s disease, diabetes mellitus type
2, breast cancer, colorectal cancer, and lung cancer. We employed leave-one-out cross validation, mean enrichment, tenfold cross
validation, and ROC curves to evaluate our proposed method and other existing methods. The results show that our proposed

method outperforms existing methods such as PRINCE, RWR, and DADA.

1. Introduction

Disease gene prioritization aims to suggest potential implica-
tions of genes in disease susceptibility. Also, it is important
to know genes that are related to a particular disease in order
to treat it. Hence identifying the genes related to a specific
disease is one of the major challenges in the field of bioinfor-
matics. To do so it is vital to consider biological details such
as biological functions, patterns of expression in different
conditions, and interactions with other genes. Furthermore,
it is important to know functional annotations of candidate
genes to a disease or phenotype under investigation as there
are close relationships between the biological aspects and
related diseases.

In medical research it is necessary to understand the
genetic background of diseases with major implications in
order to diagnose, treat, and develop drug for these diseases.
Linkage analysis and association studies are some of the tra-
ditional gene-mapping approaches that have demonstrated
remarkable success in this field [1]. Family-based linkage
analysis is able to correlate diseases with specific genomic

regions. Experimental examination of causative mutations
in genomic regions is expensive and laborious as it consists
of hundreds of genes. Thus to handle this challenge, tradi-
tional approaches are more time-consuming and costly while
computational approaches are often considered to offer more
efficient and effective alternatives. Therefore computational
approaches have been developed to prioritize candidate genes
for a particular disease. Different approaches have used
various data sources such as gene expression [2, 3], sequence
similarity of genes, DNA methylation [4], tissue-specific
information [5], functional similarity and annotations [2, 6],
and protein-protein interactions (PPIs) [7, 8] in determining
the strength of association between genes and diseases as well
as associations between diseases and protein complexes [9].
Network-based prioritization methods [10] are based on the
observation that genes related to similar diseases tend to lie
close to one another in the PPI network [11].

Furthermore, some other researchers have considered
phenotype similarity in terms of gene closeness to prioritize
disease genes. Depending on these studies, the correlation
between phenotype similarity and gene closeness, defined
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by a concordance score, is a strong and robust predictor
of disease genes [12]. Meanwhile, some researchers used
tissue-specific gene expression data along with PPI networks
to prioritize disease genes as many disorders are involved
a disruption of the “molecular fabric” of different, healthy
tissues [12]. In addition, some used support vector machine
recursive feature elimination (SVM-RFE) method for gene
selection in different cancer tissues by incorporating a
minimum-redundancy maximum-relevancy (MRMR) filter
[13]. In current studies, phenotypic similarity between the
diseases of interest to other diseases for which causal genes
are known has been used to prioritize candidate genes [3,
14]. Simultaneously, some researchers grouped diseases into
separate disease families to facilitate the prioritization task
[15]. Topological properties of PPI networks are also used to
understand genetic diseases [3, 8, 16] and essential proteins
[17, 18]. Gongalves et al. combined full topology scores
which were computed by using local clustering on graphs
or diffusion kernels over confidence weighted gene associ-
ation networks by integrating evidence from heterogeneous
sources, in order to prioritize disease genes [19]. Further-
more, special local clustering has been used to identify genes
associated with Alzheimer’s disease. With the use of special
local clustering algorithm it is able to group genes together
with similar expression patterns and identify significantly
varied gene expression values as isolated points [20].

This study proposes a new algorithm called proximity
disease similarity algorithm (ProSim) which combines pro-
tein proximity in PPI networks and disease similarity into
a single mathematical formula used to prioritize candidate
genes. According to the previous work, protein proximity
shows that genes close to the true disease genes tend to be
disease genes as well in PPI networks. Meanwhile, disease
similarity provides details of how query disease is related to
other diseases with regard to phenotypic characteristics. This
is expected to increase the power of prioritizing candidate
genes to a relevant query disease. The proposed algorithm
is evaluated on six case studies and its performance is
compared with other existing methods. The results show that
the proposed method is superior to existing methods.

2. Materials and Method

2.1. Materials. PPI networks: positive PPI network is
downloaded from the Human Protein Reference Database
(HPRD). It consists of 9673 nodes with 39240 edges. Negative
PPI network is downloaded from the Negatome database,
which consists of 1828 nodes with 2171 edges.

Tissue-specific gene expression data are downloaded
from Gene Expression Omnibus (GEO) in the National Cen-
ter for Biotechnology Information (NCBI) website (GEO
accession number GSE 7307).

2.2. Methods. The proposed method consists of five main
steps described in detail in the following five subsections.
The first subsection describes the feature extraction process
in which three main features are used to evaluate the effec-
tiveness of the PPIs in positive and negative PPI databases.

BioMed Research International

PPI networks Raw
data

Disease MeSH details

N N

Extract features: PCC, small

Calculate disease

world clustering coefficient,
similarity

and subcellular localization

N

Weight PPI network —|

l Normalized
PPI network

Calculate proximity by RWR J

J

Prioritize candidate genes

F1GURE 1: Flow chart of ProSim method.

Next a logistic regression function in these three features
is described. The third subsection explains how random
walk with restart method is used to calculate the topological
similarity of the proteins in the PPI network. The fourth
subsection describes how disease similarity is calculated. The
fifth subsection explains how all these details are then used
to prioritize candidate proteins [21]. The entire process is
illustrated as a flow chart in Figure 1.

2.2.1. Feature Extraction. As mentioned in Materials, two
kinds of PPI networks are employed in this study: positive
and negative PPI networks from which three types of features
have been extracted as described in the sequel.

(1) Small World Clustering Coefficient. Small world networks
have high clustering coefficients. The cliquishness of the
neighborhood around an individual edge should therefore be
an indication of how well this edge fits the pattern of a small
world network. In order to calculate the clustering coefficient
of proteins v and u, the following equation was used:

IN(u)—i]
( INIEL)I )

where C,, denotes the small world clustering coefficient,
N(v) and N(u) denote the sets of proteins that directly
interact with proteins v and u, respectively, and N is the
total number of proteins in the network. By using the above
formula, a small world clustering coefficient is calculated
for each pair of proteins in both positive and negative PPI
networks.

min{ N@LIN@I} (INOI ( NN )
C,, = —log —_— €]

i=|[N(v)NN(u)|

(2) Pearson Correlation Coefficient. Pearson correlation coetf-
ficient (PCC) is used to calculate coexpression measurements
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for corresponding genes derived from multiple sets of tissue-
specific microarray experiments [22]. PCC values are used
since coregulated genes are more likely to interact with
each other compared with other genes [23, 24]. Gene PCCs
are mapped to corresponding proteins. In this study, the
correlation coefficient quantifies the similarity of expression
between two genes and shows whether the corresponding
proteins interact or not [1I, 25]. Let v and u be two m-
dimensional vectors representing expression profiles of two
genes which correspond to proteins v and u, respectively. v
and u are the mean of v and u, while ¢, and 0, are the standard
deviations of v and u, respectively. PCC is calculated for both
positive and negative PPI networks by using

1/m)Y" vu;, —vu
o Wm sl | o)
UVOM

(3) Protein Subcellular Localization. The last feature is a
protein subcellular localization data of interacting partners.
Protein subcellular localization data of interacting partners is
represented by either zero or one [26]. To identify the subcel-
lular location of each protein Hum-PLoc technique was used
[27]. Hum-PLoc is a predictor developed by Shen and Chou
that is able to deal with the multiplex problems of the human
protein system. As such, the coverage scope for human pro-
teins is extended from 4 to 12 location sites. The subcellular
location sites are cytoplasm, mitochondria, nucleus, plasma
membrane, centriole, cytoskeleton, endoplasmic reticulum,
extracell, Golgi apparatus, lysosome, microsome, and perox-
isome. In order to get the subcellular location, all the protein
sequences should be obtained first. To get the sequences of
proteins in positive and negative PPI networks proteins are
mapped from the Swiss-Prot database. Thereafter, protein
sequences are used with Hum-PLoc predictor to identify
the subcellular location of that particular protein. Huh et al.
[28] note that not every subcellular location has a biological
significance with others. They publish a list showing which
subcellular locations have a biological significance with each
other. Based on the list, every pair of proteins in PPI networks
is assigned a value of 1 if listed and 0 otherwise. The value
is purely based on the fact of biological significance of each
subcellular location without considering whether protein
interaction actually exists or not.

All these three features are then used in a logistic
regression function to calculate a reliability score for each
protein in the network [26].

2.2.2. Logistic Regression Function. Alogistic regression func-
tion is employed to calculate the weight of each interaction
in the PPI network. To train the logistic regression model
we have used HPRD as the golden standard positive PPI
network and Negatome database as the negative PPI network.
According to the logistic distribution, the probability of
true interaction T,, given the three input features X =
(X, X,, X;) is calculated based on the formula as follows:

1

Pr (T, | X) = L+ exp (o - X BiXi)

(3)

According to the general logistic regression function it is
better if the positive and negative datasets are balanced in
order to obtain the best values for regression constants. For
this purpose we have considered only a portion of the positive
PPI network whose size will be equal to that of the negative
PPI network. For the simplicity we have selected first 2000
interactions from the HPRD and almost the same amount of
interactions from the negative PPI network as well.

2.2.3. Random Walk with Restart to Calculate the Proximity.
For a given disease g, in order to calculate the proximity
between proteins, two sets of genes, seed set S and candidate
set C, are used. A seed set S consists of genes known to
be associated with the query disease g. A candidate set C
specifies one or more genes, “potentially” associated with the
disease g, created by excluding the seed genes from the PPI
network. The rest of genes related to the given PPI are then
considered as the candidate set.

Random walk with restart method is used to compute the
proximity of candidate genes to relevant seed genes. Random
walk with restart method is actually a generalization of
Google’s well-known page-rank algorithm [29]. After getting
the proximity values for each protein in the network, the
values are then sorted in a descending order. These proximity
values are used at the final stage of the process, to prioritize
the candidate proteins.

2.2.4. Calculation of Disease Similarity. Disease similarity
is calculated based on a metric proposed by van Driel et
al. [14], who used the medical subject headings vocabulary
(MeSH) to extract terms from Online Mendelian Inheritance
in Man (OMIM) to identify similar diseases. Each MeSH
entry is a collection of terms with synonyms and plurals,
called a concept. MeSH provides a standardized way to
retrieve information that uses different terminologies to refer
to the same concepts. van Driel et al. tested the prediction
power of different ranges of similarity values by calculating
the correlation between the similarity of two diseases and
the functional relatedness of their causal genes. According
to their research findings, similarity values in the range
[0,0.3] were not informative while genes with similarities
in the range [0.6, 1] showed significant functional similarity.
A logistic function L shown in (4) is used to calculate a
probability that two diseases are related:

L(x)= (4)

1+ e(cx+d) :
The values for the parameters c and d were set as ¢ = —15 and
d =10g(9999). L was then used to compute the prior knowl-
edge to a particular disease, denoted by Y, as shown in

Y(q) = L(S(p.q) (5)

where g is the query disease and S(g, p) is the similarity
between diseases g and p. This equation is slightly different
from the way of prioritization and complex elucidation algo-
rithm (PRINCE) [30] to calculate the disease similarity. Here
disease similarity is calculated as a global representation.
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TABLE 1: Values of 3 for each folder.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

1058.461 1059.242 1058.926 1033.53 8125.654 1058.279 1058.381 1058.601 1069.272 1029.123

—0.04366 —0.03784 0.00557 1.690454 367.802 —0.02873 -0.02004 0.005051 -0.47721 —0.71004

0.875513 0.878244 0.877808 0.748819 58.37504 0.876113 0.877078 0.878938 0.873331 0.669624

-1166.52 —1167.42 -1167.09 —1140.27 -9689.94 -1166.34 -1166.48 -1166.75 —1178.31 —1132.55

The original PRINCE algorithm showed how each protein
in the PPI network was associated with different diseases.
Thus if disease p was more similar to disease g, disease p was
selected.

2.2.5. Final Stage of the Process. At the final stage a prioritiza-
tion score was calculated. In the proposed approach PRINCE
algorithm was modified by incorporating both proximity and
the disease similarity values as shown in

F(v)=« { Z Fuw' (v,u)J +(1-a)(Y(q)+Pro(v)),
ueN()
(6)

where F(v) reflects the relevance of protein v to disease g.
The prioritization function consists of three inputs: given
a PPI network G = (V,E,w), where V represents the set
of proteins, E is the set of interactions, and w denotes the
weight of each interaction, a normalized form of adjacency
matrix w, denoted by w', is derived and used as one of the
inputs. The adjacency matrix is constructed by using the
reliability score obtained from the logistic regression function
discussed in Section 2.2.2. The matrix has been normalized
with the weight of an edge by the degree of its end-points.
The second input gives the prior information of disease
similarity in relation to the query disease q. The calculation
of disease similarity is explained in Section 2.2.4. The third
input value is the proximity of proteins related to the seed
genes. Proximity is calculated by using the random walk with
restart method. In the proposed equation, w'isa V] x V]
matrix, while F, Y, and Pro are displayed as vectors of size [V|.
To improve the execution speed and ensure a convergence of
(6), a propagation based approach similar to work reported by
Zhou et al. [31] is applied. The resultant equation (7) is thus
guaranteed to converge after enough iteration:

F'=aW'F™ + (1-a) (Y (q) + Pro()). (7)

From (7), it can be seen that if a node has prior information,
it will propagate the information to its neighbors. The process
continues until the value converges or the maximum iteration
value, T, is reached. In this study T is set to 100 and values of
o varied in (0, 1).

3. Results and Discussion

This section details experiment results for the proposed
method and also provides comparisons with existing meth-
ods. In particular, the proposed method has been evaluated

via six diseases: breast cancer (MIM: 114480), colorectal
cancer (MIM: 114500), lung cancer (MIM: 211980), prostate
cancer (MIM: 176807), Alzheimer’s disease (MIM: 104300),
and diabetes mellitus type 2 (MIM: 125853). Performance
comparison was done against the original PRINCE algorithm
[30], random walk with restart (RWR) [24], and degree-aware
disease algorithm (DADA) [29].

As indicated in Section 2.2.1, the first part of the exper-
iment was to extract features of concern. Based on (1), the
small world clustering coefficient of each protein interaction
was calculated. Experiment results showed that most of the
coeflicients lay between —0.6 and —0.7. These high clustering
coeflicients of small world networks indicated that neighbors
of a given vertex are more likely to have edges between
them than expected. Next, PCC was calculated for each
PPIL. From the results PCC value was greater than 0.5 for
most of the potential candidate genes selected for a specific
disease while negative values for the same indicated that those
proteins were less significant to a given query disease. Lastly,
a protein subcellular localization data of interacting partners
was determined, in order to find the biological significance
of the subcellular localization. Results indicated that a large
amount of proteins was biologically significant in a given PPI
network.

These three features were then used as inputs of a logistic
regression function (3). Based on a tenfold cross validation
method, ten sets of values of 3 were obtained by the logistic
regression function, shown as fold i, i = 1,2,..., 10, in
Table 1. Under each fold, 4 values corresponding to f3, to
B, are shown. The average value of 3 was then taken as the
value used to calculate the probability of true interaction T,
given the three input features X = (X, X,, X;), which are
1760.946913, 36.81855608, 6.593051189, and —2014.167331 for
Bo to By, respectively.

Proximity values show proteins that are closer to a specific
disease. Therefore if a proximity value is high, it indicates that
the given protein has a high chance of being related to a given
disease. Random walk with restartwas used to give proximity
values. For example, Figure2 shows proximity values of
different proteins for prostate cancer disease. It illustrates
around 25% of proteins in the network have high proximity
value. As a result these proteins have a high prominent factor
to be a disease related gene for a particular disease.

Disease similarity measures how similar a query disease
was to other diseases. If the disease similarity value was less
than 0.3 it meant that the diseases in question were not
significantly relevant. When the value was higher than 0.6,
a high connection existed between the given diseases.
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The final part of the experiment combined the proximity
values with disease similarity values to calculate a prioritiza-
tion score. Testing was carried out based on the prediction
capacity of disease genes of the final equation in order
to find out the best combination of proximity values with
disease similarity. According to the results, by including the
proximity value as an explicit value, the prediction capability
will be increased. Furthermore, to tune the value of « used
in (6), several values were experimented with for all the
six diseases and the results are depicted in Figure 3. From
Figure 3 the best results were obtained when o = 0.9.

The proposed method is compared with three other
methods, namely, PRINCE, RWR, and DADA. By comparing
the top ten genes ranked by each method one can conclude
that the proposed method is able to predict more known and
unknown disease genes than existing methods. Table 2 shows

the top ten genes predicted for each method and for each case
study. Figure 4 shows another representation of how much
each method is able to predict known and unknown disease
genes within the top ten disease genes.

To provide more performance comparisons of the pro-
posed method to existing methods, a leave-one-out cross
validation procedure was used. With each cross validation
trial, a single seed gene related to the query disease was
removed and then each method is evaluated on its success of
identifying and ranking the removed seed gene. To replicate
the case of prioritizing the proteins encoded by genes inside
a linkage interval, an interval of size 100 was used similarly
to the work by Kohler et al. [15]. But in this research, it
will calculate the percentage of true disease genes identified
within the top 100 genes. Hence the threshold value used to
rank the candidate genes was set to 100.

As shown in Table 3 the proposed algorithm performed
better than the other methods. The proposed algorithm
identified true disease genes at 80%, 71%, 69%, 66%, 57%,
and 50% for breast cancer, prostate cancer, Alzheimer’s
disease, colorectal cancer, diabetes mellitus, and lung cancer,
respectively, significantly higher than all the rest; however, it
was comparable to other methods on diabetes. Because the
gene expression details used for the calculation of PCC are
not affect to cause diabetes disease. Therefore it has given a
negative impact on the final result. Hence this has given a
direction to improve in the future work.

Further performance evaluation of the algorithm was
based on sensitivity and specificity measures and used to
draw ROC curves shown in Figure5 for breast cancer,
Alzheimer’s disease, colorectal cancer, diabetes mellitus type
2, lung cancer, and prostate cancer, respectively. Sensitivity
is defined as the percentage of true disease genes that are
ranked above a specified threshold while specificity is defined
as percentage of all nonrelated disease genes that are ranked
below a specified threshold.

Lastly, a mean enrichment value [15] was calculated
for each method and used for performance comparison
purposes. In general, the mean enrichment formula is enrich-
ment = 50/(rank). Based on ranking values, by using the
leave-one-out cross validation process, it was possible to
identify the rank of true disease genes for each method. The
results are shown in Table 4. From the results, the proposed
algorithm performed better than the other algorithms.

Tenfold cross validation is carried out to illustrate the
performance of the proposed algorithm with the combination
of positive and negative PPI networks as well as with positive
PPI network. At each cross validation trial onefold PPIs were
removed from the total PPI network and the rest of PPIs were
used for the prioritization process. By calculation, onefold is
one-tenth of total PPIs in the total network. Figure 6 shows
the results of the testing. These results show that the proposed
algorithm is effective in identifying the correct disease related
genes from all the positive and negative PPIs. Comparatively,
the proposed method is able to predict disease genes with the
positive PPI network, as well as the total positive and negative
PPI network in an effective way.

The original PRINCE algorithm does not include subcel-
lular localization data as a feature in calculating a reliability of



the PPIs which could have impacted negatively on PRINCE in
prioritizing of the candidate genes from the results of ProSim.
Unlike the original PRINCE algorithm which included dis-
ease similarity unique to a specific PPI network, ProSim gives
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TABLE 2: Top ten genes predicted for ProSim, PRINCE, RWR, and DADA.
Breast cancer Colorectal cancer
ProSim PRINCE RWR DADA ProSim PRINCE RWR DADA
ATM NBN PIK3R1 PIK3R1 TP53 BRCA1 TP53 TP53
PPPIRI3L TIE1 HTT FNTA JUN MSH2 AKT1 AURKA
FOSL2 BRCA1 CD44 ATM PIK3R1 MLH1 AKT RHOA
ERBB4 MSH2 CALM1 HTT HTT EP300 IL3 RET
BRIP1 PATZ1 JUN SHOC2 NRAS AKT1 NRAS NTRK1
HIP1 DGCR2 MAPK3 RASSF2 PSEN1 BUBIB BRCA2 CCND1
UBE2K ATM TPX2 CD44 CTNNB1 0GGl BUBIB BUBIB
RALGDS MREIIA SVIL CALMI CBL RNF139 LYN BRCA2
FOXG1 H2AFX RAF1 JUN AKTI APC AURKA EP300
PLK1 TERF2 PSEN1 RAF1 VAV1 EXO1 HNF1A GABRBI1
Lung cancer Diabetes mellitus
ProSim PRINCE RWR DADA ProSim PRINCE RWR DADA
PPPIRI3L TP53 PPPIRI3L IMPDH2 TP53 RHOA AKT1 AKT1
ERBB4 VRK1 MAP3K8 APLP2 JUN MAFA PLN INS
PLK1 TP53RK IGFIR PLK1 PIK3R1 BSCL2 PSEN1 PSEN1
BRD7 ERBB4 BRD7 ICMT HTT SLC2A2 LYN JUN
UBE2K CDKN2A UBE2K GSTM4 HNFIA HNF4A HNFI1A HNF1A
EGFR TP53INP1 HUWEI1 RAD17 PSEN1 INS PCBD1 TP53
TAPBP TAG TAPBP KLF4 LYN IAPP CASP8 ALB
UHMKI1 EGFR UHMKI1 CASP8 CBL NEURODI1 PIK3R1 NEURODI1
MAP3K8 RRM2 DGCR2 PIASI AKTI GATA5 HTT CEBPA
HIP1 CUL9 HIP1 FOSL2 VAV1 MAP3KI13 EP300 RAC3
Prostate cancer Alzheimer’s disease
ProSim PRINCE RWR DADA ProSim PRINCE RWR DADA
TP53 NBN TP53 TP53 TP53 HSD17B10 AKT1 AKT1
JUN BRIP1 RNASEL RNASEL JUN BACE2 PAX2 SFRP2
HTT JUN PAX2 AR HTT TP53 CASPS8 PAX2
CD44 BRCA1 ERBB2 ABCE1 APBB2 JUN PSEN1 CASP8
BARDI1 HTT CD19 AKT1 PSEN1 HADHB APBB3 WT1
CD82 RAD50 BACE2 ERBB2 LYN NAEIL BLMH PSEN1
ERBB2 TP53 CASP8 CASP8 VAV1 APLP2 MAPKS8 RAC3
REL MREIIA TSG101 BUBIB CCND1 BLMH WTI RBI
SLPI ATM ATM CCNE1 CASP8 APBBI SFRP2 MAPKS8
JUNB BRCA2 CCND1 STAT5A KIT F12 RAC3 RHOA
TABLE 3: Fraction of true disease genes. TABLE 4: Mean enrichment.
ProSim PRINCE RWR DADA ProSim PRINCE DADA RWR
Breast cancer 80% 77% 72% 75% Breast cancer 0.5565 0.4896 0.393 0.2852
Alzheimer’s 69% 58% 55% 53% Alzheimer’s 0.1634 0.1552 0.087 0.151
Colorectal cancer 66% 63% 61% 62% Colorectal cancer 6.3233 0.5926 3.6511  2.8521
Diabetes mellitus type 2 57% 589% 539 69% Diabetes mellitus type 2 0.1998 0.246 0.2414 0.1488
Lung cancer 50% 48% 42% 45% Lung cancer 0.2544 0.1757 01625  0.1531
Prostate cancer 71% 61% 53% 60% Prostate cancer 6.2578 3.0871 5.8649  2.386

a global representation on how diseases relate to each other. In
ProSim disease similarity is included as to how query disease
relates to other disease. Hence, it will give more focus on
the query disease than the original PRINCE algorithm, in
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which disease similarity is included for each protein in the
PPI network. On the other hand random walk with restart
method does not include disease similarity, which could have
had a negative influence on their final result on detecting
effective candidate genes for a specific disease.

Besides using different techniques to evaluate the perfor-
mance of ProSim, it was important to identify the relevance
of high ranked candidate genes to a given query disease. Thus,
further evidence was sought from other online databases
and scientific publications. By cross-checking predicted genes
with other online databases and scientific publications it was
found that HT'T, SLPI, JUN, REL, and CD44 genes are tumor
suppressors involved in several types of cancer, which were
not predicted by the original PRINCE algorithm [32-36] yet
identified by ProSim. ProSim also identified JUNB, MDM2
genes, which are used for therapy in prostate cancer [37, 38].
For Alzheimer’s disease PSEN1 and JNK genes [39, 40] were
ranked higher by the proposed algorithm. Finally, for diabetes
mellitus type 2 disease, the proposed method ranked PIK3R1
and JUN genes [41] high. One important finding was that
TP53 gene [35, 42] was ranked high except breast cancer
and lung cancer as a common disease gene related to other
diseases. When it comes to breast cancer, PPPIRI3L, FOSL2,

and ERBB4 were detected as new disease genes [43-45].
Furthermore, JUN, PIK3R1, and HTT genes were detected as
tumor progression genes for colorectal cancer [46-48] and
PPPIRI3L gene for lung cancer disease [49]. In addition, for
lung cancer disease it is able to detect some genes which affect
therapy, such as ERBB4 and PLKI1 genes [50, 51].

By considering the overall process, subcellular localiza-
tion data, protein’s small world clustering coefficient, and
PCC of gene expression values gave a very good combination
for calculating reliability of the PPIs. Furthermore experi-
ment results showed that combining protein’s proximity and
disease similarity concepts resulted in improved performance
in identifying and ranking candidate genes for a specific
disease.

4. Conclusion

Prioritizing disease related genes is one of the important
challenges in the field of bioinformatics. In order to address
this challenge different computational methods have been
introduced in past years. From the literature review it has
been suggested that it is important to incorporate topolog-
ical similarity with disease similarity in an algorithm for
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prioritizing genes related to a particular disease. This paper
has proposed a new algorithm called ProSim. In this study,
topological similarity is calculated using a random walk with
restart method while disease similarity is calculated using
the method introduced by van Driel. The performance of the
proposed method is evaluated by comparing with three other
methods, PRINCE, RWR, and DADA. Leave-one-out cross
validation, mean enrichment, and ROC curves are the main

evaluation techniques. Furthermore, the proposed method is
able to predict disease genes effectively from a PPI network
which consists of positive and negative PPIs. Last but not
least it is able to identify some important candidate genes,
previously ranked low by other methods, which include
TP53, BRCAL JUN, and PSENLI. Even though it outperforms
existing methods considered, further experiments should
be carried out to fine-tune its performance by including
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other biological data such as tissue-specific details as well as
incorporating other mathematical procedures.
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