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Abstract: 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly 

referred to as statins, are widely used in the treatment of dyslipidaemia, in addition  

to providing primary and secondary prevention against cardiovascular disease and stroke. 

Statins’ effects on the central nervous system (CNS), particularly on cognition and neurological 

disorders such as stroke and multiple sclerosis, have received increasing attention in recent 

years, both within the scientific community and in the media. Current understanding  

of statins’ effects is limited by a lack of mechanism-based studies, as well as the assumption 

that all statins have the same pharmacological effect in the central nervous system.  

This review aims to provide an updated discussion on the molecular mechanisms contributing 

to statins’ possible effects on cognitive function, neurodegenerative disease, and various 

neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, 

the pharmacokinetic differences between statins and how these may result in statin-specific 

neurological effects are also discussed. 
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1. Introduction 

3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, more commonly referred 

to as statins, are a class of cholesterol-lowering agents used for the treatment of dyslipidaemia  

and reduction of atherosclerotic cardiovascular disease risk. Their broad and potent effects on the lipid 

profile, in conjunction with cholesterol-independent (pleiotropic) cardioprotective effects, have resulted  

in statins being amongst the most highly prescribed medications worldwide. In spite of high patient 

tolerability, concerns over the neurological effects of statins have emerged in recent years. Although 

individual case reports form the basis of these concerns, larger studies and trials have yielded different 

conclusions, with negligible or in some cases beneficial actions being reported. Whilst numerous 

clinical studies have sought to determine statins’ therapeutic potential in various central nervous 

system (CNS) disorders, including dementia, multiple sclerosis (MS), epilepsy, depression and stroke, 

there is still a lack of understanding surrounding the mechanisms of statins’ neurological effects.  

As such, unlike recent reviews and meta-analyses which explore the risks associated with statin use 

and the development of various neurological conditions (for these see [1–4]), this review specifically 

focuses on the molecular mechanisms of statins in the CNS, how pharmacokinetic differences may 

influence statin action, and subsequent differences in effect between statin compounds. 

2. Pharmacology 

2.1. Mechanism of Action 

Statins’ primary mechanism of action is through the competitive, reversible inhibition of HMG-CoA 

reductase, the rate-limiting step in cholesterol biosynthesis. HMG-CoA reductase catalyses the conversion 

of HMG-CoA to L-mevalonate and coenzyme A via a four-electron reductive deacetylation (Figure 1). 

The pharmacophore of all statins bears resemblance to the endogenous HMG-CoA moiety (Table 1);  

it competitively binds to the catalytic domain of HMG-CoA reductase, causing steric hindrance  

and preventing HMG-CoA from accessing the active site [5,6]. 

Through inhibition of HMG-CoA reductase, statins ultimately prevent the endogenous production 

of cholesterol. Additionally, the resultant reduction in cholesterol concentration within hepatocytes 

triggers up-regulation of low-density lipoprotein (LDL)-receptor expression, which promotes the uptake  

of LDL and LDL-precursors from systemic circulation [7]. Consequently, a significant proportion  

of statins’ cholesterol-lowering is a result of the indirect increase in LDL clearance from plasma,  

as opposed to simply reduced cholesterol biosynthesis. Secondary mechanisms of statin-induced 

lipoprotein reduction include inhibition of hepatic synthesis of apolipoprotein B100, and the reduced 

synthesis and secretion of triglyceride-rich lipoproteins [8,9]. 

Overall, the effect on the lipid profile is consistent between statins, with reductions in total 

cholesterol, LDL, and triglycerides, and an increase high-density lipoprotein. Despite having the same 

mechanism of action and comparative effects on cholesterol profiles, statins can still be subdivided 
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into one of two categories: type I, fungal-derived statins (lovastatin, pravastatin, simvastatin);  

or type II, synthetically-derived statins (fluvastatin, cerivastatin, atorvastatin, rosuvastatin, pitavastatin). 

Type I statins maintain close structural homology to mevastatin, the first statin to be developed, 

maintaining the lactone/open acid moiety in addition to the substituted decalin ring skeleton (Table 1). 

Although type II statins maintain the HMG-CoA-like lactone moiety for binding, these compounds are fully 

synthetic inhibitors of HMG-CoA reductase and exhibit highly varied pharmacokinetic properties, 

including differences in metabolism, excretion, half-lives, bioavailability, dosing times and lipophilicity. 

Figure 1. Statins inhibit the conversion of 3-hydroxy-3-methylglutaryl coenzyme A 

(HMG-CoA) to L-mevalonate, the rate-limiting step of the cholesterol synthesis pathway. 

Adapted from [10]. 

 

2.2. Pharmacokinetics 

Upon oral administration all statins are well absorbed from the intestine, though they undergo extensive 

first-pass metabolism within the liver, which reduces systemic bioavailability to 5%–50% [11,12]. 

Most statins are administered as β-hydroxy-acids except for lovastatin and simvastatin, which are pro-drugs 

and require hepatic metabolism to their active β-hydroxy-acid state. Within the systemic circulation 

statins can bind variably to albumin, and also differ substantially with respect to half-life and volume 

of distribution [5,12]. The predominant metabolism route of most statins is via cytochrome P450 

(CYP), with atorvastatin, lovastatin and simvastatin metabolised through isoform CYP3A4, and fluvastatin 

metabolised through isoform CYP2C9 [5,12,13]. In contrast, pravastatin is metabolised largely 

through sulfation, whilst up to 90% of rosuvastatin is removed via biliary excretion [5,12–14]. 

Differences in published reports surrounding the pleiotropic effects and adverse effect profiles between 

statins may be a direct result of their highly varied pharmacokinetic parameters. 
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Table 1. Pharmacokinetic (PK) characteristics of commonly prescribed statins, data summarised from [5,11,13–23]. Blue-coloured moiety  

in chemical structures indicates the pharmacophore. * Logarithms of octanol–water distribution coefficients (log D) are presented at pH 7.0  

for rosuvastatin and pH 7.4 for all other drugs. 

PK Parameter Atorvastatin Fluvastatin Lovastatin Pitavastatin Pravastatin Rosuvastatin Simvastatin 

Molecular 

Structure 

 
  

  
 

 

Statin Type II II I II I II I 

Dosing Time Any time of day Bedtime With food morning & night Any time of day Bedtime Any time of day Evening 

Prodrug No No Yes No No No Yes 

Bioavailability 12% 9%–50% 5% 51% 18% 20% <5% 

Half-Life 14 h 2.3 h 3 h 12 h 1.3–2.7 h 19 h 3 h 

Volume of 

Distribution 
381 L 330 L (not available) 148 L 35 L 134 L (not available) 

Log D * 1.53 1.75 
3.91 (lactone)/ 

1.51 (acid) 
1.50 −0.47 −0.25 to −0.50 

4.40 (lactone)/ 

1.80 (acid) 

Lipophilicity Lipophilic Lipophilic Lipophilic Lipophilic Hydrophilic Hydrophilic Lipophilic 

Active Metabolites Yes No Yes Yes (minimal) Yes (minimal) Yes (minimal) Yes 

CYP Substrate 3A4 2C9 3A4 
2C8, limited 2C9  

mostly glucuronidation 

Limited 3A4 

mostly sulfation 

Limited 2C9 mostly 

excreted unchanged 
3A4 

Effects on  

p-Glycoprotein 

Substrate and 

inhibitor 

No significant 

inhibition 

Substrate and  

inhibitor 

No significant 

inhibition 

No significant 

inhibition 

No significant 

inhibition 

Substrate and 

inhibitor 

OATP Transporters 1B1, 2B1 1B1, 1B3, 2B1 1B1 1A2, 1B1, 1B3 1B1, 1B3, 2B1 
1A2, 1B1,  

1B3, 2B1 
1B1 

Protein Binding 
Very high  

(98%) 

Very high  

(98%) 

Very high  

(95%) 

Very high  

(96%) 

Moderate  

(50%) 

High  

(90%) 

Very high 

(95%) 

Excretion (Renal) <2% 6% 10% 2% 20% 10% 13% 

Excretion (Faecal) >98% 93% 83% 79% 70% 90% 60% 
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3. Statins in the Central Nervous System (CNS) 

3.1. Effects on Brain Cholesterol 

For the most part, cholesterol in the adult brain is largely metabolically inert, with an estimated 

0.02% undergoing turnover daily [24]. The most significant period of high cholesterol synthesis in the CNS 

occurs during active myelination, which occurs in early neural development, through the action  

of oligodendrocytes (ODs) [25]. The rate of cholesterol synthesis decreases significantly after myelination 

has been completed, however it does still continue at a low basal level in the mature adult brain.  

This occurs primarily through de novo cholesterol synthesis by astrocytes, although neuronal de novo 

synthesis and reutilisation of free cholesterol following neuronal death also contributes [26,27]. 

Whilst the effect of statins on the peripheral pool of cholesterol is well-established, statins’ effects 

on CNS cholesterol are less clear. The CNS does not rely largely on cholesterol from systemic circulation 

due to limited metabolic turnover during adulthood and the brain’s inherent capacity to synthesise  

its own cholesterol [25]. As such, reductions in plasma cholesterol concentration following statin treatment 

are unlikely to cause acute disruption in CNS cholesterol homeostasis [28,29]. Unlike cholesterol  

in plasma which has a half-life of only a few days [24], brain cholesterol has been associated with  

a half-life of from 6 months to 5 years [30,31]. Thus, chronic statin therapy may be required before 

significant effects on CNS cholesterol are seen, with reductions in CNS cholesterol possible either 

directly through direct HMG-CoA reductase inhibition, or indirectly via a “sink effect” [32]. 

24(S)-Hydroxycholesterol has been used in many studies as an indicator of brain cholesterol 

turnover, as it is the by-product of cholesterol metabolism through brain-selective cholesterol 24-hydroxylase 

(CYP46A1) and is capable of passing through the blood-brain barrier (BBB) for detection in systemic 

circulation. Following chronic statin administration, numerous studies have shown reductions in plasma 

and cerebrospinal fluid (CSF) concentrations of 24(S)-hydroxycholesterol [33–39]. This is in-line with 

a reduced elimination of cholesterol in the brain as a result of prolonged statin treatment, and suggests 

statins may indeed affect cholesterol homeostasis in the brain. Thus, considering the low turnover rates 

of cholesterol within the CNS, is it possible that chronic statin administration is required for any 

changes in brain cholesterol levels to be observed. 

3.2. CNS Entry 

The key question of whether statin compounds differ in their ability to permeate the CNS often 

emerges when considering neurological effects of statins. Whilst lipophilic statins (atorvastatin, 

lovastatin, fluvastatin, pitavastatin, simvastatin) are capable of crossing the BBB passively, both in vitro 

and in vivo studies suggest that hydrophilic statins are also able to enter the neuroparenchyma [28,40,41]. 

Pravastatin has been shown to induce gene expression changes within the mouse brain [40] and has also 

been detected in human CSF [41] which, considering its poor lipid solubility, raises the question  

of whether active transporters within the BBB facilitate its entry. All statins, including rosuvastatin  

and pravastatin, are known substrates for organic anion transporting polypeptides (OATP; Table 1),  

of which OATP1A2 and OATP1C1 are known to be expressed in the brain [22,42]. While it is possible 

that OATP-mediated influx may be a mechanism for hydrophilic statin entry, there have been no studies  

to date which explore the selectivity of these statins for the CNS-expressed OATP subtypes. Additionally, 
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the presence of monocarboxylic acid transporters at the BBB may represent an alternative mechanism 

of CNS entry, with pravastatin shown to have affinity for monocarboxylic acid transporters in intestinal 

epithelial barriers [43], although studies specific to the CNS are again lacking. 

Regardless of specific transporters, statins are likely to accumulate at differing rates and concentrations 

within the CNS based upon their differing lipid solubilities alone. When also considering their vast 

structural differences, their propensity for carrier-mediated uptake into the CNS may also vary between 

compounds. The possible variations in CNS entry, efflux and indeed potency between statins highlight 

the need for these drugs to be considered individually with respect to their CNS actions. Until such 

time that quantification of CNS uptake and efflux for each statin can be achieved, the assumption that 

statins’ effects within the CNS are equivalent and thus broadly applicable across the whole class 

should be reconsidered. 

4. Statins and Cognition 

Despite a plethora of literature available, the effects of statins on cognitive function remain 

controversial [2,44–49]. Whilst increasing epidemiological evidence suggests a role for statins  

in neurodegenerative conditions including vascular dementia, Alzheimer’s disease (AD) and Parkinson’s 

disease (PD), there are also several large studies in addition to a number of case reports which 

contradict these findings (see summary of mechanisms and evidence in Table 2). Given the previously 

discussed pharmacokinetic differences between statins in the CNS, it is plausible that the differences 

between studies thus far may be explained by different statin molecules exerting varying degrees  

of cognitive effect, however this remains speculative. The lack of information surrounding the molecular 

mechanism of action of statins in the CNS further compounds this uncertainty. 

Table 2. Summary of statins’ effects on cognition and neurocognitive disorders. 

Disorder 

Possible  

Statin-Induced 

Mechanisms 

Strength of Evidence Overall Consensus 

General cognition 

↓ FPP and/or GGPP;  

modulation of adult 

neurogenesis;  

↑ expression of neural 

growth factors. 

Limited in vitro  

and in vivo studies. 

Conflicting evidence 

from epidemiological 

studies and randomised 

controlled trials.  

Case reports of negative 

effects on cognition. 

Recent meta-analyses 

suggest long term  

statin use may reduce 

incident dementia. 

Long-term statin treatment appears 

to be beneficial for cognitive 

function. Whether statins can cause 

acute cognitive disruption as a rare 

adverse effect is unclear due to lack 

of causal evidence from case reports. 

Identification of underlying 

mechanisms in vitro or in vivo is 

difficult due to the subjective nature 

of acute cognition changes. 
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Table 2. Cont. 

Disorder 

Possible  

Statin-Induced 

Mechanisms 

Strength of Evidence Overall Consensus 

Alzheimer’s 

disease 

↓ FPP and/or GGPP;  

↓ APP production;  

↓ ROCK activity;  

↓ amyloid-β 

production;  

↑ amyloid-β 

degradation;  

↓ neuroinflammation;  

↓ ROS. 

Numerous in vitro  

and in vivo studies, 

however some data 

appears model-dependent 

so requires careful 

interpretation. Several 

randomised controlled 

trials, and multiple 

systematic reviews and 

meta-analyses have 

been conducted. 

Studies suggest statins, if started 

before old age and without 

cognitive dysfunction at baseline, 

may reduce incidence of AD.  

It is likely different statins have 

different capacities for inducing 

this effect. 

Parkinson’s 

disease 

↓ ROS;  

↓ nitric oxide;  

↓ lipid peroxidation;  

↓ neuroinflammation;  

↓ NF-κB activity;  

↓ neuronal loss. 

Numerous in vitro  

and in vivo studies, 

however data from 

prospective studies or 

clinical trials is lacking. 

Data from cell and animal models 

is encouraging, however further 

well-designed prospective studies 

are needed to evaluate statins’ 

clinical application in PD. 

Multiple sclerosis 

Altered Th1/Th2 ratio;  

↓ neuroinflammation;  

↑ remyelination-

associated genes;  

↑/↓ differentiation from 

OPC to OD;  

↓ ROCK activity; 

modulation of  

NF-κB activity. 

Numerous in vitro  

and in vivo studies, 

however results from 

these are highly 

conflicting. Simvastatin 

has recently completed 

phase II testing  

as a treatment for MS. 

Vast discrepancies between models 

limits our understanding of the 

mechanisms of statins in MS.  

It appears likely that modulation 

of neuroinflammation and/or T cell 

immunity is involved. Further 

studies needed to determine if 

benefit is seen with statins other 

than simvastatin in MS. 

Neurofibromatosis 

Type I 

↓ Ras activity;  

rescue long-term 

potentiation deficit. 

Limited in vitro  

and in vivo data. 

Conflicting data  

from randomised  

controlled trials. 

Further cell and animal studies are 

recommended to better understand 

possible clinical application in NF-1 

before any further trials in children 

with the disorder are conducted. 

4.1. Cognitive Function 

The effects of statins on cognitive function have received increasing, and arguably disproportionate, 

attention in recent years. Data from clinical trials thus far has been inconsistent, not only in terms  

of results, but also analytical methods, population characteristics, existence of baseline cognitive 

impairments, statin(s) studied, and cognitive endpoints employed. Despite these differences, the majority  

of studies support a role for protection against cognitive impairment and dementia in patients without 

baseline cognitive dysfunction following long-term statin use [2,47,49–51]. A recent meta-analysis 

found that in long-term cognition studies, incident dementia was reduced in statin-treated patients 

(hazard ratio, 0.71; 95% confidence interval, 0.61–0.82) [2]. 
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A number of mechanisms have been implicated in statin-induced protection against cognitive impairment, 

including both cholesterol-dependent and -independent mechanisms. Increased LDL levels and total 

cholesterol have both been independently associated with cognitive impairment, thus the lowering  

of these lipoprotein levels, through statin treatment or other pharmacological/dietary means, has been 

suggested as a strategy for preventing cognitive impairment [52,53]. Despite this apparent disease link, 

statins have not only been implicated in cholesterol-associated reductions in cognitive impairment, but have 

also been found to reduce the odds of cognitive impairment independent of lipid levels [54]. 

Although HMG-CoA reductase is the rate-limiting step of cholesterol biosynthesis in humans,  

it is only the second step of a 28-step process (see Figure 1). Consequently, statin treatment also 

prevents the production of a number of intermediary molecules, including isoprenoid products such  

as farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP). It has been suggested that 

much of the cholesterol-independent actions of statins may be attributable to the inhibition of these 

isoprenoids, including effects on cognitive function. The inhibition of farnesylation by simvastatin  

has been associated with the enhancement of long-term potentiation between neurons in mice [55]. 

This study also found that the protective effect of statin treatment was abolished following 

replenishment of FPP, but not GGPP. Paradoxically, it has been suggested in other studies that the constant 

production of GGPP, but not FPP or cholesterol, is required for neurite outgrowth and maintenance,  

long-term potentiation and learning [56,57], possibly suggested differing neuroprotective effects 

associated with these two isoprenoid intermediates. Given the different roles each of these compounds 

has, known differences in FPP/GGPP ratios across various brain regions may subsequently result  

in different local statin-induced effects within these regions. The mechanisms underlying the differential 

distribution of FPP and GGPP across the brain, and the interplay this has with statin effect, are not known. 

Another possible cellular mechanism which may underlie the possible beneficial cognitive effect  

of statins is the alteration of adult neurogenesis. It is hypothesized that suppression of adult neurogenesis 

may contribute to cognitive dysfunction and emotional symptoms in neurological and psychiatric disorders, 

with neuroinflammation shown to be an inhibitor of neurogenesis in the adult hippocampus [58,59]. 

Simvastatin has been shown to enhance neurogenesis in cultured adult neural progenitor cells, as well 

as in the dentate gyrus of adult mice through enhanced Wnt signalling [60]. In several models  

of traumatic brain injury (TBI), statins have shown promise in enhancing neurogenesis, and in some 

have been associated within reductions in injury-associated neurological sequelae, including reduced 

cognitive deficit. Both simvastatin and atorvastatin have been shown to enhance neurogenesis  

in the dentate gyrus following TBI in rats [61,62], which was associated with increased vascular 

endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) expression [62], 

increased cellular proliferation and differentiation in the dentate gyrus [62], reduced delayed neuronal 

death in the hippocampus [61], and improved spatial learning [61,62]. 

Despite meta-analyses suggesting no adverse effect on cognition resulting from statin treatment  

in the short-term [2], case reports of impairment in the form of transient, reversible memory loss  

and confusion have been published [45]. The presentation of detrimental cognitive symptoms is highly 

varied, both in terms of the nature of impairment (memory loss, amnesia, mood changes), and duration 

of statin therapy before onset (from 2 days to several months). The prevalence of these adverse effects 

across published data from large scale clinical trials and epidemiological studies appears negligible [44], 

however inconsistency of reporting and the risk of bias should be acknowledged. The question of how 
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and why this phenomenon occurs remains unanswered, largely due to the extremely rare nature of this 

effect and uncertainties over the causal nature of these observations. Due to the CNS’ self-reliance  

in terms of cholesterol production, and the low metabolic turnover of cholesterol within the brain,  

it would be unlikely that an acute disruption in cholesterol synthesis in either the peripheral or CNS 

pool would contribute to acute cognitive impairment. This leaves cholesterol-independent, or so-called 

pleiotropic mechanisms implicated in this rare potential adverse effect. 

4.2. Alzheimer’s Disease 

In addition to statins’ acute cognitive effects, much attention has been devoted to the impact of statins 

both in the prevention and treatment of neurodegenerative disorders, such as AD. AD is a chronic, 

irreversible form of dementia, characterised by progressive memory loss and cognitive decline.  

The histopathology of AD is characterised by tissue atrophy and gliosis, in addition to synaptic loss 

predominating in the frontal and temporal cortices [63]. In addition to these structural features, 

intracellular neurofibrillary tangles (composed of hyper-phosphorylated tau protein) and extracellular 

amyloid plaques (composed of amyloid-β) are also typically seen throughout the brain parenchyma. 

The first reports identifying the potential therapeutic benefit from statins in AD were two  

independent observational studies, whereby statin use was associated with reductions in AD occurrence 

of up to 70% [48,64]. Since this time, a number of clinical trials have been published with conflicting 

data. The majority appear to support this initial finding, that statin treatment in patients without 

baseline cognitive impairment and before old age may have a beneficial role in protecting against  

the onset of AD [47,50,51,65]. Furthermore, studies suggest that statins are unlikely to provide 

neuroprotection against disease progression in patients with existing cognitive impairment at baseline, 

or if initiated in late old age [50,51]. Consistent with the previous suggestion that individual statins 

may contribute differently to neurocognitive effects, a cross-sectional study by Wolozin and colleagues 

found lovastatin and pravastatin, but not simvastatin, to be associated with a reduced risk of AD 

development [64]. Given that statins are known to reduce dyslipidaemia, a known contributing factor 

for AD risk, cholesterol-dependent effects in the peripheries cannot be discounted as a mechanism  

for statins’ effects in reducing AD incidence. However, studies which identified that statins reduced  

the risk of developing dementia in patients with physiologically normal lipid profiles suggest that pleiotropic 

effects of statins may also contribute to this observed effect [48,53]. Several animal models of AD have 

shown statins to exert neurocognitive benefits in the absence of changes in plasma or brain cholesterol 

content, further suggesting a cholesterol-independent mechanism of protection [66–68]. 

A lack of information as to the true pathophysiology of AD limits our understanding of statins’ role 

in AD development and progression. A variety of experimental approaches have been used across both 

in vitro and in vivo studies, which has resulted in a number of proposed mechanisms of action  

of statins in AD. As with studies broadly exploring cognitive impairment, the depletion of isoprenoid 

intermediates has again been implicated as a possible mechanism for statin-mediated neuroprotection 

from AD. A study by Eckert and colleagues identified that both FPP and GGPP levels are significantly 

elevated in grey and white matter of human AD patients, however cholesterol levels were not [69]. 

This same study found that simvastatin treatment in mice significantly reduced brain levels of FPP  
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and GGPP levels, though the effects of other statins are yet to be quantified [69]. Whether elevated 

FPP or GGPP levels are contributors to or consequences of AD neuropathophysiology remains unclear. 

Whilst FPP and GGPP appear to mediate some of the effects of statins, it is likely that the downstream 

small GTPase family of signalling molecules also play an important role. These molecules, including 

Ras, Rho, Rac, Rab and Rap, are involved in the prenylation process, whereby their interaction with 

proteins increases lipophilicity and facilitates interaction with cellular membranes. Depletion of FPP 

and GGPP through statin treatment, and subsequent inhibition of these small GTPase proteins,  

has been associated with both neuroprotective and neurotoxic effects in various cell and animal 

models. The modulation of Alzheimer amyloid-β precursor protein (APP) metabolism has been 

implicated as one possible mechanism of neuroprotection, with both in vitro and in vivo studies 

demonstrating statin-induced attenuation of cerebral amyloidosis and APP production [66,70,71].  

It has been suggested that the inhibition of the Rho-associated coiled-coil kinase1/2 (ROCK) pathway 

by both simvastatin and atorvastatin is a possible mechanism for stimulated soluble APP (sAPP) 

shedding in mouse N2a.Swe neuroblastoma cells [70]. A similar study using the same cell line 

identified that simvastatin preferentially increase sAPPα over total sAPP, however had no effect  

on other cell lines including mouse primary neurons and human neuroglioma cells, suggested that this 

response may be unique to this cell line [72]. Based on results from this study which compared  

the effects of lovastatin and simvastatin on APP processing across a number of cell types from human 

and mice, it is likely that statin-induced effects on APP metabolism are cell type-dependent,  

thus specific in vitro data surrounding APP processing should be analysed cautiously [72]. 

Despite statins’ actions on APP metabolism remaining unclear, a number of studies have consistently 

demonstrated reduced amyloid-β peptide (Aβ) production induced by statin treatment. In rat primary 

cortical neurons, treatment with either pitavastatin or atorvastatin (0.2–2.5 µM) induced time- and 

concentration-dependent reductions in Aβ40 and Aβ42 production [73]. Exogenous supplementation 

with cholesterol in this study did not restore Aβ levels, suggesting cholesterol-independent 

mechanisms underlying this observation. 

Due to the apparent clinical link between statin use and reduced incidence/severity of inflammatory-based 

CNS pathologies, including AD, the reduction of chronic neuroinflammation has been proposed  

by many as a key mechanism for statin-induced neuroprotection. In experimental models of AD,  

the reduced production of Aβ has been attributed to reduction of neuroinflammation, and cells involved  

in the neuroinflammatory response [72,74]. In rats, atorvastatin prevented Aβ-induced microglial 

activation, an early step in the neuroinflammatory response [75]. Simvastatin (1–25 µM) was found  

to reduce Aβ-induced production of interleukin (IL)-1β in THP-1 monocytes, and reduced Aβ-induced 

and lipopolysaccharide (LPS)-induced nitric oxide, inducible nitric oxide synthase (iNOS) and reactive 

oxygen species (ROS) production in BV-2 microglial cells [76]. The release of inflammatory mediators, 

including IL-1β, IL-6, tumour necrosis factor (TNF)-α, and reactive nitrogen species, are also reduced 

by statins in astrocyte and macrophage models of Aβ-induced neuroinflammation [76–78], with these effects 

found to be mediated through Rho inhibition in THP-1 monocytes [76]. In contrast to the neuroprotective 

effects of Rho inhibition in microglia and monocytes, in a model of early AD using primary rat 

hippocampal neurons, lovastatin-induced apoptosis and cell death (10–100 µM) was attributed  

to Rho-dependent pathways [79]. Mevastatin treatment (10 µM) in cultured rat hippocampal slices has 

also been found to increase microglial activation [80]. These differences perhaps suggest a dose-dependent, 
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statin-dependent and/or model-dependent relationship between statin use and models of 

neuroinflammation associated with AD. 

Consistent with the attenuation of neuroinflammation, atorvastatin-induced reductions in brain oxidative 

and nitrosative stress have also been noted in aged beagles following chronic treatment (80 mg/day  

for 14.5 months) [78]; similar observations have been noted in other studies using mice, whereby 

atorvastatin (10 mg/kg for 7 days) and simvastatin (20 mg/kg for 8 weeks) both decreased oxidative 

stress and inflammatory levels, though neither treatment coincided with protection against cognitive 

impairment [81,82]. Duration of therapy may be an important factor in the neuroprotective potential  

of statins, with both atorvastatin (30 mg/kg/day) and pitavastatin (3 mg/kg/day) only showing protective 

effects against senile plaque and phosphorylated tau-positive dystrophic neuritis after 10 months of treatment 

in APP transgenic mice [67]. Another noteworthy variable is age, with simvastatin (40 mg/kg/day,  

3–6 months) shown to fully restore short- and long-term memory in adult (6-month), but not in aged 

(12-month) transgenic mice [83]. Thus, the inconsistencies between studies thus far may be attributable  

to differing effects between statins, dose-dependent toxicities, time-dependent effects, cell-dependent 

responses and/or species-dependent responses. 

Other mechanisms which have been implicated in statin-induced AD attenuation include: increased 

microglial degradation of extracellular Aβ in mice through farnesylation-dependent increases  

in insulin-degrading enzyme secretion (lovastatin, 5 µM) [84]; γ-secretase relocation in lipid rafts 

(pitavastatin, 5 µM) [85]; enhanced APP-C terminal fragment trafficking from endosomes to lysosomes [71]; 

and, reduced senile plaques and phosphorylated tau-positive dystrophic neuritis (atorvastatin 30 mg/kg/day, 

15 months; pitavastatin 3 mg/kg/day, 15 months) [67]. On the whole, it would appear that statins exert 

some form of protection against early events associated with AD development. The lack of understanding 

as to the true pathophysiology of AD limits the application of cell and animal models of statin-mediated 

neuroprotection to the true mechanism of statins’ apparent effects. Given that the majority of studies 

use a single statin as a representative of the class, differences between individual statins’ mechanisms 

or propensity for neuroprotection against AD remains unclear. 

4.3. Parkinson’s Disease 

PD is a progressive neurodegenerative disorder characterised by the presence of Lewy bodies 

(intracellular protein aggregates), the loss of dopaminergic neurons from the substantia nigra  

pars compacta in the midbrain, and associated clinical manifestations of dopamine deficiency  

(gait, tremor, rigidity and bradykinesia). It is the second most common chronic neurodegenerative 

disorder in adults over the age of 65 years [86]. Epidemiological evidence suggests that some statins may 

reduce the incidence of PD; Wolozin and colleagues identified that simvastatin treatment was 

associated with significantly reduced incidence of PD in patients aged over 65 years, however neither 

atorvastatin nor lovastatin showed significant effects [49]. Compared with discontinuation of statins, 

continuation of lipophilic statin use has been associated with a reduced risk of PD, particularly in the 

elderly [87]. In patients with existing PD, however, 10 day treatment of simvastatin (40 mg/day) 

showed no significant effects on dyskinesia, functional impairment or involuntary movement [88]. 

Neuroprotective mechanisms thought to underlie statins’ role in the prevention of PD are varied. 

Considering the accepted role of neuroinflammation in PD aetiology, the reduction of neuroinflammation  
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is a common theory. Simvastatin (1.5 µM) has been shown to reduce 6-hydroxydopamine  

(6-OHDA)-induced TNF-α, IL-6 and cyclooxygenase (COX)-2 up-regulation in vitro, and attenuated  

the up-regulation of caspase-3 via the phosphoinositide 3-kinase (PI3K)/Akt pathway [89]. In cultured 

rat microglia, high-dose simvastatin (5–20 mM) was found to inhibit LPS-induced inflammatory 

mediators TNF-α, nitric oxide and superoxide [90]. Statin-induced reductions in neuroinflammatory 

markers has also been identified in vivo, with both simvastatin (30 mg/kg/day, 14 days) and atorvastatin 

(20 mg/kg/day, 14 days) found to reduce 6-OHDA-induced TNF-α and IL-6 elevations, in addition  

to reduced oxidative stress markers, including nitrite levels, lipid peroxidation, and restoration  

of reduced glutathione [91]. 

Furthermore, animal studies have shown simvastatin (10 mg/kg/day, 21 days) to protect against  

6-OHDA-induced loss of N-methyl-D-aspartate (NMDA) receptors in rats [92]. Both simvastatin  

(1 mg/kg/day) and pravastatin (80 mg/kg/day) were also found to attenuate 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-induced dopaminergic neuronal loss through inhibition of p21(Ras)-induced 

NF-κB, though simvastatin appeared to do so more effectively [93]. A number of studies have also 

observed statin-induced improvements in behavioural activity and motor function in a number of PD 

models in vivo which correlates with protection against induced neuronal damage [88,91–93]. Despite 

encouraging evidence from both cell and animal studies, the lack of prospective and clinical studies 

into statins’ effects on PD limits our understanding of these drugs in this condition, and hence any 

conclusions regarding their therapeutic potential. 

4.4. Multiple Sclerosis 

MS is a chronic inflammatory disease of the nervous system, whereby T-cell-mediated responses 

are associated with the destruction of myelin sheaths, which can ultimately result in axonal damage 

and neurological deficit [94]. In general, statins have been considered largely beneficial in pathologies 

associated with demyelination, particularly MS. Although phase II clinical trials of simvastatin 

treatment in MS patients have recently been successfully completed [95], in vitro and in vivo evidence 

surrounding the effects of statins on nerve conduction and remyelination is largely conflicting.  

It is believed that much of this contradicting data stems from differing experimental designs, including 

time-dependent responses, and serum conditioning with either foetal bovine serum supplementation  

or exogenous cholesterol [96,97]. 

Several statins, including atorvastatin, lovastatin and simvastatin, have been associated with enhanced 

differentiation of oligodendrocyte progenitor cells (OPCs), the depletion of which exhausts remyelination 

capacity. Atorvastatin pre-treatment (5 mg/kg/day, 7 days) in an animal model of sciatic nerve crush 

injury was found to up-regulate several remyelination-associated genes, including growth-associated 

protein-43, myelin basic protein, ciliary neurotrophic factor, and collagen [98]. This was also 

associated with an increased protection against damage, including reduced structural disruption, 

inflammation and neurobehavioural changes [98]. Simvastatin (5–10 µM) has also been associated 

with inducing process extension in OPCs, and enhanced differentiation to the mature OD phenotype. 

Interestingly, however, this protective effect was found to be time-dependent, with increased 

simvastatin exposure time associated with process retraction in both OPCs and mature ODs [99]. 
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The enhanced differentiation of OPCs in the presence of statins has raised the question of whether 

chronic OPC depletion is likely to affect the regenerative capacity of the neuroparenchyma. 

Conflicting results have been noted in studies which found detrimental effects of statin treatment  

on remyelination. Whilst simvastatin (2 mg/kg/day) did not impact myelin load or demyelination  

in healthy mice over a two week administration period, when extended to five weeks rates of 

demyelination significantly increased [97]. In the same study, simvastatin decreased myelin load 

during concomitant demyelination and impeded remyelination, which was attributed to inhibition  

of OPC differentiation. These results were replicated by Klopfliesch and colleagues who further 

identified that simvastatin (5 µM) impaired the p21Ras/ p38 mitogen-activated protein kinase (MAPK) 

pathway and reduced synthesis of myelin basic protein, myelin proteolipid protein and 2',3'-cyclic 

nucleotide 3'-phosphodiesterase (CNP) in vitro [100]. Simvastatin (5–10 µM)-induced OPC process 

extension and maturation can be mimicked through ROCK inhibition, and either is partially or fully 

reversed with isoprenoid metabolites, depending on simvastatin exposure time [99]. Given that  

the vast majority of cholesterol acquisition in the CNS is through glial synthesis or neuronal reutilisation, 

with little to no reliance on systemic cholesterol pools, cholesterol availability in ODs is a rate-limiting 

step for successful myelination [101]. 

In addition to direct effects on ODs, statins’ effects on neuroinflammation and immunomodulation 

have also been implicated as possible contributing mechanisms in MS. Lovastatin (2 mg/kg/day)  

has been found to ameliorate clinical symptoms associated with experimental autoimmune encephalomyelitis 

(EAE), an animal model of human MS, as well as reduce neuroinflammatory mediators such as iNOS, 

TNF-α and interferon (IFN)-γ [102,103]. Similarly, atorvastatin (10 mg/kg/day) has also been shown 

to improve clinical symptoms of EAE, which has been attributed to reduced RhoA geranylgeranylation, 

impaired T cell responses and altered T helper (Th)1/Th2 inflammatory ratios [104]. Statins are also 

noted to modulate T cell immunity, a factor which plays a crucial role in autoimmune neuroinflammation. 

Statins have been found to affect T cell response through the inhibition of Th1 differentiation  

and migration across the BBB [105,106]. In the presence of statins, myelin-reactive CD4+ T cells exhibit 

reduced TNF-α and IFN-γ secretion, and instead secrete protective Th2 cytokines, such as IL-4 [105,106]. 

It is thought that the negative effects of statins which have been observed in vitro may be due to depletion 

of the isoprenoid GGPP, ordinarily responsible for activation of RhoA signalling [96,99,103].  

RhoA-mediated inhibition of ROCK synthesis due to statin treatment induces MAPK, and peroxisome 

proliferator-activated receptor (PPAR)-γ activators [96]. The activation of PPAR-γ induces phosphatase 

and tensin homolog (PTEN), which ultimately inhibits OPC proliferation through inducing cell cycle 

inhibitory proteins [96,107]. The inhibition of Ras and Rho signalling by simvastatin (5 µM) was found  

to hamper myelin and OD process formation in vitro [100]. The reasons underlying discrepancies 

between cell and animal models of MS are not yet fully understood, however the extent of statin 

penetration and additional compensatory mechanisms within the whole brain compared to in vitro 

models may be possible explanations. Ultimately, even though underlying mechanisms currently 

remain elusive, the successful completion of simvastatin in phase II testing as a treatment for MS 

indicates that this compound may have some benefit in demyelinating conditions [95]. Further 

information from this trial will be necessary to properly evaluate simvastatin’s role in myelination, 

with a view to clarifying if this effect is a class or compound-specific action. 
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4.5. Neurofibromatosis Type I 

Neurofibromatosis type I (NF-1; formally known as von Recklinghausen disease) is an autosomal 

dominant disorder associated with learning disabilities and attention deficits, amongst other manifestations. 

Cognitive dysfunction is the most common neurological complication of NF-1 during childhood [108]. 

Lovastatin (10 mg/kg/day) was shown to normalise Ras activity, reverse learning and attention deficits 

and rescue long-term potentiation deficits in a mouse model of NF-1 [109]. Despite a phase I study 

suggesting that lovastatin (20–40 mg/day, 3 months) treatment in 10–17 year-old children with NF-1 

may have potential benefits on cognitive parameters [110], a recent randomised controlled trial found 

no effect of simvastatin (10–40 mg/day, 12 months) on cognitive deficits or behavioural outcomes  

in children aged 8–16 with NF-1 [111]. Mechanistic studies as to whether compound-specific effects 

are seen in NF-1 may be warranted before further clinical evaluation is conducted. 

5. Statins and Neurological Disease 

In addition to effects on cognition, statins have been identified as possible preventative and/or 

treatment options in a number of neurological conditions, including stroke, epilepsy, depression, 

cancer and brain and spinal cord injury (see summary of mechanisms and evidence in Table 3). Similar 

to studies which explore the effects of statins on neurocognitive disorders, there is a lack of information 

surrounding the molecular mechanism of action of statins in the majority of the neurological disorders 

discussed in this review. Again, due to the limited data, whether the mechanisms which have been 

identified thus far are broadly applicable to all statins or solely to the statin tested is often unclear  

and requires further well-designed studies to be conducted. 

Table 3. Summary of statins’ effects on neurological disorders. 

Disorder 
Possible Statin-Induced 

Mechanisms 
Strength of Evidence Overall Consensus 

Stroke 

Modulation of eNOS;  

↓ nitric oxide; ↓ ROS;  

↓ MMPs. 

Many in vitro and in vivo 

studies. Supported  

by meta-analyses and  

well-designed randomised 

controlled trials. 

Statins reduce incidence of ischemic 

and haemorrhagic stroke, likely 

through antioxidant effects. 

Epilepsy 

Lipid raft disruption; 

ROCK inhibition;  

↑ PI3K pathway activity. 

Limited in vitro  

and in vivo studies. 

Very different excitoprotective 

properties between statins.  

More studies are required. 

Depression 

Modulation of NMDA 

receptor activity;  

↓ nitric oxide. 

Mainly epidemiological 

studies. Recent meta-analysis 

suggested statins reduce risk 

of depression. Limited 

mechanism-based studies. 

Whether the observed effects from 

qualitative studies are statin-induced, 

due to decreased cholesterol, or due 

to an improved quality of life,  

or a combination is unclear. 

Psychiatric 

disorders 
Unknown. 

Limited  

observational studies. 

Causality is unclear. If prevalence is 

affected by statins, it is thought to be 

rare and only in predisposed patients. 
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Table 3. Cont. 

Disorder 
Possible Statin-Induced 

Mechanisms 
Strength of Evidence Overall Consensus 

CNS 

cancers 

↑ caspase-3-mediated 

apoptosis; cell-cycle 

arrest; ↓ ERK1/2;  

↓ Akt activity. 

Limited in vitro and in vivo 

studies. Retrospective 

studies suggest no link 

between statin use and 

cancer incidence. 

Further in vivo studies should be used 

to clarify statins’ effects.  

Directed epidemiological studies 

would also prove useful. 

Brain and 

spinal cord 

injury 

↓ apoptosis;  

↓ inflammation;  

↓ RhoA/ROCK activity; 

↓axonal degradation;  

↓ myelin degradation. 

Numerous in vivo studies. 

Statins appear to exert beneficial effects 

in vivo if initiated immediately  

post-TBI/SCI. Due to some conflicting 

data, further well-designed studies 

are required before clinical 

application can be assessed. 

5.1. Stroke 

In addition to their well-established cardiovascular benefits, randomised controlled trials  

and meta-analyses have found statin use to be associated with a reduced incidence of ischemic  

and haemorrhagic stroke [3,4], and improved outcomes neurological outcomes and prognosis acutely 

following stroke across a number of studies [112,113]. Additionally, recent studies have also identified 

that statin withdrawal is associated with worsened post-stroke survival [114], and that statin initiation 

within 24 h of thrombolysis may also improve both short- and long-term outcomes [115]. Although the 

relationship between stroke and cholesterol levels remains unclear, statins’ systemic effects on the 

vascular system are thought to underpin much of their effects in stroke, and include antithrombotic effects, 

anti-inflammatory effects, improved endothelial function, and the stabilising of atherosclerotic plaques. 

Several lines of evidence suggest that the modulation of endothelial nitric oxide synthase (eNOS) 

and reduction of nitric oxide production by statins acts as a primary neuroprotective mechanism 

against stroke through the improvement of cerebral blood flow around cerebral penumbra [77,116].  

In a mouse model of stroke, the protective effects of simvastatin (20 mg/kg/day, 14 days) on infarct size, 

cerebral blood flow and neurological function were eliminated following eNOS-knockout [117]. 

Statin-induced increases in eNOS have been attributed to GGPP inhibition [116], subsequent reduction 

in RhoA and Rac1 expression and the stabilisation of eNOS mRNA [118]. 

Additionally, several studies have implicated statin-induced reduction in ROS and matrix 

metalloproteinases (MMPs) in exerting neuroprotective benefits in stroke. The release of MMPs  

by astrocytes and microglia are associated with neuroinflammation and BBB disruption [119,120]. 

Several lines of evidence suggest that statin-induced reductions in MMPs may play a role in the apparent 

immunomodulatory effects of statins. Atorvastatin has been shown to reduce recombination human 

tissue plasminogen activator (rht-PA)-induced MMP up-regulation in the rat brain, and reduced  

MMP-associated blood–brain barrier permeability increases [121]. In cortical astrocytes, simvastatin 

(1–10 µM) significantly reduced rht-PA-induced MMP-9 dysregulation through modulation of the Rho 

signalling pathway [122]. Similarly, ROS are thought to contribute to ischemia through direct 

intracellular damage to proteins, lipids and nucleic acids. In rats, atorvastatin pre-treatment  
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(10 mg/kg/day, 3 doses) prior to middle cerebral artery occlusion significantly reduced infarct volume, 

which coincided with significantly reduced penumbral nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase activity and superoxide levels [123]. Similarly, rosuvastatin (2 mg/kg/day, 24 h and  

28 day) has been shown to reduce NADPH oxidase-dependent superoxide production in 

cerebrovascular arteries of insulin-resistant Zucker obese rats [124]. Considering the plethora of data 

supporting the antioxidant effects of various statins in reducing endothelial dysfunction within the 

cardiovascular system, it is likely that the observed benefits of statins in cerebrovascular ischemia may 

also be mediation through reduced ROS activity. 

5.2. Epilepsy 

The incidence of developing epilepsy has two predominant peaks across the human lifespan: during 

childhood, and after age fifty. Whilst the true pathophysiology is largely unknown, it has been 

suggested that epilepsy which develops later in life may be a result of cerebrovascular disease, brain 

tumours or AD. In several epidemiological studies, statin users have been associated with a reduced 

risk of developing epilepsy, a finding which is supported by studies in animals and in vitro [125–128]. 

In a case-control study, a dose-dependent effect between statin and seizure risk was observed,  

with every 1 gram increase in atorvastatin used annually associated with a 5% reduced risk of 

hospitalisation due to seizure [126]. 

Although the use of cell culture for modelling seizure mechanisms and epileptogenesis is limited,  

in vitro studies have suggested that statins may exhibit excitoprotective properties, though not at 

equipotent doses. In primary neuronal cultures, simvastatin was found to reduce the association of 

subunit 1 of NMDA receptors to lipid rafts by 42%, a mechanism which was hypothesised to 

contribute to simvastatin-induced protection against NMDA-induced neuronal damage [129]. Lipid 

rafts are distinct, highly dynamic sterol and sphingolipid-rich microenvironments within the cellular 

membrane and are implicated as platforms for numerous signalling pathways, thus the perturbation of 

these zones has the potential to affect neuronal signalling. In addition to simvastatin’s effects on lipid 

rafts, both simvastatin and lovastatin have also been associated with excitoprotection mediated through 

the inhibition of calcium-dependent calpain activation, ROCK inhibition, the activation of the PI3K 

pathway, and increased APP cleavage [125]. 

Whether all statins contribute equally to this observed excitoprotection remains questionable.  

An earlier study by Zacco and colleagues identified that a number of statins were capable of protecting 

primary neurons against NMDA-induced cytotoxicity, though neuroprotective potency differed 

between statins: (rosuvastatin, simvastatin) > (atorvastatin, mevastatin) > pravastatin [130]. In contrast 

to these in vitro findings, a study in mice comparing five commercially available statins identified 

simvastatin and lovastatin as effective in reducing seizure severity and histopathological signs  

of excitotoxicity, whilst neither fluvastatin, atorvastatin nor pravastatin showed any significant benefits 

in ameliorating seizure-related sequelae [131]. It should be noted however that the protective effects 

may only be seen at high doses, with a recent rat model of epileptogenesis identifying that a dose  

of 10 mg/kg/day of either atorvastatin or simvastatin significantly reduced the development of absence 

seizures, although this dose of pravastatin was ineffective at reducing seizure incidence. Increasing  

the pravastatin daily dose to 30 mg/kg/day resulted in a significant reduction in number of seizures [132]. 
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Due to the limited data available thus far, further studies are required to evaluate the clinical implications 

of these findings. 

5.3. Depression 

Similarly to other neurological disorders, there remains conflict across the literature with regards  

to statins’ effects in depression. Epidemiological evidence has suggested a possible role for statins  

in the reduction of depression and depression-like symptoms [133–138], with a recent meta-analysis  

by Parsaik and colleagues concluding that statin use was associated with a lower risk for depression 

(adjusted odds ratio, 0.68; 95% confidence interval, 0.52–0.89) [1]. In addition to all-cause depression, 

statins have also been linked to a reduced risk of post-stroke depression [136] and augment  

the increased risk of depression associated with hyperlipidaemia [139]. However, a number of studies 

have found no significant relationship between statin use and risk of depression or depression-like 

symptoms [140–142], whilst one study found that statin use was associated with increased depression 

prevalence [43]. Thus, whether the apparent protective effect of statins against depression is a true 

pharmacological effect, or a result of other factors, such as improved cardiovascular health or 

increased health consciousness following statin treatment, remains unclear. 

This uncertainty is compounded by a lack of mechanism-based studies which explore the anti-depressant 

effects of statins in animal models. In rats exposed to chronic mild stress, simvastatin (5–10 mg/kg/day,  

14 days) reversed some stress-induced behavioural changes comparable to imipramine, a tricyclic 

antidepressant [143]. Similarly, atorvastatin (0.1–10 mg/kg, single dose) has been shown to exhibit 

acute antidepressant-like activity in mice, with modulation of NMDA receptor activity and nitric oxide 

inhibition identified as possible mechanisms [144]. Further well-designed animal studies which explore 

the relationship between statin use, hypercholesterolaemia, anxiety and depression are warranted. 

5.4. Psychiatric Disorders 

Studies designed to determine statins’ effects on specific neuropsychiatric reactions are limited  

and have yielded conflicting results. Statin use was not associated with any alterations in risk  

of schizophrenia, schizoaffective disorders, psychosis, major depression, or bipolar disorder compared 

to non-users in an observational, propensity score-matched cohort study [145]. In contrast, one study 

found that statin use was associated with reduced risk of anxiety and hostility [134]. Due to the limited 

reports of negative psychiatric events and a lack of causality, it is largely thought that psychiatric 

events associated with statins are rare, perhaps occurring only in predisposed patients. 

5.5. CNS Cancers 

The effect of statins on both cancer incidence and mortality remains unclear, with evidence for both 

reduced and increased cancer-related mortality associated with statin use [146,147]. Although  

large scale meta-analyses have suggested that statins do not have significant effects on cancer  

incidence [51,148,149], evidence from both cell and animal studies has suggested a possible role  

for statins in the treatment of cancers. Of these studies, however, only a limited number have been 

conducted using neurological models. 
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An early phase I study by Thibault and colleagues determined the effects of lovastatin in 88 patients,  

of which 24 patients had tumours of the primary central nervous system. Whilst this study observed 

that lovastatin (25 mg/kg daily for 7 consecutive days) was well-tolerated in both healthy and cancer 

patients, effects on cancer progression were not sought [150]. Similarly, a subsequent phase I/II trial 

using lovastatin (35 mg/kg) in patients with anaplastic astrocytoma and glioblastoma multiforme,  

no CNS toxicity associated with treatment was found, however no improvement in tumour response 

was observed [151]. Of the remaining studies which report on cancer risk associated with statin use, 

the majority are not designed to determine effects on cancer as a primary endpoint, thus it is difficult  

to ascertain the true clinical effect of statins in cancer, particularly those of a CNS origin. 

As such, the majority of data thus far stems from cell and animal models. Several cancer models 

have been investigated, with statins appearing to exert beneficial anti-tumourogenic effects in animal 

models of glioma (lovastatin) [152] and neuroblastoma (mevinolin, lovastatin) [153,154]. In an in vitro 

model, lovastatin was found to reduce the invasiveness of human glioma cells [155]. Several statins 

(lovastatin, mevastatin, fluvastatin and simvastatin) have also been found to increase caspase-3 

mediated apoptosis and decrease extracellular-signal-regulated kinases (ERK) 1/2 and Akt, also known 

as protein kinase B, in C6 glioma cells through GGPP-dependent mechanisms [156,157]. Similarly, 

lovastatin-induced apoptosis in SH-SY5Y neuroblastoma cells is mediated through GGPP-dependent 

mechanisms [158]. In vivo, both simvastatin and lovastatin have been shown to reduce malignant rat 

gliomas and murine neuroblastoma growth respectively, with simvastatin’s effects attributed to growth 

arrest and induction of apoptosis [152,153]. Ultimately, however, until further epidemiological studies 

and clinical trials are conducted, the true effect of statins on incidence of CNS cancer and tumour growth 

remains unclear. 

5.6. Brain and Spinal Cord Injury 

Statins, particularly atorvastatin and simvastatin, have been widely studied in vivo for their effects 

in TBI and spinal cord injury (SCI). On the whole, data thus far suggests a positive, neuroprotective 

effect induced by statins across both models. 

Atorvastatin has been identified across numerous studies as exerting beneficial effects against  

the neurological sequelae associated with SCI. Atorvastatin-treated rats (5 mg/kg, 2 h post-injury) have 

shown significant improvement in locomotor activity compared to control rats four weeks post-SCI  

in rats, which was attributed to reductions in early apoptosis at the injury site [159]. Similar studies  

in rats have identified additional mechanisms through which atorvastatin may exert its neuroprotective 

effects in SCI, including reduced blood-spinal cord barrier dysfunction through reduced RhoA/ROCK 

activity, reduced infiltration and expression of TNF-α, IL-1β and iNOS at the site of injury, reduced 

axonal degradation, myelin degradation, gliosis and neuronal death [160,161]. 

Likewise, studies in rats using simvastatin [162,163] and rosuvastatin [164] have observed similar 

results. Simvastatin (5–10 mg/kg) treatment post-SCI was associated with improved locomotor activity, 

normalisation of magnetic resonance imaging, increased glial cell-derived neurotrophic factor (GDNF), 

BDNF, and VEGF expression, and mobilisation of bone marrow stromal cells [162,163]. Rosuvastatin 

administration (20 mg/kg) immediately post-spinal cord injury in rats reduced elevations in TNF-α release, 

myeloperoxidase activity, nitric oxide levels and caspase-3 activity from caudal spinal cord tissue [164]. 
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Whilst animal studies thus far have largely supported a beneficial role for statins in improving 

neurological outcomes following TBI or SCI, not all studies have found neuroprotective benefit 

following statin treatment in SCI [165]. As such, further evaluation of these compounds is required 

before the translational value of these data can be accurately assessed. 

6. Conclusions 

Whilst research into understanding statins’ CNS effects has been extensive in recent years, there  

is still a distinct lack of mechanistic supportive evidence to justify the use of these compounds  

in the prevention or treatment of neurological disorders. The available mechanistic evidence supports  

a possible beneficial role of statin treatment in some conditions, such as the prevention of dementia 

and MS treatment, suggesting that the high concerns over statins’ neurological effects may be largely 

unwarranted. While it is apparent that the structural differences between statin compounds contribute 

to their vastly different pharmacokinetic parameters, how this translates into pleiotropic differences 

between statins is less widely acknowledged. In the CNS in particular, an improved understanding  

as to the precise mechanistic differences between statins is needed so that therapeutic decision making 

may be better informed. Until such time that more comparative evidence is available, it would  

be prudent for clinicians and researchers to consider the evidence for individual statins in the CNS,  

as opposed to assuming a class action. Additionally, more evidence is required before any statin 

therapy can be recommended clinically in the treatment or prevention of these neurological conditions. 
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