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ABSTRACT
Coral reefs are a valuable and vulnerable marine ecosystem. The structure of coral reefs
influences their health and ability to fulfill ecosystem functions and services. However,
monitoring reef corals largely relies on 1D or 2D estimates of coral cover and abundance
that overlook change in ecologically significant aspects of the reefs because they do not
incorporate vertical or volumetric information. This study explores the relationship
between 2D and 3D metrics of coral size. We show that surface area and volume scale
consistently with planar area, albeit with morphotype specific conversion parameters.
We use a photogrammetric approach using open-source software to estimate the ability
of photogrammetry to provide measurement estimates of corals in 3D. Technological
developments have made photogrammetry a valid and practical technique for studying
coral reefs. We anticipate that these techniques for moving coral research from 2D into
3D will facilitate answering ecological questions by incorporating the 3rd dimension
into monitoring.

Subjects Biodiversity, Ecology, Marine Biology
Keywords Coral reef, Scleractinia, Morphology, Scaling, Growth form

INTRODUCTION
Coral reefs are one of the most diverse and more highly threatened ecosystems on the
planet. Monitoring how corals respond to the vast array of threats and disturbances that
they face (Hoegh-Guldberg, 1999; Hughes et al., 2003) is a crucial part of management and
conservation. The challenge is understanding how best to quantify change in the corals
themselves, and the wide range of ecosystem goods, functions and services which they
provide (Moberg & Folke, 1999) to design effective monitoring programs (Balmford, Green
& Jenkins, 2003).

Surface area and volume are 3Dmetrics particularly relevant for estimating the ecosystem
services and functions performed by corals. Specifically, these two variables are critical for
corals’ reef building capability, whichmodulatesmany coral reef ecosystem services (Moberg
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& Folke, 1999), such as effective coastal defences (Ferrario et al., 2014) and biodiversity
support (Graham et al., 2006). As such, coral volume, which is related to metrics such
as biomass, growth rate and production of carbonate (Cocito et al., 2003), is a trait of
primary interest for monitoring purposes. The importance of quantifying the reef in 3D
also relates to the overall structure of the reef. In fact, the loss of this complexity is a major
consequence of disturbance that leads to the degradation of biogenic habitats (Airoldi,
Balata & Beck, 2008). While structural complexity can be maintained also by dead corals
in the short term, many other ecologically significant functions, such as water filtering
capability and productivity, are related to coral living surface area (Cocito et al., 2003).
Microscale rugosity of colony surfaces facilitates larval recruitment (Hata et al., 2017), the
continuous deposition of calcium carbonate ensures stability to the colonies structures and
the predominance of living surface area in the colonies predicts abundance and survivorship
of associated fauna (Noonan, Jones & Pratchett, 2012).

The proportion of live coral cover on a reef is probably the most widely used metric
of reef health (Leujak & Ormond, 2007). A variety of techniques are used for estimating
coral cover (Loya, 1972; Hill & Wilkinson, 2004; Leujak & Ormond, 2007; Vroom, 2011),
most of which focus on 2D (planar) measurements of colony size or coral cover (Gardner
et al., 2003; Bruno & Selig, 2007; Sweatman, Delean & Syms, 2011). The ubiquity of 2D
representations of coral reefs enables standardization between and within different
monitoring programs, allows them to be carried out on a range of spatial scales, and
facilitates the fast collection of estimates of abundance and cover (Shuman & Ambrose, 2003;
Hill & Wilkinson, 2004; Booth et al., 2008). However, there is increasing recognition of the
need to develop better techniques for measuring coral colonies and reefs in 3D to account
for different morphologies and complexity of coral colonies (Burns et al., 2015a; Burns et
al., 2015b; Goatley & Bellwood, 2011; Courtney et al., 2007). For instance, overlooking the
vertical aspect of coral reefs results in an inability to fully assess their structural complexity
and measure ecologically significant changes (Goatley & Bellwood, 2011). In fact, coral
morphotypes (also known as ‘‘growth forms’’) differ in their demographic rates and play
distinct roles in the ecosystem. For example, morphotypes differ in their response to
disturbance (Madin & Connolly, 2006) in their mortality schedule (Madin et al., 2014),
fecundity (Álvarez-Noriega et al., 2016) and growth rates (Dornelas et al., 2017), and affect
habitat complexity at different scales (Richardson, Graham & Hoey, 2017). Moreover,
changes in the relative abundance of different morphotypes of corals may influence the
provision of ecosystem services and biodiversity (Alvarez-Filip et al., 2011; Burns et al.,
2015b). Using 3D approaches to better understand the structure and function of different
coral morphotypes, as well as their vulnerability to disturbance, is an important step
towards elucidating the goods and services that reefs provide.

In comparison to 2D techniques, methods that collect 3D data in the field are costly,
time consuming and difficult to carry out (Laforsch et al., 2008; Naumann et al., 2009;
Goatley & Bellwood, 2011), in addition to often being invasive or imprecise (Naumann et
al., 2009). To overcome these problems, Structure-from-Motion (SfM) photogrammetric
approaches became very useful in underwater settings since they permit the construction
of three-dimensional digital models of objects beginning with a sequence of pictures of
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the object itself. These techniques no longer require specification of known 3D locations
prior to calculating camera positions (Westoby et al., 2012) and the ability to automatically
match corresponding points across images. The precision and accuracy of this method has
been demonstrated at different scales (Figueira et al., 2015; Gutierrez-Heredia et al., 2016;
Storlazzi et al., 2016).

A growing number of studies present 3D reconstructions of coral reefs using SfM through
proprietary software (Burns et al., 2015a; Burns et al., 2015b; Burns et al., 2016; Raoult et
al., 2016; Raoult et al., 2017) or their own algorithms (Friedman et al., 2012; Ferrari et al.,
2016; Pizarro et al., 2017). However, open access software is now available and being used
among coral reef scientists (Lavy et al., 2015; Figueira et al., 2015; Gutierrez-Heredia et al.,
2016; Agudo-Adriani et al., 2016), making SfM more accessible to a broad community.
Therefore, calls for a switch towards 3D monitoring programs are gaining traction (Raoult
et al., 2016; Pizarro et al., 2017). Assessments of measurement error associated to this
technique are a fundamental part of the transition towards monitoring reefs in 3D (Bryson
et al., 2017). Moreover, the consequences of this shift for loss of comparability with past
monitoring, which largely involves planar imagery need to be assessed.

This paper addresses two aspects of moving from measuring corals in 2D to 3D. First,
we ask whether we can predict 3D metrics of coral size from 2D metrics. We hypothesize
that coral morphotypes differ in their scaling relationships between 2D and 3D metrics.
The second aim of our study is to measure corals in 3D directly. We determine whether
SfM provides accurate estimates of the surface area and volume of coral skeletons, and
ask whether there are biases in this technique associated to different morphotypes. If the
first assumption is met and SfM is demonstrated reliable, then a methodological shift in
monitoring towards measuring traits in the three dimensions is possible, without losing the
possibility to compare the results with previous data. The methodology developed allows
including 3D metrics into coral reef monitoring, improving how we quantify change in
coral reefs.

METHODS
In order to capture 2D and 3D data, we used three methods for measuring coral skeletons,
as outlined in Fig. 1. First, we measured colony planar total surface area (PL TSA) from
birds-eye-view photographs of the colonies with a scale. Computed tomography (CT) scans
and photogrammetry (PH)were used on the same specimens to produce information about
3Dmetrics, namely colony total surface area and volume (hereafter abbreviated to CT TSA,
CT Vol, PH TSA and PH Vol respectively). In order to explore the most biologically useful
information, the surface area of the colony that had been covered in corallites was also
measured. This ‘‘live’’ surface area was produced from the results of all three methods;
planar photography (PL LSA), photogrammetry (PH LSA) and CT scanning (CT LSA).
Due to its high resolution, accuracy and inherent 3D nature, the data collected using
CT scans was used as a baseline (Veal et al., 2010) with which to compare the other two
methods. Using this suite of techniques enabled us to examine the relationship between
2D and 3D metrics, as well as address some of the difficulties with collecting 3D data.
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Figure 1 The complete process used to measure TSA, LSA and volume in 2D and 3D for each speci-
men, including the measurement techniques and software used.

Full-size DOI: 10.7717/peerj.4280/fig-1

Specimen selection
We selected coral skeletons from the collection at the Bell PettigrewMuseum, University of
St Andrews with replicate specimens across differentmorphotypes and sizes. Each specimen
was identified to species, and their morphotype was classified as branching, encrusting
or massive. The resulting selection of coral skeletons includes 22 specimens described in
Table S2.

Photography and planar surface measurement
Coral specimens were photographed in air from above with a 10 cm × 10 cm chessboard-
style calibration pattern using a digital camera (Nikon D40, 18–55 mm lens, Tokyo,
Japan) as seen in Fig. 2A. The specimens were positioned on the plane in such a way as to
replicate their natural orientation on the reef as much as possible. Each coral skeleton was
photographed three times to account for and minimize the effect of measurement error.
The specimens were repositioned for each photograph so as to minimize bias resulting
from a particular position or camera angle.

All of the photos were then processed using the image analysis software ImageJ (Rasband,
2014). For each step the image was zoomed in in order to have the entire colony and scale
completely in view and as big as possible. A graphics tablet (medium Intuos, Wacom, Kazo,
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Figure 2 Example of (A) planar photography of a coral colony having been outlined and scaled using
ImageJ and R, (B) the surface generated using CT scanning, and (C) the equivalent surface generated
using SfM photogrammetry.

Full-size DOI: 10.7717/peerj.4280/fig-2
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Japan) was used to draw the outline of the whole coral colony and the areas that consisted
of corallites. These contours were saved as a series of XY coordinates. The corners of the
calibration pattern were also marked and saved as coordinates, in order to convert the
pixel measurements into length (cm). After the necessary information had been extracted
from the images and converted into XY coordinates, R (R Core Team, 2013) was used to
calculate PL TSA and PL LSA from the relevant outlines (in square centimetres), using
methodology and code fromMadin et al. (2014).

Structure from motion
Photographs were taken using the same digital camera and a static off-camera flash set-up
as for the planar photography. The specimens were placed on a table with four 10 cm
scale bars positioned in a square on the surface around them. Photographs were taken
with the camera positioned at various locations on a virtual hemispherical dome above the
specimen, as illustrated in Fig. 3. This created a hemisphere-like spread of images of the
specimen from various viewpoints. Significant overlap between images is needed in order to
automatically identify shared points that can then be reconstructed as 3D coordinates. The
number of views varied from 39 to 164 based on the size and complexity of the specimen.
Specimens with occluding structures require the highest number of photographs in order
to produce the necessary coverage. Distortions were not corrected.

Digital model construction was done on an Intel Quad Core 3.40 GHz desktop computer
with 16 GB RAM underWindows 7 Professional. The open-source software package Visual
SFM (Wu, 2007; Wu, 2011; Wu, Frahm & Pollefeys, 2011) was used to create a point mesh
from the overlapping images by determining camera positions and generating a sparse
point cloud. This was then followed by dense reconstruction using an additional package
for Clustering views for Multi-View Stereo (CMVS) and Patch-based Multi-View Stereo
(PMVS v2) (Furukawa et al., 2010; Furukawa & Ponce, 2010).

The dense point cloud was then imported into MeshLab (Cignoni, Corsini & Ranzuglia,
2008) and spurious points were removed. A surface layer was created from the point mesh
using Poisson Surface Reconstruction. The scale bars were used to determine the coefficient
needed to convert the mesh from pixels to absolute units, in this case millimetres. The
model was then trimmed to remove the table and non-coral objects, as shown in Fig.
2C. The volume and surface area for these meshes were calculated using Blender (http:
//www.blender.org) with the NeuroMorph plug-in (Jorstad et al., 2014), thus producing
PH TSA and PH Vol. To include PH LSAs, that are ecologically more meaningful than the
specimen’s entire surface area, the surface portions corresponding to not living corallites
were selected and removed in MeshLab. To reduce the influence of any measurement
errors, three models were produced for each specimen using different sets of images.

Computed tomography and 3D surface measurement
The coral specimens were scanned in air using a medical CT scanner, Siemens Biograph
mCT-128. The protocol was based upon that of Naumann et al. (2009). The images were
acquired at 0.6 mm slice width, 0.6 mm increments and 0.5 pitch. X-ray tube voltage
was 120 kV with effective mAs of 341 (automatically varied) and a field of view that was
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Figure 3 Schematic of camera positions used to produce images for SfM photogrammetry. In order to
ensure appropriate coverage from multiple angles, we photographed the skeletons along three rings of at
different heights (A) ensuring images taken were overlapping (B).

Full-size DOI: 10.7717/peerj.4280/fig-3
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adapted to the size of each specimen. Three back-projection reconstructions were then
produced for each colony from the spiral mode acquisition dataset, with sharp, medium
and smooth kernel filters (H30, H40 &H50). Of these, the H40 reconstruction was selected
for subsequent calculations because it gave the best compromise between high spatial
resolution and low image noise. Using the corresponding 3D reconstructions of the coral
colonies (example shown in Fig. 2B), measurements of CT TSA and CT Vol were generated
in square and cubic millimeters, respectively. As with the meshes produced through SfM,
Meshlab was used to trim away areas without corallites, and the CT LSA was thenmeasured
in Blender through the NeuroMorph toolset. Examples of CT and PH models are included
in Fig. 2 and Fig. S1.

Statistical analysis
CT metrics of size are used as response variables in our models since scanning can detect
surface rugosity at a scale as small as 1,000 µm2 (Veal et al., 2010) and provide the most
accurate estimates of corals 3D features (Laforsch et al., 2008; Naumann et al., 2009; Veal et
al., 2010). To address the first aim of testing whether 3D metrics can be inferred from 2D
metrics of size, we fitted Ordinary Least Squares linear models predicting CT TSA and CT
Vol from PL TSA and morphotype, and CT LSA from PL LSA and morphotype. Models
with and without morphotype were compared using the Akaike Information Criterion
(AIC) to assess whether differences in scaling among morphotypes affect the compromise
between goodness of fit and model complexity. In addition, Adjusted R2’s were used to
assess the predictive ability of the different models.

Our second aim was to assess the ability of photogrammetry to estimate 3D metrics of
coral size. As per the previous aim,we fittedOrdinary Least Squares linearmodels predicting
CT TSA, CT LSA, and CT Vol from PH TSA, PH LSA, or PH Vol and morphotype. We
performed model selection as above to investigate morphotype associated bias in the
estimates. Finally, we compared Adjusted R2’s of these models with those of a model with
slope 1 and intercept 0.

These models used single measurements for CT TSA and CT Vol, but mean values were
used for each specimen’s PL TSA/LSA, PH TSA/LSA and PH Vol. All variables were log
transformed to improve symmetry in the distribution of the residuals and to linearize the
relationship between area (mm2) and volume (mm3). Statistical analysis was carried out
in R (R Core Team, 2013).

RESULTS
Colony planar area (PL TSA and PL LSA) can be used to infer accurate estimates of surface
area and volume of the CT scanner models (CT TSA, CT LSA and CT Vol). As expected,
3D surface area is higher than 2D area, however the former scales tightly with the latter
(Figs. 4A and 4B). Also, 3D volume is lower than the volume of a cube with a similar area,
but again the scaling relationship is remarkably tight (Fig. 4C). The proportion of variance
explained by the best model for each of these variables ranges between 0.81 and 0.90
(Table 1). Model selection suggests that morphotypes differ in their scaling relationship
only for CT LSA (Fig. 4B, Table 2). For both CT TSA and CT Vol the slope in the best
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Figure 4 3Dmetrics of size as a function of 2Dmetrics. Red circles represent branching colonies, blue
encrusting and green massive. The solid lines represent a model where 3D metric is equal to the 2D met-
ric (A, B) or the relationship predict for a cube (C). Dashed lines represent predictions for the best model,
with different colours for different morphotypes as per the symbols when morphotypes differ in parame-
ter estimates.

Full-size DOI: 10.7717/peerj.4280/fig-4
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Table 1 Predictive accuracy of planar total or live surface area (PL TSA/LSA) when used alone and
with morphotype to estimate CT TSA, CT LSA, CT Vol, respectively. Adjusted R2, p-value and Akaike’s
Information Criterion (AIC) are given to two significant figures.

Response Predictor (s) Adjusted R2 p AIC

; PL TSA 0.88 5.40× 10−11 15.03
; PL TSA+morphotype 0.88 2.55× 10−8 16.01
;
CT TSA

PL TSA * morphotype 0.88 7.22× 10−8 18.07
; PL LSA 0.70 3.65× 10−7 39.67
; PL LSA+morphotype 0.745 3.55× 10−06 37.86
;
CT LSA

PL LSA * morphotype 0.81 3.31× 10−06 32.88
; PL TSA 0.73 2.42× 10−07 42.85
; PL TSA+morphotype 0.90 9.76× 10−10 23.14
;
CT Vol

PL TSA * morphotype 0.90 1.79× 10−8 23.67

Table 2 Parameter estimates for best models to predict CT TSA, CT LSA and CT Vol from PL TSA or
LSA to for coral colonies of a range of morphotypes. All variables in the regression models were log trans-
formed hence a general predictive function is C = eα+β ln(P), where C is CT TSA, CT LSA or CT Vol and P
is PL TSA, or PL LSA as per Fig. 1.

Response Morphotype α (CI) B (CI)

;CT TSA All 1.528 (0.692 to 2.365) 1.016 (0.849 to 1.184)
; Branching 1.024 (−0.749 to 2.797) 1.118 (0.768 to 1.468)
; Encrusting −4.387 (−10.597 to−0.225) 1.987 (−0.093 to 1.830)
;
CT LSA

Massive 2.796 (−0.812 to 4.355) 0.696 (−0.975 to 0.132)
; Branching −1.570 (−2.671 to−0.469)
; Encrusting −1.638 (−0.501 to 0.364)
;
CT Vol

Massive −0.579 (0.610 to 1.373)

1.375 (1.160 to 1.589)

model is constant across morphotypes, although for CT Vol morphotypes differ in their
intercept (Fig. 4, Table 2).

Photogrammetry provides fairly accurate estimates of the surface area and volume
of coral skeletons: R2 of best fit models range between 0.70 and 0.97 (Table 3 and
Figs. S2 and S3). However, paired t -tests showed that the techniques for measuring
3D information, CT scanning and photogrammetry, produced significantly different
measurements from each other for specimen volume (t =−2.549, df = 21, p= 0.019), TSA
(t = 2.91, df = 21, p= 0.008) and LSA (t = 3.518, df = 21, p= 0.002). Photogrammetry
generally underestimated TSA and overestimated volume (Fig. 5). Both photogrammetry
and planar photography were less accurate at predicting CT LSA than CT TSA. Model
selection does not reveal bias associated to morphotype for TSA and LSA, as the best model
has constant scaling across morphotypes (Figs. 5A and 5B, Table 3). In contrast, the best
model for Vol does include different slopes and intercepts for different morphotypes, as
for massive colonies PH Vol is virtually identical to CT Vol, but for both encrusting and
branching colonies the PH Vol increasingly overestimates CT Vol as colony sizes increase
(Fig. 5C).
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Table 3 Predictive accuracy of Photogrammetry total and live surface area, and volume (PH TSA, PH
LSA, PH Vol, respectively) when used alone and with morphotype to estimate total and live surface area
and volume according to CT scanning (CT TSA, CT LSA, CT Vol, respectively). Adjusted R2, p value and
Akaike’s Information Criterion (AIC) are given to three significant figures.

Response Predictor(s) Adjusted R2 p AIC

; PH TSA 0.876 9.75× 10−11 16.319
; PH TSA+morphotype 0.875 5.92× 10−9 18.074
;
CT TSA

PH TSA * morphotype 0.868 1.84× 10−7 20.686
; PH LSA 0.702 3.64× 10−7 39.601
; PH LSA+morphotype 0.692 3.55× 10−06 41.983
;
CT LSA

PH LSA * morphotype 0.690 3.31× 10−06 43.560
; PH Vol 0.955 1.02× 10−06 3.271
; PH Vol+morphotype 0.973 2.52× 10−10 −6.432
;
CT Vol

PH Vol * morphotype 0.976 6.45× 10−9 −7.847

DISCUSSION
We have improved our understanding of the relationship between 2D and 3D metrics
of coral colonies size and outlined an approach for converting between the two. For the
size range investigated, our results support the hypothesis that 3D metrics of size scale
consistently with planar area. Moreover, we demonstrated the potential for SfM to predict
surface area and volume of the CT scanner models (CT TSA/LSA and CT Vol). Together,
our results suggest that: (i) 2D data can be converted into more ecologically meaningful 3D
metrics, such as colony surface area and volume, when combined with information about
colony morphotypes, and (ii) that a shift towards 3D indicators in monitoring programs is
possible, without losing comparability in the process.

The measurements collected using SfM models were found to be significantly different
from the results of the CT scans, but were nevertheless excellent predictors when combined
with information about the morphotype of the colony. The differences observed are linked
to the different resolutions of the two methods (much higher for CT scans, see Fig. S1).
Lower resolution 3D SfM models cause both the underestimation in surface area and
the overestimation in volume. Our study adds to growing evidence that the previously
prohibitive aspects of underwater photogrammetry are being overcome by technological
improvements (Burns et al., 2015a; Falkingham, 2012). Not only the possibility of applying
this technique using open-source software opens it up to a wider audience, but the
costs of specific all-in-one SfM software is decreasing and allowing greater control upon
reconstruction parameter and resolution. The application of photogrammetry tomeasuring
reef topography (Burns et al., 2015b) combined with our detailed modelling of individual
coral colonies illustrates the wide range of potential applications this technique can have
in monitoring and studying coral reefs and their ecology at different scales.

Quantifying size in 3D rather than 2D is time costly in both the field and the lab.
We found that SfM photogrammetry was easier to carry out when dealing with less
complicated morphotypes, which required less processing time and fewer photographs.
SfM is particularly effective for colonies with simpler structures and few occlusions, and
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Figure 5 Relationship between CT and PH estimates of colony size (A total surface area, B live surface
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it has been suggested that it could be a valuable technique in areas with a high prevalence
of hemispherical colonies, such as the Caribbean (Courtney et al., 2007). In contrast,
calculating PL TSA/LSA took less time because it required fewer photographs and less
image processing. Although more complicated morphotypes still required more processing
than simple colony shapes, the difference in time and effort was negligible compared to
when using the photogrammetric approach. The labour-intensive nature of measuring
corals in 3D, despite recent technological developments, does suggest that the option of
converting 2D measurements into 3D metrics may provide a useful alternative in cases
where conducting monitoring in 3D is not feasible due to the time or costs involved.
Additionally, SfM software improvements are making this approach faster, more efficient
and streamlined.

The most beneficial outcome from this study is that previously collected coral cover
data may converted into 3D metrics if morphotype was captured during collection (e.g.,
as categorical data in line intercept transects or by re-analyzing video transects). This
can help shifting towards 3D without losing the possibility of comparisons with past
measurements, overcoming in a smoothway the ‘‘methodological inertia’’ that characterizes
monitoring programs (Goatley & Bellwood, 2011). We have produced empirical formulae
that combine PL TSA/LSA and morphotype categories to predict colony TSA/LSA or
volume. Importantly, the predictive power of these conversion models is similar to
the estimates obtained through SfM. Our results indicate the importance of recording
the morphotype of a colony when conducting monitoring, as this trait determines the
relationship between some of the 2D and 3D metrics. Increasing the number of specimens
for each morphotype and widening the size spectra would further improve these formulae,
and it would be valuable also to expand them to additional morphotypes in the future.

Morphotype categories are not always clear-cut and the variability within groups
supports the need to move from discrete classifications of morphotypes towards individual
level continuous traits that measure colony shape.Moreover, our work suggests that surface
area and volume, as well as the ratios between these variables and planar area, are potential
candidates as useful traits. This shift in focus would also address the fact that corals can
exhibit a high degree of morphological plasticity within species (Todd, 2008), with colonies
of the same species fulfilling different categories of morphotype. This level of plasticity
suggests that when our equations are used in the future they should be applied based on the
morphotype observed in the field, rather than one that is based on species identification
and applied post hoc.

Improved understanding of the relationship between 2D and 3D parameters for different
morphotypes should contribute towards our grasp of the ecological role of different coral
morphotypes. We already know that morphotypes respond differently to disturbance
(Madin & Connolly, 2006) and play different ecological roles (Alvarez-Filip et al., 2011).
It has also been suggested that examining the ratio of different coral morphotypes on
reefs can give insight into reef health (Edinger & Risk, 2000). Our approach can provide a
transition between traditional methods and accurate 3Dmodelling, which will improve our
understanding of the contribution of different morphotypes to the services and functions
provided by coral reefs. In addition to applying our findings to future research, a significant
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benefit of using the equations developed herein is that they can be applied to archived
images and historical data sets. This will enable data comparisons over as long a timescale
as possible, minimising the ‘‘shifting baseline’’ effect (Knowlton & Jackson, 2008).

CONCLUSIONS
In conclusion, coral colony surface area and volume can be predicted effectively from two
commonly collected variables: planar area (PL TSA) and morphotype. This quantitative
development provides a stepping-stone that may enable better understanding and
exploitation of historical data. Furthermore, SfM photogrammetry clearly contributes
towards addressing the question of how best to measure corals because it is a widely
accessible, non-invasive and cost effective method for making 3D measurements in-situ.
This paper illustrates two specific areas for studying corals in ways that better capture
changes amongst corals and the ecological processes associated with them. We hope
that these approaches will eventually enable more accurate coral reef monitoring and
conservation.

ACKNOWLEDGEMENTS
We thank the curator and staff at the Bell Pettigrew Museum for allowing us use of
museum specimens, and the Behaviour and Biodiversity group at University of St Andrews
for feedback.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the School of Biology, University of St Andrews, the Scottish
Funding Council (MASTS grant reference HR09011) and the Templeton Foundation
(grant #60501, ‘Putting the Extended Evolutionary Synthesis to the Test’). The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
School of Biology, University of St Andrews, the Scottish Funding Council: HR09011.
Templeton Foundation: #60501.

Competing Interests
Maria Dornelas is an Academic Editor for PeerJ.

Author Contributions
• Jenny E. House conceived and designed the experiments, performed the experiments,
analyzed the data, wrote the paper, prepared figures and/or tables, reviewed drafts of the
paper.

House et al. (2018), PeerJ, DOI 10.7717/peerj.4280 14/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.4280


• Viviana Brambilla analyzed the data, wrote the paper, prepared figures and/or tables,
reviewed drafts of the paper.
• LucM. Bidaut performed the experiments, contributed reagents/materials/analysis tools,
reviewed drafts of the paper.
• Alec P. Christie performed the experiments, reviewed drafts of the paper.
• Oscar Pizarro contributed reagents/materials/analysis tools, reviewed drafts of the paper.
• Joshua S. Madin conceived and designed the experiments, reviewed drafts of the paper.
• Maria Dornelas conceived and designed the experiments, analyzed the data, wrote the
paper, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

The raw data and R script have been supplied as Supplementary Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.4280#supplemental-information.

REFERENCES
Agudo-Adriani EA, Cappelletto J, Cavada-Blanco F, Croquer A. 2016. Colony ge-

ometry and structural complexity of the endangered species Acropora cervicornis
partly explains the structure of their associated fish assemblage. PeerJ 4:e1861
DOI 10.7717/peerj.1861.

Airoldi L, Balata D, BeckMW. 2008. The gray zone: relationships between habitat loss
and marine diversity and their applications in conservation. Journal of Experimental
Marine Biology and Ecology 366:8–15 DOI 10.1016/j.jembe.2008.07.034.

Alvarez-Filip L, Côté IM, Gill JA, Watkinson AR, Dulvy NK. 2011. Region-wide
temporal and spatial variation in Caribbean reef architecture: is coral cover the whole
story? Global Change Biology 17:2470–2477 DOI 10.1111/j.1365-2486.2010.02385.x.

Álvarez-Noriega M, Baird AH, Dornelas M, Madin JS, Cumbo VR, Connolly SR.
2016. Fecundity and the demographic strategies of coral morphologies. Ecology
97:3485–3493 DOI 10.1002/ecy.1588.

Balmford A, Green RE, Jenkins M. 2003.Measuring the changing state of nature. Trends
in Ecology and Evolution 18:326–330 DOI 10.1016/S0169-5347(03)00067-3.

Booth DT, Cox SE, Meikle T, Zuuring HR. 2008. Ground-cover measurements: assessing
correlation among aerial and ground-based methods. Environmental Management
42:1091–1100 DOI 10.1007/s00267-008-9110-x.

Bruno JF, Selig ER. 2007. Regional decline of coral cover in the Indo-Pacific: timing,
extent, and subregional comparisons. PLOS ONE 2:e711
DOI 10.1371/journal.pone.0000711.

House et al. (2018), PeerJ, DOI 10.7717/peerj.4280 15/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.4280#supplemental-information
http://dx.doi.org/10.7717/peerj.4280#supplemental-information
http://dx.doi.org/10.7717/peerj.4280#supplemental-information
http://dx.doi.org/10.7717/peerj.1861
http://dx.doi.org/10.1016/j.jembe.2008.07.034
http://dx.doi.org/10.1111/j.1365-2486.2010.02385.x
http://dx.doi.org/10.1002/ecy.1588
http://dx.doi.org/10.1016/S0169-5347(03)00067-3
http://dx.doi.org/10.1007/s00267-008-9110-x
http://dx.doi.org/10.1371/journal.pone.0000711
http://dx.doi.org/10.7717/peerj.4280


BrysonM, Ferrari R, FigueiraW, Pizarro O, Madin J, Williams S, ByrneM. 2017.
Characterization of measurement errors using structure-from-motion and pho-
togrammetry to measure marine habitat structural complexity. Ecology and Evolution
7:5669–5681 DOI 10.1002/ece3.3127.

Burns JHR, Delparte D, Gates RD, Takabayashi M. 2015a. Integrating structure-
from-motion photogrammetry with geospatial software as a novel technique
for quantifying 3D ecological characteristics of coral reefs. PeerJ 3:e1077
DOI 10.7717/peerj.1077.

Burns JHR, Delparte D, Gates RD, Takabayashi M. 2015b. Utilizing underwater three-
dimensional modeling to enhance ecological and biological studies of coral reefs.
International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences 40:61–66 DOI 10.5194/isprsarchives-XL-5-W5-61-2015.

Burns JHR, Delparte D, Kapono L, Belt M. 2016. Assessing the impact of acute
disturbances on the structure and composition of a coral community using
innovative 3D reconstruction techniques.Methods in Oceanography 16:49–59
DOI 10.1016/j.mio.2016.04.001.

Cignoni P, Corsini M, Ranzuglia G. 2008.Meshlab: an open-source 3D mesh processing
system. ERCIM News 73:47–48.

Cocito S, Sgorbini S, Peirano A, Valle M. 2003. 3-D reconstruction of biological objects
using underwater video technique and image processing. Journal of Experimental
Marine Biology and Ecology 297:57–70 DOI 10.1016/S0022-0981(03)00369-1.

Courtney LA, FisherWS, Raimondo S, Oliver LM, DavisWP. 2007. Estimating 3-
dimensional colony surface area of field corals. Journal of Experimental Marine
Biology and Ecology 351:234–242 DOI 10.1016/j.jembe.2007.06.021.

Dornelas M, Madin JS, Baird AH, Connolly SR. 2017. Allometric growth in reef-
building corals. Proceedings of the Royal Society B: Biological Sciences 284:Article
20170053 DOI 10.1098/rspb.2017.0053.

Edinger EN, RiskMJ. 2000. Reef classification by coral morphology predicts coral reef
conservation value. Biological Conservation 92:1–13
DOI 10.1016/S0006-3207(99)00067-1.

Falkingham P. 2012. Acquisition of high resolution three-dimensional models using free,
open-source, photogrammetric software. Palaeontologia Electronica 15:1T.

Ferrari R, BrysonM, Bridge T, Hustache J, Williams SB, ByrneM, FigueiraW. 2016.
Quantifying the response of structural complexity and community composition to
environmental change in marine communities. Global Change Biology 22:1965–1975
DOI 10.1111/gcb.13197.

Ferrario F, BeckMW, Storlazzi CD, Micheli F, Shepard CC, Airoldi L. 2014. The
effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nature
Communications 5:Article 3794 DOI 10.1038/ncomms4794.

FigueiraW, Ferrari R, Weatherby E, Porter A, Hawes S, ByrneM. 2015. Accuracy
and precision of habitat structural complexity metrics derived from underwater
photogrammetry. Remote Sensing 7:16883–16900 DOI 10.3390/rs71215859.

House et al. (2018), PeerJ, DOI 10.7717/peerj.4280 16/19

https://peerj.com
http://dx.doi.org/10.1002/ece3.3127
http://dx.doi.org/10.7717/peerj.1077
http://dx.doi.org/10.5194/isprsarchives-XL-5-W5-61-2015
http://dx.doi.org/10.1016/j.mio.2016.04.001
http://dx.doi.org/10.1016/S0022-0981(03)00369-1
http://dx.doi.org/10.1016/j.jembe.2007.06.021
http://dx.doi.org/10.1098/rspb.2017.0053
http://dx.doi.org/10.1016/S0006-3207(99)00067-1
http://dx.doi.org/10.1111/gcb.13197
http://dx.doi.org/10.1038/ncomms4794
http://dx.doi.org/10.3390/rs71215859
http://dx.doi.org/10.7717/peerj.4280


Friedman A, Pizarro O,Williams SB, Johnson-RobersonM. 2012.Multi-scale measures
of rugosity, slope and aspect from benthic stereo image reconstructions. PLOS ONE
7:e50440 DOI 10.1371/journal.pone.0050440.

Furukawa Y, Curless B, Seitz SM, Szeliski R. 2010. Towards internet-scale multi-view
stereo. In: 2010 IEEE conference on Computer Vision and Pattern Recognition (CVPR).
San Francisco, CA, USA: IEEE, 1434–1441 DOI 10.1109/CVPR.2010.5539802.

Furukawa Y, Ponce J. 2010. Accurate, dense, and robust multi-view stereopsis.
IEEE Transactions on Pattern Analysis and Machine Intelligence 32:1362–1376
DOI 10.1109/TPAMI.2009.161.

Gardner TA, Côté IM, Gill JA, Grant A,Watkinson AR. 2003. Long-term region-wide
declines in Caribbean corals. Science 301:958–960 DOI 10.1126/science.1086050.

Goatley CHR, Bellwood DR. 2011. The roles of dimensionality, canopies and complexity
in ecosystem monitoring. PLOS ONE 6:e27307 DOI 10.1371/journal.pone.0027307.

GrahamNAJ,Wilson SK, Jennings S, Polunin NVC, Bijoux JP, Robinson J.
2006. Dynamic fragility of oceanic coral reef ecosystems. Proceedings of the
National Academy of Sciences of the United States of America 103:8425–8429
DOI 10.1073/pnas.0600693103.

Gutierrez-Heredia L, Benzoni F, Murphy E, Reynaud EG. 2016. End to end digitisation
and analysis of three-dimensional coral models, from communities to corallites.
PLOS ONE 11:e0149641 DOI 10.1371/journal.pone.0149641.

Hata T, Madin JS, Cumbo VR, DennyM, Figueiredo J, Harii S, Thomas CJ, Baird AH.
2017. Coral larvae are poor swimmers and require fine-scale reef structure to settle.
Scientific Reports 7:2249 DOI 10.1038/s41598-017-02402-y.

Hill J, Wilkinson C. 2004.Methods for ecological monitoring of coral reefs—a resource for
managers. Townsville: Australian Institute of Marine Science (AIMS).

Hoegh-Guldberg O. 1999. Climate change, coral bleaching and the future of the world’s
coral reefs.Marine and Freshwater Research 50:839–866 DOI 10.1071/MF99078.

Hughes TP, Baird AH, Bellwood DR, CardM, Connolly SR, Folke C, Grosberg
R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nys-
trömM, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J. 2003. Climate
change, human impacts, and the resilience of coral reefs. Science 301:929–933
DOI 10.1126/science.1085046.

Jorstad A, Nigro B, Cali C, WawrzyniakM, Fua P, Knott G. 2014. NeuroMorph:
a toolset for the morphometric analysis and visualization of 3D models de-
rived from electron microscopy image stacks. Neuroinformatics 13:83–92
DOI 10.1007/s12021-014-9242-5.

Knowlton N, Jackson JBC. 2008. Shifting baselines, local impacts, and global change on
coral reefs. PLOS Biology 6:e54 DOI 10.1371/journal.pbio.0060054.

Laforsch C, Christoph E, Glaser C, NaumannM,Wild C, Niggl W. 2008. A precise and
non-destructive method to calculate the surface area in living scleractinian corals
using X-ray computed tomography and 3D modeling. Coral Reefs 27:811–820
DOI 10.1007/s00338-008-0405-4.

House et al. (2018), PeerJ, DOI 10.7717/peerj.4280 17/19

https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0050440
http://dx.doi.org/10.1109/CVPR.2010.5539802
http://dx.doi.org/10.1109/TPAMI.2009.161
http://dx.doi.org/10.1126/science.1086050
http://dx.doi.org/10.1371/journal.pone.0027307
http://dx.doi.org/10.1073/pnas.0600693103
http://dx.doi.org/10.1371/journal.pone.0149641
http://dx.doi.org/10.1038/s41598-017-02402-y
http://dx.doi.org/10.1071/MF99078
http://dx.doi.org/10.1126/science.1085046
http://dx.doi.org/10.1007/s12021-014-9242-5
http://dx.doi.org/10.1371/journal.pbio.0060054
http://dx.doi.org/10.1007/s00338-008-0405-4
http://dx.doi.org/10.7717/peerj.4280


Lavy A, Eyal G, Neal B, Keren R, Loya Y, IlanM. 2015. A quick, easy and non-intrusive
method for underwater volume and surface area evaluation of benthic organ-
isms by 3D computer modelling.Methods in Ecology and Evolution 6:521–531
DOI 10.1111/2041-210X.12331.

LeujakW, Ormond RFG. 2007. Comparative accuracy and efficiency of six coral
community survey methods. Journal of Experimental Marine Biology and Ecology
351:168–187 DOI 10.1016/j.jembe.2007.06.028.

Loya Y. 1972. Community structure and species diversity of hermatypic corals at Eilat,
Red Sea.Marine Biology 13(2):100–123 DOI 10.1007/BF00366561.

Madin JS, Baird AH, Dornelas M, Connolly SR. 2014.Mechanical vulnerability
explains size-dependent mortality of reef corals. Ecology Letters 17:1008–1015
DOI 10.1111/ele.12306.

Madin JS, Connolly SR. 2006. Ecological consequences of major hydrodynamic distur-
bances on coral reefs. Nature 444:477–480 DOI 10.1038/nature05328.

Moberg F, Folke C. 1999. Ecological goods and services of coral reef ecosystems.
Ecological Economics 29:215–233 DOI 10.1016/S0921-8009(99)00009-9.

NaumannMS, Niggl W, Laforsch C, Glaser C,Wild C. 2009. Coral surface area
quantification-evaluation of established techniques by comparison with computer
tomography. Coral Reefs 28:109–117 DOI 10.1007/s00338-008-0459-3.

Noonan SHC, Jones GP, Pratchett MS. 2012. Coral size, health and structural complex-
ity: effects on the ecology of a coral reef damselfish.Marine Ecology Progress Series
456:127–137 DOI 10.3354/meps09687.

Pizarro O, Friedman A, BrysonM,Williams SB, Madin J. 2017. A simple, fast, and re-
peatable survey method for underwater visual 3D benthic mapping and monitoring.
Ecology and Evolution 7:1770–1782 DOI 10.1002/ece3.2701.

R Core Team. 2013. R: a language and environment for statistical computing. Vienna: the
R Foundation for Statistical Computing. Available at http://www.r-project.org/ .

Raoult V, David PA, Dupont SF, Mathewson CP, O’Neill SJ, Powell NN,Williamson
JE. 2016. GoProsTM as an underwater photogrammetry tool for citizen science. PeerJ
4:e1960 DOI 10.7717/peerj.1960.

Raoult V, Reid-Anderson S, Ferri A, Williamson J. 2017.How reliable is Structure
from Motion (SfM) over time and between observers? A case study using coral reef
bommies. Remote Sensing 9:Article 740 DOI 10.3390/rs9070740.

RasbandW. 2014. ImageJ. Available at http:// imagej.nih.gov/ ij/ .
Richardson LE, GrahamNAJ, Hoey AS. 2017. Cross-scale habitat structure driven by

coral species composition on tropical reefs. Scientific Reports 7:7557
DOI 10.1038/s41598-017-08109-4.

Shuman CS, Ambrose RF. 2003. A comparison of remote sensing and ground-
based methods for monitoring Wetland restoration success. Restoration Ecology
11:325–333 DOI 10.1046/j.1526-100X.2003.00182.x.

Storlazzi CD, Dartnell P, Hatcher GA, Gibbs AE. 2016. End of the chain? Ru-
gosity and fine-scale bathymetry from existing underwater digital imagery

House et al. (2018), PeerJ, DOI 10.7717/peerj.4280 18/19

https://peerj.com
http://dx.doi.org/10.1111/2041-210X.12331
http://dx.doi.org/10.1016/j.jembe.2007.06.028
http://dx.doi.org/10.1007/BF00366561
http://dx.doi.org/10.1111/ele.12306
http://dx.doi.org/10.1038/nature05328
http://dx.doi.org/10.1016/S0921-8009(99)00009-9
http://dx.doi.org/10.1007/s00338-008-0459-3
http://dx.doi.org/10.3354/meps09687
http://dx.doi.org/10.1002/ece3.2701
http://www.r-project.org/
http://dx.doi.org/10.7717/peerj.1960
http://dx.doi.org/10.3390/rs9070740
http://imagej.nih.gov/ij/
http://dx.doi.org/10.1038/s41598-017-08109-4
http://dx.doi.org/10.1046/j.1526-100X.2003.00182.x
http://dx.doi.org/10.7717/peerj.4280


using structure-from-motion (SfM) technology. Coral Reefs 35:889–894
DOI 10.1007/s00338-016-1462-8.

Sweatman H, Delean S, Syms C. 2011. Assessing loss of coral cover on Australia’s Great
Barrier Reef over two decades, with implications for longer-term trends. Coral Reefs
30:521–531 DOI 10.1007/s00338-010-0715-1.

Todd PA. 2008.Morphological plasticity in scleractinian corals. Biological Reviews
83:315–337 DOI 10.1111/j.1469-185X.2008.00045.x.

Veal CJ, Holmes G, NunezM, Hoegh-Guldberg O, Osborn J. 2010. A compara-
tive study of methods for surface area and three-dimensional shape measure-
ment of coral skeletons. Limnology and Oceanography: Methods 8:241–253
DOI 10.4319/lom.2010.8.241.

Vroom PS. 2011. ‘‘Coral dominance’’: a dangerous ecosystem misnomer? Journal of
Marine Biology 2011:Article 164127 DOI 10.1155/2011/164127.

WestobyMJ, Brasington J, Glasser NF, HambreyMJ, Reynolds JM. 2012. ‘‘Structure-
from-motion’’ photogrammetry: a low-cost, effective tool for geoscience applica-
tions. Geomorphology 179:300–314 DOI 10.1016/j.geomorph.2012.08.021.

WuC. 2007. SiftGPU: a GPU implementation of scale invariant feature transform (SIFT).
Available at http://www.cs.unc.edu/~ccwu/ siftgpu.

WuC. 2011. VisualSFM: a visual structure from motion system. Available at http:// ccwu.
me/vsfm/ .

WuC, Frahm JM, Pollefeys M. 2011. Repetition-based dense single-view reconstruction.
In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
3113–3120.

House et al. (2018), PeerJ, DOI 10.7717/peerj.4280 19/19

https://peerj.com
http://dx.doi.org/10.1007/s00338-016-1462-8
http://dx.doi.org/10.1007/s00338-010-0715-1
http://dx.doi.org/10.1111/j.1469-185X.2008.00045.x
http://dx.doi.org/10.4319/lom.2010.8.241
http://dx.doi.org/10.1155/2011/164127
http://dx.doi.org/10.1016/j.geomorph.2012.08.021
http://www.cs.unc.edu/~ccwu/siftgpu
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://dx.doi.org/10.7717/peerj.4280

