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OBJECTIVES: Sepsis remains a highly lethal disease, whereas the precise rea-
sons for death remain poorly understood. Prokineticin2 is a secreted protein that 
regulates diverse biological processes. Whether prokineticin2 is beneficial or del-
eterious to sepsis and the underlying mechanisms remain unknown.

DESIGN: Prospective randomized animal investigation and in vitro studies.

SETTING: Research laboratory at a medical university hospital.

SUBJECTS: Prokineticin2 deficiency and wild-type C57BL/6 mice were used 
for in vivo studies; sepsis patients by Sepsis-3 definitions, patient controls, and 
healthy controls were used to obtain blood for in vitro studies.

INTERVENTIONS: Prokineticin2 concentrations were measured and analyzed 
in human septic patients, patient controls, and healthy individuals. The effects of 
prokineticin2 on sepsis-related survival, bacterial burden, organ injury, and inflam-
mation were assessed in an animal model of cecal ligation and puncture–induced 
polymicrobial sepsis. In vitro cell models were also used to study the role of pro-
kineticin2 on antibacterial response of macrophages.

MEASUREMENTS AND MAIN RESULTS: Prokineticin2 concentration is dra-
matically decreased in the patients with sepsis and septic shock compared with 
those of patient controls and healthy controls. Furthermore, the prokineticin2 con-
centration in these patients died of sepsis or septic shock is significantly lower 
than those survival patients with sepsis or septic shock, indicating the poten-
tial value of prokineticin2 in the diagnosis of sepsis and septic shock, as well 
as the potential value in predicting mortality in adult patients with sepsis and 
septic shock. In animal model, recombinant prokineticin2 administration protected 
against sepsis-related deaths in both heterozygous prokineticin2 deficient mice 
and wild-type mice and alleviated sepsis-induced multiple organ damage. In in 
vitro cell models, prokineticin2 enhanced the phagocytic and bactericidal func-
tions of macrophage through signal transducers and activators of transcription 3 
pathway which could be abolished by signal transducers and activators of tran-
scription 3 inhibitors S3I-201. Depletion of macrophages reversed prokineticin2-
mediated protection against polymicrobial sepsis.

CONCLUSIONS: This study elucidated a previously unrecognized role of proki-
neticin2 in clinical diagnosis and treatment of sepsis. The proof-of-concept study 
determined a central role of prokineticin2 in alleviating sepsis-induced death by 
regulation of macrophage function, which presents a new strategy for sepsis 
immunotherapy.

KEY WORDS: immunoregulation; macrophage; prokineticin2; sepsis

Sepsis is designated as a highly lethal condition within the worldwide 
human population (1, 2) and with a current infection rate estimated to be 
between 47 and 50 million people, culminates in the demise of 11 million 

individuals annually (3). Clinical biochemical research has inevitably involved 
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challenging and extensive studies of sepsis pathogen-
esis and survival (4–7), yet reasons for high morbidity 
rates remain poorly understood. Clinical diagnosis of 
the disease and treatments thereof to improve patient 
survival have provided evidence-based practices, al-
though many of these have been deemed ineffective (8, 
9) as, for example, Drotrecogin alfa (Xigris, activated 
protein C) was withdrawn after a decade of application 
(10). In view of a recent World Health Organization 
resolution (11), novel treatment regimens for sepsis 
are now being rigorously pursued.

Recent applications of molecular diagnostics have 
identified several contenders as biomarkers of sepsis 
(12); however, many fall short of the stringent criteria 
for translation into clinical use. For instance, procal-
citonin, one enthusiastic biomarker in diagnoses of 
general sepsis, was transpired to be somewhat subjec-
tive in precision for diagnosis of early-onset neonatal 
sepsis for its naturally higher physiologic abundance 
and inequivalence in specificity (13, 14). Furthermore, 
time-consuming blood culture, once considered to 
be a mainstay diagnostic criterion, has, in fact, been 
overshadowed owing to a high frequency of false-neg-
ative results.

High mortality rates in patients afflicted with sepsis 
that derives multiple organ failure, are considered to in-
volve, among others, inflammatory disorders (15, 16),  
immune cell paralysis (17–20), coagulopathy (21–23), 
and neuromuscular damage (24, 25). These ultimately 
pertain to immune dysfunction (26, 27). Our pre-
vious work revealed that representative macrophages, 
alongside a variety of bioactive cytokines, are cen-
tral to the occurrence and development of sepsis, al-
though the molecular mechanism for this is not well 
understood (28–32).

In this present study, we noted a surprising change 
in abundance of prokineticin2 in septic patients. This 
protein, originally identified as a member of the proki-
neticin family in Bauhinia variegata (33), was deemed 
to be a gastrointestinal secretory polypeptide involved 
in the regulation of peristalsis (34). Subsequently, pro-
kineticin2 was also found to be widely expressed in a 
diverse array of tissues ranging from the CNS (35) and 
nonsteroidogenic cells of the testes (36) to immune 
cells (37, 38). Signal transduction by prokineticin2 is 
mediated via two structurally homologous receptors 
PKRs (PKR1 and PKR2) (39). Prokineticin2 is asso-
ciated with a variety of biological functions including 

neurodevelopment (35, 40), angiogenesis (38, 41),  
circadian rhythms (42), reproduction (43, 44), and 
inflammatory discomfort (45). Alongside these, pro-
kineticin2 promotes chemotaxis and alternative A2 re-
activity of astrocytes (46).

Despite the overwhelming evidence in support for 
the role of prokineticin2 in multiple diseases, a direct 
correlation between the presence of this protein and 
the occurrence/development of sepsis, tied to a con-
comitant regulation of innate immunity and inflamma-
tion during sepsis, remains unclear. Here, we observed 
a significant correlation between the prokineticin2 
hyposecretion and sepsis progression compared with 
a healthy control group. In an animal model, recombi-
nant prokineticin2 (rPK2) administration significantly 
improved the survival rate of septic mice and some-
what alleviated sepsis-induced multiple organ dam-
age associated with macrophage function. We thereby 
present a previously unrecognized aspect for the reg-
ulation of sepsis pathogenesis using prokineticin2-
induced immunotherapy of the disease.

MATERIALS AND METHODS

Detailed methods are available in the Online 
Supplement (http://links.lww.com/CCM/G858).

Study Population

Adult patients and pediatric patients who met the clin-
ical criteria for sepsis-3 along with the consensus and 
criteria recommended by the Society of Critical Care 
Medicine and the European Society of Intensive Care 
Medicine (1) were enrolled at admission to the ICU 
of the First Affiliated Hospital of Chongqing Medical 
University and the Children’s Hospital of Chongqing 
Medical University, respectively. Patients with malig-
nancy, organ transplantation, immunodeficiency di-
sease, autoimmune diseases, pregnancy, and the use of 
immunosuppressive medication in the past 2 months 
were excluded from the study. Nineteen adult and 
10 pediatric nonseptic patients (patients with severe 
pneumonia who meets the diagnostic criteria for pneu-
monia [47, 48] but not for sepsis [1], Sequential Organ 
Failure Assessment score < 2) were recruited as patient 
controls. Specimens were collected after the patient 
was admitted to the ICU with sepsis or septic shock 
and before medical intervention. The clinical data, in-
cluding WBCs, C-reaction protein and procalcitonin, 
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microbial culture results, the length of ICU stay, or mor-
tality during the 28-day study period, were recorded. 
Healthy control samples were obtained from healthy 
donors. This protocol was approved by the Clinical 
Research Ethics Committee of Chongqing Medical 
University (Institutional Review Board of Children’s 
Hospital of Chongqing Medical University, File No: 
[2019] Ethical Review [Clinical Research] No. 23),  
and informed consent was obtained from all partici-
pants according to the Declaration of Helsinki.

Animal Model

Six- to eight-week-old male wild-type (WT) C57BL/6 
mice (18–22g) were purchased from Beijing HFK 
Bioscience Co., Ltd, and heterozygous PK2 deficient 
mice (PK2±) C57BL/6 mice were purchased from 
Cyagen Biosciences Inc. All mice were raised at SPF 
laboratory of Chongqing Medical University. The an-
imal experiments were done in accordance with the 
Chongqing Medical University Institutional Animal 
Care and Use Committee’s guidelines. A polymicro-
bial sepsis model was induced by cecal ligation and 
puncture (CLP) as described in our previous stud-
ies (28–30). Briefly, the mice were anesthetized with 
1.5% pentobarbital sodium (75 mg/kg body weight) 
intraperitoneally, and then about 1 cm incision was 
made in the midline abdomen after skin disinfection. 
The cecum was exposed, ligated at the end 2/3, and 
punctured with a 26-gauge needle (nonsevere CLP) or 
with a 21-gauge needle (severe CLP). The cecum was 
then placed back in the peritoneal cavity, and the inci-
sion was closed with surgical staples. Sham-operated 
(control) animals underwent identical laparotomy 
operation; the cecum was exposed but not ligated or 
punctured. One milliliter of saline was subcutane-
ously administrated for resuscitation. Buprenorphine 
(0.05 mg/kg body weight) was injected intraperitone-
ally every 6 hours after surgery for postoperative pain 
relief until 48 hours after surgery. A humane endpoint 
was used for the lethal CLP model.

In Vivo Administration of Recombinant Proteins

For in vivo prokineticin2 treatment, each mouse was 
injected intraperitoneally with 100 ng of murine rPK2 
(PeproTech, Rocky Hill, NJ) or phosphate-buffered sa-
line (PBS) after surgery and then 50 ng per mice intra-
peritoneally daily as a maintenance dose.

Statistical Analysis

The data are presented as mean ± sd. Comparisons 
between groups were tested by Mann-Whitney U test. 
Log-rank tests were performed for survival studies. 
All analyses were done with GraphPad Prism Version 
9.0.0 (GraphPad Software, San Diego, CA). p values 
less than 0.05 were considered statistically significant.

RESULTS

Prokineticin2 Concentration Is Significantly 
Decreased in Patients With Severe Sepsis

As a start point in our analysis of the relationship be-
tween prokineticin2 and the progression of sepsis, 
blood samples from both adult and pediatric patients 
afflicted with sepsis and septic shock were assessed 
alongside patient controls and healthy control indi-
viduals (characteristics of patients with sepsis and con-
trols are shown in Supplemental Table 1 [http://links.
lww.com/CCM/G859] and Supplemental Table 2  
[http://links.lww.com/CCM/G860]). Patients with se-
vere pneumonia were used as a control for nonseptic 
infected patients. As expected, it was found that levels 
of prokineticin2 in both adult (n = 47) and pediatric 
(n = 31) patients with sepsis were significantly reduced 
with respect to healthy control subjects and patient 
control subjects. In addition, patients with septic shock 
had lower prokineticin2 than those with sepsis (Fig. 1,  
A and B). Although the healthy control and patient 
groups were not well matched for age, we found no 
correlation between age and prokineticin2 serum con-
centration (data not shown) and do not think this dif-
ference explains the patterns seen. The above results 
suggest a potential role for prokineticin2 as a bio-
marker of sepsis and septic shock.

To further evaluate the role of prokineticin2 levels in 
predicting mortality in adult patients with sepsis and 
septic shock, we analyzed the relationship between pro-
kineticin2 levels and mortality and found that patients 
with lower prokineticin2 levels had higher mortality. 
(Fig. 1C). This observation indicates that the concen-
tration of prokineticin2 is inversely proportional to the 
severity of the disease. Overall, these data support that 
the notion of prokineticin2 in peripheral blood can be 
applied as a significant biomarker for progression and 
severity of the disease and predicting death in patients 
with sepsis and septic shock.
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Prokineticin2 Potentiation of Septic Mice 
Survival

To show a precise variation in patterns of prokineti-
cin2 expression during the progression of sepsis, a 
CLP-induced sepsis mouse model was employed in 
which the levels of prokineticin2 were observed to in-
crease mildly during onset of the disease and gradually 
diminished throughout the subsequent progression of 
sepsis (Supplemental Fig. 1, A and B, http://links.lww.
com/CCM/G861; legend, http://links.lww.com/CCM/
G869). In view of the above, it was deemed essential 
to ascertain a more precise role of prokineticin2 in the 
onset and development of sepsis. Since it is difficult to 
obtain homozygous prokineticin2-deficient mice for 
their dysgeneses, we performed the survival rate experi-
ment with prokineticin2 heterozygous (PK2±) mice and 
WT mice. The results showed that the survival rate of 
sepsis PK2± mice (0%) was significantly lower than that 
of WT mice (37.5%) (Fig. 2A). Meanwhile, PK2± mice 
lost weight faster than WT mice (Fig. 2B). Furthermore, 
the survival of septic mice after rPK2 administration 
was significantly improved in both WT mice and PK2± 
mice (Fig. 2, C and D). Moreover, significantly reduced 
bacteria loads were observed in samples of peritoneal la-
vage fluid (PLF), blood, and spleen tissues from within 
rPK2-treated septic WT mice and PK2± mice compared 

with PBS control septic ani-
mals (Supplemental Fig. 2, 
A and B, http://links.lww.
com/CCM/G862; legend, 
http://links.lww.com/
CCM/G869).

In addition, organ dam-
age in sepsis progression 
observed through histologic 
examinations of hematox-
ylin eosin-stained tissues 
from PBS controls com-
pared with rPK2-treated 
animals was performed 
(Supplemental Fig. 3, 
http://links.lww.com/CCM/
G863; legend, http://links.
lww.com/CCM/G869).  
Within PBS control an-
imals, lung tissue injury 
was more prevalent as de-
termined by severe hemor-

rhaging within, leukocyte infiltration of, exudation from, 
and destruction of alveolar wall tissue (Supplemental Fig. 
3, http://links.lww.com/CCM/G863; legend, http://links.
lww.com/CCM/G869). Furthermore, hepatic tissue dam-
age within these animals was exacerbated in the forma-
tion of irregular hepatocyte arrays and severe vesicular 
degeneration accompanied by a significant infiltration 
of inflammatory cells compared with corresponding tis-
sue from the rPK2-treated animals (Supplemental Fig. 
3, http://links.lww.com/CCM/G863; legend, http://links.
lww.com/CCM/G869). In spite of these, no morphologic 
changes were observed within spleen or renal tissues of 
the control group, although functional changes may exist. 
At the molecular level, biochemical markers indicative 
of tissue damage were partially reduced within rPK2-
treated group (Supplemental Fig. 2C, http://links.lww.
com/CCM/G862; legend, http://links.lww.com/CCM/
G869), and overall, these observations confirm a protec-
tive function of prokineticin2 during sepsis.

The Protective Role of Prokineticin2 Is 
Macrophage Dependent

Increasingly, evidence supports the notion that macro-
phage involvement in sepsis could potentially alter the 
prognosis of the disease (28–31), although it is uncertain 

Figure 1. Serum prokineticin2 (PK2) levels were significantly decreased in patients with severe sepsis. 
A, PK2 concentrations were measured by enzyme-linked immunosorbent assay (ELISA) in serum 
samples collected from 47 adult patients with sepsis and septic shock, from 19 patients control with 
severe pneumonia, and from 30 healthy control subjects. B, PK2 concentration was measured by 
ELISA in serum samples collected from 31 pediatric patients with sepsis and septic shock, from 10 
patients control with severe pneumonia, and from 20 healthy control subjects. C, The concentration 
of PK2 in serum were detected in adult patients who died of sepsis or septic shock and those who 
survived. Horizontal bars represent median values, and dots represent individual participants.  
*p < 0.05, **p < 0.01 compared between groups (denoted by horizontal bracket; Mann-Whitney U test).
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whether this bares similarities to their involvement in 
cancer and other inflammatory conditions (36, 49, 50). It 
also remains unclear whether rPK2 contributes to neutro-
phil and macrophage recruitment and activation during 
sepsis. In order to verify these processes, the WBC count in 
PLFs was obtained from improved Neubauer hemocytom-
etry, and leucocyte morphology was observed by Wright’s 
staining in samples obtained from prokineticin2-treated 
and PBS control mice. No significant differences were 
observed in either WBC abundance or leucocyte mor-
phology between the two groups (Supplemental Fig. 4,  
A and B, http://links.lww.com/CCM/G864; legend, 
http://links.lww.com/CCM/G869). Thus, flow cytometry 
experiments were performed to ascertain whether any 
observable differences in the abundance of infiltrating 

leukocytes after CLP within PLF between the rPK2-
treated and control groups could be observed. Once 
again, little or no discernable difference in either total cell 
count or proportions of different cell types was observed 
between the two groups (Supplemental Fig. 4C, http://
links.lww.com/CCM/G864; legend, http://links.lww.
com/CCM/G869). These findings contradict previous 
observations which suggested prokineticin2 plays a role 
in neutrophil and macrophage chemotaxis (46, 51) de-
spite the fact that phagocytic and bactericidal function 
of macrophages is significantly elevated in rPK2-treated 
animals (Supplemental Fig. 4D, http://links.lww.com/
CCM/G864 and Supplemental Fig. 5, http://links.lww.
com/CCM/G865 [legend, http://links.lww.com/CCM/
G869]).

Figure 2. Administration of recombinant prokineticin2 (rPK2) protected mice from lethal experimental sepsis. A and B, Lethal sepsis model 
was induced by cecal ligation and puncture (CLP) with wild-type (WT) mice and heterozygous PK2 deficient mice (PK2±) mice; the survival and 
weight were then observed for 2 wk. Comparison of survival curves was by Log-rank (Mantel-Cox) test. C, C57BL/6 mice (18–22 g) underwent 
CLP to induce a lethal sepsis model (n = 8–12), followed by intraperitoneal injection of different doses of rPK2, with half the initial dose daily as 
a maintenance dose, and observed the survival for up to 2 wk. Comparison of survival curves was by Log-rank (Mantel-Cox) test. D, PK2± mice  
(n = 5–8 per group) were subjected to lethal CLP, and then phosphate-buffered saline or rPK2 (100 ng/mouse) was administrated for each 
group. The survival rate was observed for 2 wk. Comparison of survival curves was by Log-rank (Mantel-Cox) test. BSA = bovine serum albumin.
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We further assessed the importance of macro-
phages in the survival of rPK2-treated septic mice 
after severe CLP by depletion of macrophage num-
bers in the presence of clodronate-encapsulated 
liposomes. In this, rPK2-treated septic mice sur-
vival was dramatically reduced when compared 
with PBS-encapsulated liposome-treated control 
mice (Fig. 3A). It is also noteworthy that bacte-
rial clearances within the peritoneal cavity and in 
the blood were adversely affected owing to macro-
phage depletion within control animals (Fig. 3B).  
To determine whether prokineticin2 itself has a direct 
antimicrobial effect, the growth curves of the bac-
teria after the addition of rPK2 were also observed. 
However, no differences were observed in bacterial 
growth curves with different rPK2 concentrations 
(Supplemental Fig. 6, http://links.lww.com/CCM/
G866; legend, http://links.lww.com/CCM/G869), 
indicating that prokineticin2 itself has no direct an-
tibacterial effect. These findings clearly support the 
essential role ascribed to macrophages in prokineti-
cin2-mediated protection against sepsis.

Prokineticin2 Regulates Macrophage Function 
Through Prokineticin2-PKR1-STAT3 Pathway

Prokineticin2 treatment appears to be involved in 
sepsis regression and alleviates tissue damage pre-
sumably in a macrophage-mediated prokineticin2-
dependent fashion. In addition, it has previously 
been suggested that two structural isoforms of PKRs 
(PKR1 and PKR2) mediate prokineticin2 signaling. 
Prokineticin2 can bind to and activate both receptors 
resulting in different biological functions (52). It was, 
therefore, deemed essential to investigate further the 
prokineticin2 signaling pathway within macrophages, 
and three additional experiments were performed.

First, prokineticin2 activity in enhancing the phago-
cytic and bactericidal function of macrophages was in-
directly assessed by monitoring the levels of macrophage 
receptor with collagenous structure (MARCO), a scav-
enger receptor of macrophages involved in phagocytosis, 
and inducible nitric oxide synthase (iNOS), an enzyme 
involved in bactericidal activity within rPK2-treated 
and untreated control macrophages. Little or no signif-
icant difference in the expressions of either MARCO or 

iNOS could be discerned 
between rPK2-treated and 
PBS control macrophages 
(Supplemental Fig. 7, A 
and B, http://links.lww.
com/CCM/G867; legend, 
http://links.lww.com/
CCM/G869). In addition, 
rPK2 treatment of mac-
rophages did not signif-
icantly alter secretion of 
common inflammatory 
cytokines, including inter-
leukin (IL)–6, tumor ne-
crosis factor-α, IL-10, and 
IL-17A (Supplemental 
Fig. 7C, http://links.lww.
com/CCM/G867;  legend, 
http://links.lww.com/
CCM/G869). In addition, 
rPK2 treatment of macro-
phages did not significantly 
alter secretion of com-
mon inflammatory cyto-
kines, including interleukin 

Figure 3. Prokineticin2 regulates macrophage function during sepsis. A and B, Forty-eight 
hours before the survival experiment and the bacterial load experiment, clodronate-encapsulated 
liposomes and phosphate-buffered saline (PBS)-encapsulated liposomes were intraperitoneally 
administered to exhaust the macrophages. C57BL/6 mice (18–22g, n = 5–8 per group) were 
subjected to lethal cecal ligation and puncture (CLP) surgery with a 26-gauge needle, followed by 
intraperitoneal injection of recombinant prokineticin2 (rPK2) (100 ng) or PBS, with half the initial 
dose daily as a maintenance dose, and observed the survival for up to 2 wk. Three independent 
experiments were performed. **p < 0.01, comparison of survival curves by Log-rank (Mantel-Cox) 
test. C57BL/6 mice (n = 5–8 per group) were subjected to sublethal CLP with a 26-gauge needle 
and then intraperitoneally injected with PBS or rPK2 (100 ng/mouse). Twenty-four/48 hours later, 
the number of bacterial colonies from blood, spleen, and peritoneal lavage fluid was counted after 
24-hr culture with blood agar. *p < 0.05, **p < 0.01 when compared with control group (Mann-
Whitney U test). CFU = colony-forming unit.
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(IL)–6, tumor necrosis factor-α, IL-10, and IL-17A 
(Supplemental Fig. 6C, http://links.lww.com/CCM/
G866; legend, http://links.lww.com/CCM/G869).

Second, quantitative polymerase chain reaction 
(qPCR) was employed to directly establish levels of ex-
pression from PKR1and PKR2 genes in macrophages 
stimulated with heat-killed Pseudomonas aeruginosa 
(multiplicity of infection = 100). It was found that 
PKR1 expression is slightly higher than PKR2 (Fig. 
4A). To further clarify the role of prokineticin2 bind-
ing with different PKRs in regulating macrophages, we 
conducted phagocytosis and bactericidal experiments 
after short interfering RNA (siRNA) knockdown of 
the PKR isoforms. The knockdown of the targets was 
confirmed by qPCR and WB (Fig. 4B). The results 
showed that after interfering with PKR1, phagocytosis 
activity of macrophages was significantly reduced, 
although bactericidal action was largely unaltered  
(Fig. 4C). Neither phagocytic nor bactericidal func-
tions were significantly changed after knockdown of 
PKR2 (Supplemental Fig. 7D, http://links.lww.com/
CCM/G867; legend, http://links.lww.com/CCM/
G869). These findings suggest that prokineticin2 regu-
lates the bacterial clearance function of macrophages 
in a prokineticin2-PKR1–dependent manner.

Further studies of the signaling pathway revealed that 
rPK2 promoted STAT3 phosphorylation by 15 and 30 
minutes in rPK2-treated macrophages compared with 
control, whereas other signaling pathways remained 
unaltered (Fig. 4D). Several studies have found that the 
STAT3 pathway is involved in the regulation of macro-
phage phenotype and function in a variety of diseases. 
Thus, phagocytosis experiments were performed after 
blocking STAT3 with the specific inhibitors S3I-20 
and showed that prokineticin2 did not effectively en-
hance the phagocytic function of macrophages after 
STAT3 inhibition (Supplemental Fig. 8, http://links.
lww.com/CCM/G868; legend, http://links.lww.com/
CCM/G869). This finding suggests that prokineticin2 
regulates the phagocytic function of macrophages in a 
prokineticin2-PKR1-STAT3–dependent manner.

DISCUSSION

In the current study, a previously unrecognized role of 
prokineticin2 in regulating the host immune response 
during sepsis has been elucidated. This study deter-
mined a central role of prokineticin2 in alleviating 

sepsis-induced death by regulation of both macro-
phage function and inflammation response, which 
presents a new strategy for sepsis immunotherapy. 
This present study is of significance for both the di-
agnosis and treatment of sepsis. In terms of diagnosis, 
the insufficiency of prokineticin2 is closely related 
to deterioration in patient wellbeing, suggesting that 
continuous detection of prokineticin2 may be con-
tributory to the diagnosis of sepsis/septic shock and 
the progress of recovery. Another important value of 
prokineticin2 we found is its ability to predict death in 
patients with sepsis and septic shock. The uniqueness 
of prokineticin2 as a novel biomarker in sepsis diag-
nostics lays in the fact that it is down-regulated during 
sepsis just similar to a negative acute phase reaction 
protein, whereas concentrations of existing markers 
appear to be elevated.

As treatment of sepsis, we demonstrate that pro-
kineticin2 plays a protective role thereby improving 
survival rates in septic mice through enhancement 
of macrophage-mediated bacterial clearance. Animal 
experiments showed that the protective effect of proki-
neticin2 in sepsis was enhanced with the increase of the 
dosage in a certain range. So, replenishment of rPK2 
may be a novel strategy for the treatment of sepsis and 
septic shock in patients with low prokineticin2 levels. 
These activities, therefore, circumvent an otherwise 
dire clinical prognosis for patients, where insufficient 
levels of prokineticin2 are a major hazard in sepsis 
progression, suggesting the value of prokineticin2 as 
a potential new drug. However, considering the con-
centration variation pattern of prokineticin2 in septic 
mouse models and the apparent biphasic response, it 
is worth noting that the safety dose range of prokineti-
cin2 needs to be precisely determined in preclinical 
research through pharmaceutical studies, because ex-
cessive doses may have adverse effects as suggested by 
animal experiments. The other thing worth mention-
ing is that the CLP model may not completely mimic 
normal practice human fecal peritonitis as antibiotics 
were not used in the experiment, so more research on 
clinical and animal trials is needed.

Despite the significant protective effect of prokineti-
cin2 during sepsis, the reason why prokineticin2 lev-
els decrease during sepsis remains unclear. Previously, 
neutrophils and other WBCs were deemed to be im-
portant sources of prokineticin2 (49, 51). Moreover, 
sufferers of severe sepsis are also afflicted with 
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immunosuppression, primarily as a consequence of a 
reduction in WBC numbers and immune cell paralysis, 
which must also surely result in significantly reduced 
levels of prokineticin2 expression. Moreover, a splice 
variant of prokineticin2, PK2L (a long form of proki-
neticin2, PK2β), which has a different in vivo distribu-
tion and function to prokineticin2, has recently been 

isolated (53). In addition, it remains unclear whether 
prokineticin2 levels physiologically change at 72 hours 
in neonates akin to the effects of other biomarkers; for 
example, procalcitonin which, thereby forced doctors 
to make additional adjustments when using it.

In this study, we found that prokineticin2 levels have 
potential value in predicting mortality in adult patients 

Figure 4. Prokineticin2 regulates macrophage function through prokineticin2-PKR1 pathway. A, The messenger RNA (mRNA) expression 
of prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2) was determined by reverse transcriptase-polymerase chain reaction 
(PCR) (2–ΔΔCt). Data are expressed as mean values ± sd and were analyzed using the nonparametric Mann-Whitney U test. *p < 0.05, 
compared between two groups. B, The knockdown of the target PKRs were confirmed by quantitative PCR and WB. ***p < 0.001 when 
compared with control group (Mann-Whitney U test). C, The appropriate number of peritoneal macrophage (PMφ) were cultured in 
serum-free Dulbecco's modified eagle medium (DMEM) and transfected with the corresponding short interfering RNA (siRNA) reagents, 
and the transfection efficiency was detected. Then transfected cells were treated with phosphate-buffered saline (PBS) or recombinant 
prokineticin2 (rPK2) (10 ng/mL) for 12 hr and challenged with Pseudomonas aeruginosa for 30 min and then half of the cells plated to 
blood agar after a 10-fold series of dilution for phagocytosis. The other half of the cells were incubated another 90 min and then plated to 
blood agar after a 10-fold series of dilution for killing. *p < 0.05, **p < 0.01 when compared with control group (Mann-Whitney U test).  
D, rPK2 (10 ng/mL) and PBS-treated PMφ were collected and extracted protein for Western blot test. 2–ΔΔCt is a method for quantitative 
analysis of fluorescence data by quantitative reverse transcription-PCR.  CFU = colony-forming unit, p-STAT3 = phosphorylated STAT3.
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with sepsis and septic shock. However, this analysis was 
not performed in children because only two deaths in 
children with sepsis and septic shock were included in 
our data, which made statistical analysis difficult.

In the current study, we provided direct evidence 
that prokineticin2 enhances the phagocytic bactericidal 
function of macrophages. The regulation of prokineti-
cin2 on macrophages provides us with a new under-
standing of the innate immune regulation of sepsis, 
which may help us to further reveal the pathogenic 
mechanisms of sepsis. In consideration of the fact that 
sepsis is a life-threatening, multiple organ dysfunctional 
condition as a consequence of impaired host response to 
infection and given that the receptor for prokineticin2 
is widely expressed in other tissues (52), it is plausible 
that prokineticin2 also directly acts within other tissues 
to alleviate their dysfunction and thus improve survival. 
This notion also forms a basis for further study.

In a word, our study elaborated a previously unrec-
ognized role of prokineticin2 in regulating the host 
immune response during sepsis, which provides new 
potential strategies for the diagnosis and immuno-
therapy of sepsis and septic shock.
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