
Heliyon 10 (2024) e29678

Available online 17 April 2024
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

Research article 

Gesture generation by the robotic hand for aiding speech and hard 
of hearing persons based on indian sign language 

Yash Verma *, R.S. Anand 
Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, India   

A R T I C L E  I N F O   

Keywords: 
Hearing impairments 
Hearing aids 
Sign language 
Robotic hand 

A B S T R A C T   

Speech and hearing impairments are among the most common problems in Indian societies. It can 
affect anyone, whether children, adults, or more. Many different treatments can help to overcome 
hearing problems. Different types of hearing aids and cochlear implants help amplify sounds for 
better hearing. The type of language known as sign language is very scientific and has its 
grammar and syntax. Still, due to a need for more awareness among hard-of-hearing persons, they 
need to be made familiar with the institutions where they can learn and equip themselves for 
communication. This paper describes an approach to aid speech and hard-of-hearing persons so 
that they are free to communicate with persons who do not have speech and hearing disabilities 
based on the Indian Sign Language System. To find an appropriate solution, there is a need to 
develop a system that can act as an interpreter for speech and hard-of-hearing persons. The 
interpreter system is designed with the help of the Robotic hand model and is programmed using 
Raspberry Pi 4. Based on the experimental results, it can be observed that the robotic hands 
generated different signs of the alphabet corresponding to the speech commands uttered by an 
individual. Several experimental trials were conducted by ten persons who do not have any 
hearing disabilities. The results of the five experimental trials are shown in this paper. The 
estimation of performance parameters and statistical analysis are also carried out to analyze 
better and interpret the experimental results. Based on the experimental results, the proposed 
robotic hand interpreter system model accurately generates gestures corresponding to different 
alphabets used in the Indian Sign Language system, yielding an overall accuracy of 94 percent.   

1. Introduction 

Speech and hearing difficulties are common issues in Indian society. Speech impairment is a disorder that makes it challenging to 
form sounds. Symptoms of speech impairments include communication problems, feeling stressed, and taking frequent breaks while 
speaking. Often, there are repetitions of words and sound patterns when communicating. Various techniques, such as hearing aids and 
lip reading, can address this problem but may not work in all cases. Unfortunately, as India’s population grows, so do the problems 
associated with speech and hearing difficulties, which affect communication between people who are hard of hearing and those who 
are not. 

In India, the most common language for individuals with speech and hearing disabilities is Indian Sign Language. This language 
facilitates communication between hard-of-hearing and non-hearing-impaired individuals. However, it is not used in schools for deaf 
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students or in teacher-training programs. Many parents of hard-of-hearing children need to be aware of sign language and its benefits 
for communication. There is a critical need for more Indian Sign Language practitioners to facilitate communication between speech 
and hard-of-hearing individuals. Unfortunately, there are not enough practitioners in India despite the sizeable deaf community. 
Considering the above effect, the rationale of our study focuses on the need for communication solutions for individuals with hearing 
impairments in Indian society. 

Around the world, efforts have been made to bridge the communication gap between deaf and non-deaf individuals using sign 
language. One approach is to use computer-based systems to convert speech to sign language using a robotic hand practitioner system. 
However, sign language varies by region, with each country having its unique grammar and syntax. Sign language relies on bodily 
movements, facial expressions, and spelling out words alphabetically. Understanding the language and its rudiments is essential to 
developing an interpreter system for speech and hard-of-hearing individuals. Generating signs for Indian Sign Language is a significant 
concern for hard-of-hearing individuals seeking to understand speech. However, no perfect or appropriate way to create characters 
exists, as each country interprets sign language differently. 

In 2006, a model was introduced for neural networks aimed at coordinating hand gestures during prehension. The model incor-
porated a simplified control strategy to shape the entire hand during grasping tasks, facilitating realistic finger coordination. This 
control scheme is grounded in the growing body of evidence supporting synergistic control of the complete hand during prehension. 
The model only necessitates two parameters to delineate the evolution of hand shape throughout the task. The proposal entails 
establishing a Library of Hand Gestures comprising motor primitives for finger pre-shaping in an anthropomorphic dextrous hand. 
Through computer simulations, the neural dynamics of the model can generate grasping movements with kinematic features 
resembling those of humans. The model was applied to formulate precise predictions for experimental evaluation at both behavioural 
and neural levels, as well as for a neural control system for a dextrous robotic hand [1]. 

In 2010, a research paper discussed a method for gesture recognition in Indian Sign Language to enhance the interaction between 
the humanoid robot HOAP-2 and humans. In this approach, a classification process was employed using the different aspects of image 
processing along with the development of the generic algorithm for feature extraction. The classification technique is based on the 
Euclidean distance metric. The resulting Human-Robot Interaction (HRI) system is designed for machine-based learning. It utilizes the 
real-time robotics simulation software WEBOTS to simulate Indian Sign Language gestures on the HOAP-2 robot. A JAVA-based 
software was developed to facilitate the entire HRI process. Overall, this innovative approach provides an elegant means for 
humans to communicate with humanoid robots using Indian Sign Language gestures [2]. 

In 2012, a research paper introduced the Indian Sign Language Recognition System (INSLR) to enhance communication between 
deaf and hearing individuals. The system relies on image processing and computational intelligence techniques for recognizing sen-
tences. Specifically, a wavelet-based video segmentation technique is employed to identify hand signs and head movements in videos. 
Elliptical Fourier descriptions are then utilized to extract the shape features of hand gestures, reducing the feature vectors for each 
image. Principal component analysis (PCA) minimizes the feature vector for each gesture video, ensuring that the components are not 
affected by the scaling or rotation of gestures within a video. These techniques generate unique feature vectors for each motion. A 
Sugeno-type fuzzy inference system employs linear output membership functions to recognize gestures from these extracted features. 
Finally, the INSLR system integrates an audio system to play the recognized gestures and text output. The system was tested using a 
dataset of 80 words and sentences by ten different signers, and the results demonstrated a recognition rate of 96 % [3]. 

In 2015, a research paper addressed the significance of continuous Indian sign language (ISL) gesture recognition for hearing- 
impaired individuals. The study proposed an ISL gesture recognition system utilising both hands, tackling the challenge of inter-
preting continuous sign language movements. Researchers employed a gradient-based critical frame extraction method to identify 
keyframes, enabling the segmentation of continuous gestures into meaningful sign sequences by removing irrelevant frames. They 
further processed and characterised the gestures using an Orientation Histogram (OH) and Principal Component Analysis (PCA) for 
feature dimension reduction. Experiments were conducted on their custom ISL dataset, captured with a Canon EOS camera in the 
Robotics and Artificial Intelligence Laboratory (IIIT-A). Among various classifiers tested, Correlation and Euclidean distance 
demonstrated superior accuracy [4]. 

Early in the year 2016, a representation scheme for illustrating Turkish Sign Language electronically, a machine translation system, 
was developed, and the basic objective was to translate Turkish primary school educational materials into Turkish Sign Language. 
Turkish Sign Language needed more electronic language resources to be used in computerized systems. In the proposed scheme, the 
resource creation was provided by two means, namely, an interactive online dictionary platform for Turkish Sign Language and an 
ELAN add-on for corpus creation. In the proposed architecture, there were two major layers, namely the translation of the written 
Turkish material into a machine-readable sign representation and the animation of the produced gesture representation. The proposed 
technique also used an online dictionary platform consisting of different sets of signs. The different possible variations and the 
requirement of the layers to feed the ELAN tool were also studied. In the research, no information on the overall accuracy of the 
proposed technique was provided [5]. 

In 2017, a research paper outlined the development of a humanoid arm robot that can translate spoken language into sign language. 
This technology aims to assist individuals with hearing disabilities. The arm’s joints were analysed to determine the necessary torque 
for accurate movements of the servo motors. To aid in processing, an Android app was created for speech recognition testing. An 
optimal nonlinear controller was designed for finger control, utilising angle, and angular velocity as state variables to manipulate the 
DC motor’s position and ensure proper finger movement. Using conductive pulleys and hydraulic transmission reduced the variables 
necessary for controlling finger movement, allowing optimal control in opening and closing the fingers. A mobile app is set to be used 
for real-time speech recognition. The team also plans to build a hand-sign language database using motion capture technology for arm 
movement and manual input in transcription software for hand shapes [6]. 
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Later, in 2018, research based on translating the Arabic text into Arabic sign language was implemented. The translation process 
was used with the help of machine translation because the Arabic Text and its sign language representation had different structures and 
grammar. A rule-based machine translation system was adopted in the research. The proposed system performed a morphological, 
syntactic, and semantic analysis of the Arabic sentence to translate it into a sentence based on the grammar and pattern of Arabic Sign 
Language. A gloss system was proposed for the representation of the signs, along with the development of a parallel corpus in the 
health domain that consisted of 600 sentences. The performance evaluation of the translation system was based on Manual Evaluation, 
Automated Evaluation, Bilingual Evaluation Understudy (BLEU), Word Error Rate (WER), and Translation Error Rate (TER) metrics. 
The translation system provided an accuracy of 80 percent during the process of sign translation of the sentence [7]. 

In a 2020 study, researchers focused on automatically assessing speech impairment in Cantonese-speaking individuals with 
aphasia, a language disorder often linked to specific brain dysfunction. Standard clinical assessments for aphasia involve analysing 
spontaneous narrative speech, but they suffer from subjectivity and practical limitations when administered by trained speech- 
language pathologists. The study introduced a fully automated system to evaluate the speech of individuals with aphasia who 
speak Cantonese. This system utilized a deep neural network (DNN)-based automatic speech recognition (ASR) system, developed 
through multi-task training with both in-domain and out-of-domain speech data. The integration of story-level embedding and Siamese 
networks derived robust text features that, when combined with conventional acoustic features, comprehensively assessed speech and 
language impairment. Notably, experimental results demonstrated a strong correlation between predicted and subject assessment 
scores. The best correlation value achieved with ASR-generated transcription was 0.827, compared to 0.844 achieved with manual 
transcription. The Siamese network significantly outperformed story-level embedding in generating text features for automatic 
assessment [8]. 

In this paper, the robotic hand interpreter system was designed to generate the alphabet’s signs from A to Z based on the Indian Sign 
Language System. The main objective of the study is to develop a robotic hand interpreter system that could generate signs of the 
alphabet spelled out by hearing individuals to assist speech and hard-of-hearing persons. The persons affected by speech and hearing 
disabilities cannot understand the voice commands spelled out by hearing individuals. Considering this fact, the objectives of our study 
are finalized. The robotic hand interpreter system was connected to a computer and was programmed using a Raspberry Pi 4 with other 
essential hardware devices attached to it. The functioning of the Robotic Hand interpreter system model was tested with ten different 
persons under five experimental trials, and the results were obtained. 

The remaining part of the paper is divided further into five different sections. The Proposed Methodology is discussed in Section 2, 
which further has two subsections, Section 2.1 and Section 2.2. Section 2.1 introduces the background techniques in the field of sign 
generation, followed by Section 2.2, which discusses in detail the development of the proposed algorithm for Indian Sign Language 
generation. The Experimental Setup is discussed in Section 3. The experimental results are further discussed in Section 4, which has 
seven different subsections, starting from Section 4.1 and continuing to Section 4.7. In Section 4.1, the description of the dataset is 
presented. In Section 4.2, the robotic hand model for the Indian Sign Language generation for generating different alphabets from A to 
Z is discussed. In Section 4.3, the details of the signs of the alphabet that could not be generated by the robotic hand are discussed. 
Further in Section 4.4, the status of sign generation by the Robotic Hand under different Experimental Trials is discussed. Section 4.5 
discusses the estimation of the mean and standard deviation of the data obtained from the experimental results. In Section 4.6, the plots 
related to the data obtained from the experimental results are discussed. Lastly, in Section 4.7, the experimental results are discussed. 
The performance evaluation of the robotic hand interpreter system is provided in Section 5, which has two subsections, Section 5.1 and 
Section 5.2. In Section 5.1, the performance parameters are estimated. In Section 5.2, the analysis of the results of the performance 
parameters is done. The conclusion of the entire paper, along with the future scope, is provided in Section 6. 

2. Proposed methodology 

In Section 1, we discussed the problems associated with speech and hearing-impaired persons, followed by the existing research in 
the field of Sign Language. This section discusses some of the most recent background techniques used in the existing research for 
gesture generation in Section 2.1, followed by the proposed algorithm for the Indian Sign Language generation in Section 2.2. 

2.1. Background 

In 2020, a machine-based translation system was developed for sign generation based on Indian Sign Language from English texts. 
The developed system incorporated human-computer interaction without the requirement of the ISL human interpreter to assist 
persons with hearing disabilities. The system used a dataset consisting of English words and frequently used sentences. The main 
components of the system include the ISL parser, the Hamburg Notation System, the Signing Gesture Mark-up Language, and 3D avatar 
animation for the purpose of carrying out the Indian Sign Language generation. Sign language users conducted many different tests. 
Based on the experimental results, it was concluded that the developed system was very efficient and achieved an average score of 
accuracy. The accuracy score was 4.2 for English words and 3.8 for sentences on a scale from 1 to 5. The overall performance was also 
evaluated using the Bilingual Evaluation Understudy score, which resulted in an overall accuracy of 0.95 [9]. 

Recently, in the year 2023, a research paper introduced a novel approach for sign language translation using a Convolutional- 
embedded transformer with an action tokenizer and key point emphasizer. Existing methods faced challenges in translating sign 
language due to insufficient gloss notation in video frames, the oversight of nonmanual elements, and the need for more effective local 
context capture in transformer models. To address these issues, the paper proposed an action tokenizer for semantic segmentation, a 
key point emphasizer, and a Convolutional-embedded Sign Language Transformer (CSLT). When applied to Sign2 (Gloss Text), this 
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resulted in CSLT with an action tokenizer and key point emphasizer (CSLT-AK), offering a streamlined and efficient sign language 
translation model. Experimental results on the RWTH-PHOENIX-Weather 2014 T dataset demonstrated CSLT-AK’s superior perfor-
mance and parameter reduction, showcasing competitive results without requiring regularisation methods compared to other state-of- 
the-art models [10]. 

2.2. Proposed Algorithm for Indian Sign Language Generation 

In Section 2.1, it was observed that the most recent techniques based on sign generation did not incorporate any robotic technology 
for assisting individuals with hearing disabilities. Furthermore, the existing research mostly focused on the process of sign recognition. 
More research is needed in the field of sign generation. The performance evaluation of the developed system involving gesture gen-
eration needed to be improved, and there needed to be more information on overall accuracy in some of the existing research. 
Considering these factors, the proposed methodology for the Indian Sign Language generation for assisting individuals with speech and 
hearing disabilities was finalized with the help of artificial robotic hands. 

The proposed method implemented for the design of the robotic hand interpreter system is discussed in the form of a flowchart, as 
shown in Fig. 1 below. 

The first stage of the algorithm is importing the necessary libraries involved in speech recognition in the Python script used for 
programming the Raspberry Pi 4. The speech recognition system is an inbuilt system within the Raspberry Pi 4 that consists of a 
recognizer for the purpose of recognizing the speech commands spelled by different users in front of the external microphone attached 
to the Raspberry Pi 4. The next stage is the initialization of the recognizer and the microphone function in the Python script. The speech 
input is in the form of an alphabet based on the Indian Sign Language system and is spelled in front of the external microphone 
connected to the Raspberry Pi 4. During speech recognition, it involves segmenting and extracting features from speech signals to 
identify words or phrases. The recognizer function initialized in the Python script recognizes the speech input spelled out by the user. 
The next stage of the flowchart is the internal speech signal processing done by the processor of Raspberry Pi 4. The primary goals of 
speech signal processing are to analyze, enhance, and manipulate speech signals to make them suitable for specific applications. The 
following process involves the transmission of the speech signal from the Raspberry Pi4 to the PCA9685 servo driver using Serial Clock 
Line (SCL) and Serial Data Line (SDA) pins on the Raspberry Pi 4. In the next stage of the flowchart, the translation system from speech 
to sign converts the individual alphabets in the form of speech commands to corresponding signs or gestures to be displayed by the dual 

Fig. 1. Algorithm for indian sign language generation by the robotic hand.  
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robotic hand. In this way, the proposed algorithm for sign generation by the dual robotic hands is implemented. 

3. Description of the experimental setup 

The description of the experimental setup is shown in Fig. 2 below. We connected the left and right robotic hand to 10 out of 16 pins 
in the PCA9685 servo driver, a popular 16-channel PWM driver used to control servos, LEDs, and other devices precisely. A Raspberry 
Pi 4 was used to manage the servos through the PCA9685. The Raspberry Pi 4 was programmed through Python, and it was connected 
to the servo driver using four pins: 3.3V, GND, SCL, and SDA. An external monitor, keyboard, mouse, and microphone were connected 
to the Raspberry Pi 4, as shown in Fig. 2 below. The Raspberry Pi 4 was powered using a 5-V, 3 Amp adapter, while the PCA9685 servo 
driver was powered independently by an external 11.1 V Lithium Polymer Battery and XL-4016 DC-DC Buck Converter. The DC to DC 
Buck converter decreased the 11.1 V to approximately 5 V for the servos. We used Python programming to generate signs with the left 
and right robotic hands based on the user’s spoken commands. This system model helps hard-of-hearing people interact with others. 
The experimental results are further discussed in Section 4. 

4. Experimental results 

4.1. Dataset 

The Indian Sign Language dataset selected 26 different English alphabets, each represented by various hand gestures [11]. The 
images chosen for the dataset were captured in high-definition format and cropped as necessary to display the gestures. These images 
accurately depict the signs of each alphabet within the Indian Sign Language system. 

4.2. Robotic hand model for Indian Sign Language System 

Considering the 26 different English alphabets corresponding to Indian Sign Language, the robotic hand was operated based on the 
alphabets spelled out by a typical user in front of the microphone. The results are presented in Table 1 below. The robotic hand 
operates in three distinct regions, namely CLR (Closed Region), PLR (Partial Region), and OPR (Open Region). In different regions, 
namely OPR, PLR, and CLR, the fingers, including the thumb, are fully closed, completely open, and partially open, as illustrated in 
Table 1 below. 

4.3. Details of the signs of the alphabet that could not be generated by the robotic hand 

As per Section 4.2 in Tables 1 and it is observed that the signs generated by the robotic hand for alphabet pairs ‘C’ and ‘U,’ alphabet 
pairs ‘H’ and ‘W,’ and alphabet pairs ‘T’ and ‘X’ are identical after conducting the experiments. These dual robotic hands cannot 
generate the sign of the letter ‘J’ due to its dynamic nature. 

4.4. Status of sign generation by the robotic hand under different experimental trials 

The functioning of the Robotic hand is tested by ten different persons, including five male persons from P1 to P5 and five female 
persons from P6 to P10. These persons performed multiple experiments and trials to obtain accurate results. The results of the five 
different experimental trials from T1 to T5 are shown in Table 2 below. Multiple trials of the experiments are carried out to test the 
replicability or reproducibility of our methodology. Since the robotic hand fails to distinguish between some of the alphabets stated at 
the beginning of Section 4.3, the results of these alphabets are excluded. Based on the status of Indian Sign Language generation by the 

Fig. 2. Experimental Setup of Robotic hand Interpreter system.  
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Table 1 
Details of the sign generated corresponding to different alphabets in the case of Indian Sign Language. 
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Robotic hand correctly by different persons from P1 to P10, an entry of ‘SS’ or ‘FF’ is inserted in Table 2. The entry ‘SS’ indicates that 
the robotic hand generates the sign correctly, whereas the entry ‘FF’ means that the robotic hand causes the movement incorrectly. 

4.5. Estimation of mean and standard deviation 

This section focuses on the calculation of mean and standard deviation for two separate cases under five experimental trials. The 
first case is based on the estimation of the number of persons with correct sign generation of the alphabet from the 19 total alphabets by 
the dual robotic hand under different experimental trials. The required results are shown below in Table 3. 

As per Table 3, NP T1 corresponds to the number of persons with correct sign generation of the alphabet from the 19 shown al-
phabets by the dual robotic hand. Similarly, NP T2, NP T3 , NP T4 and NP T5 to the number of persons with correct sign generation under 
trials T2, T3, T4, and T5. 

The first entry of 9 corresponding to alphabet A in Table 3 is calculated by counting the number of ‘SS’ in row T1 under alphabet A 
of Table 2. Similarly, all the row entries in Table 3 corresponding to other alphabets are computed based on the entries of Table 2 under 
different alphabets in each of the experimental trials. 

In the different column entries from T1 to T5 and different row entries from alphabet A to alphabet Z, the corresponding mean and 
standard deviation are calculated. The results are presented in the last two rows and last two columns of Table 3. μTA denotes the 
average number of persons responsible for the generation of all the 19 alphabets by the dual robotic hand. σTA denotes the standard 
deviation of the data corresponding to different column entries from T1 to T5. μAT denotes the average number of persons responsible 
for the generation of a particular alphabet by the dual robotic hand under different experimental trials from T1 to T5. σAT denotes the 
standard deviation of the data of different alphabets in a particular row. 

The different equations corresponding to μTA and σTA for trials T1 and T5 are given below in Eqn. (1). to Eqn. (4). μTA T1 and σTA T1 
corresponds to the estimation of mean and standard deviation concerning trial T1. Similarly, μTA T5 and σTA T5 corresponds to the 
estimation of mean and standard deviation concerning trial T5. The summation as given below in these equations varies from alphabet 
A to alphabet Z based on the data entries as per Table 3. Similarly other equations of mean and standard deviation concerning trials T2 
to T4 can be computed. 
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Table 2 
Performance evaluation of the Robotic hand by different persons during the process of Indian Sign Language Generation under different experimental 
trials.  

Alphabet Experimental Trial Details Status of Sign Generation by Robotic hand correctly by different 
persons in the case of Indian Sign Language 

Number of persons with correct sign generation 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

A T1 SS FF SS SS SS SS SS SS SS SS 9 
T2 SS SS SS SS SS SS SS SS SS SS 10 
T3 SS SS SS SS SS SS SS SS SS SS 10 
T4 SS FF SS SS SS SS SS SS SS SS 9 
T5 SS SS SS SS SS SS SS SS SS SS 10 

B T1 SS SS FF SS SS SS SS SS SS SS 9 
T2 SS SS SS SS SS FF SS SS SS SS 9 
T3 SS SS SS SS SS SS FF SS FF SS 8 
T4 SS SS SS SS SS SS SS SS SS SS 10 
T5 SS SS SS SS SS SS SS SS SS SS 10 

D T1 FF SS SS SS SS SS SS SS SS SS 9 
T2 FF SS SS SS SS SS SS SS SS SS 9 
T3 SS SS SS SS SS SS SS SS SS SS 10 
T4 SS SS SS SS SS SS SS SS SS SS 10 
T5 SS SS FF SS SS SS SS SS SS SS 9 

E T1 SS SS SS SS SS FF SS SS SS FF 8 
T2 SS SS SS SS SS SS SS SS SS FF 9 
T3 SS SS SS SS SS FF SS SS SS FF 8 
T4 SS SS SS SS SS FF SS SS SS FF 8 
T5 SS SS SS SS SS SS SS SS SS SS 10 

F T1 SS SS SS SS FF SS SS SS SS SS 9 
T2 SS SS SS SS FF SS SS SS SS SS 9 
T3 SS SS SS SS SS SS SS SS SS SS 10 
T4 SS SS SS SS FF SS SS SS SS SS 9 
T5 SS SS SS SS SS SS SS SS SS SS 10 

G T1 SS SS FF SS SS SS FF SS SS SS 8 
T2 SS SS SS SS SS SS FF SS SS SS 9 
T3 SS SS SS SS SS SS SS SS SS SS 10 
T4 SS SS SS SS SS SS SS SS SS SS 10 
T5 SS SS SS SS SS SS FF SS SS SS 9 

I T1 SS SS SS SS SS SS FF SS SS SS 9 
T2 SS SS SS SS SS SS SS SS SS SS 10 
T3 SS SS SS SS SS SS FF SS SS SS 9 
T4 SS SS SS SS SS SS FF SS FF SS 8 
T5 SS SS SS SS SS SS SS SS SS SS 10 

K T1 SS SS SS SS SS SS SS SS SS SS 10 
T2 SS SS SS SS SS SS SS SS SS SS 10 
T3 SS SS SS SS SS SS SS SS SS SS 10 
T4 SS SS SS SS SS SS SS SS SS SS 10 
T5 SS SS SS SS SS SS SS SS SS SS 10 

L T1 SS SS SS SS SS SS SS SS SS SS 10 
T2 SS SS SS SS SS SS SS SS SS SS 10 
T3 SS SS SS SS SS SS SS FF SS SS 9 
T4 SS SS SS SS SS SS SS SS SS SS 10 
T5 SS SS SS SS SS SS SS SS SS SS 10 

M T1 SS SS SS SS SS SS SS SS SS FF 9 
T2 SS SS SS SS SS SS SS SS SS FF 9 
T3 SS SS SS SS SS SS SS SS SS SS 10 
T4 SS SS SS SS SS SS SS SS SS SS 10 
T5 SS SS SS SS SS SS SS SS SS SS 10 

N T1 SS SS SS SS SS SS SS SS SS SS 10 
T2 SS SS SS SS SS SS SS SS SS SS 10 
T3 SS SS SS SS SS SS SS SS SS SS 10 
T4 SS SS SS SS SS SS SS SS SS SS 10 
T5 SS SS SS SS SS SS SS SS SS SS 10 

O T1 SS SS SS SS SS SS SS SS SS SS 10 
T2 SS SS SS SS SS SS SS SS SS SS 10 
T3 SS SS SS SS SS SS SS SS SS SS 10 
T4 SS SS SS SS SS SS SS SS SS SS 10 
T5 SS SS SS SS SS SS SS SS SS SS 10 

P T1 SS SS SS SS SS SS SS FF SS SS 9 
T2 SS SS SS SS SS SS SS SS SS SS 10 
T3 SS SS SS SS SS SS SS SS SS SS 10 
T4 SS SS SS SS SS SS SS FF SS SS 9 
T5 SS SS SS SS SS SS SS SS SS SS 10 

(continued on next page) 
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μTA T1 =

∑Z
A(NP T1)

19
(1)  

μTA T5 =

∑Z
A(NP T1)

19
(2)  

Table 2 (continued ) 

Alphabet Experimental Trial Details Status of Sign Generation by Robotic hand correctly by different 
persons in the case of Indian Sign Language 

Number of persons with correct sign generation 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Q T1 FF SS SS SS SS SS SS SS SS SS 9 
T2 SS SS SS SS SS SS SS SS SS SS 10 
T3 SS SS SS SS SS SS SS SS SS SS 10 
T4 SS SS SS SS SS SS SS SS SS SS 10 
T5 SS SS SS SS FF SS SS SS SS SS 9 

R T1 SS SS SS SS SS SS FF SS SS SS 9 
T2 SS SS SS SS SS SS FF SS SS SS 9 
T3 SS SS SS SS SS SS SS SS SS SS 10 
T4 SS SS SS SS SS SS SS SS SS SS 10 
T5 SS SS SS SS SS SS FF SS SS SS 9 

S T1 FF SS SS SS SS FF SS SS SS SS 8 
T2 FF SS SS SS SS FF SS SS SS SS 8 
T3 SS SS SS SS SS SS SS SS SS SS 10 
T4 SS SS SS SS SS SS SS SS SS SS 10 
T5 FF SS SS SS SS SS SS SS SS SS 9 

V T1 SS SS FF SS FF SS SS SS SS SS 8 
T2 SS SS FF SS SS SS SS SS SS SS 9 
T3 SS SS SS SS FF SS SS SS SS SS 9 
T4 SS SS FF SS FF SS SS FF SS SS 7 
T5 SS SS FF SS SS SS SS SS SS SS 9 

Y T1 SS FF SS SS FF SS SS SS SS SS 8 
T2 SS FF SS SS SS SS SS SS SS SS 9 
T3 SS FF SS SS SS SS SS SS SS SS 9 
T4 SS SS SS SS SS SS SS SS SS SS 10 
T5 SS FF SS SS FF SS SS SS SS SS 8 

Z T1 SS FF SS SS SS SS SS SS SS SS 9 
T2 SS SS SS SS SS SS SS SS SS SS 10 
T3 SS SS SS SS SS SS SS SS SS SS 10 
T4 SS SS SS SS SS SS SS SS SS SS 10 
T5 SS SS SS SS SS SS SS SS SS SS 10  

Table 3 
Details of persons with correct sign generation of alphabets under different experimental trials.  

Alphabets NP T1 NP T2 NP T3 NP T4 NP T5 μAT σAT 

A 9 10 10 9 10 9.6 0.49 
B 9 9 8 10 10 9.2 0.75 
D 9 9 10 10 9 9.4 0.49 
E 8 9 8 8 10 8.6 0.8 
F 9 9 10 9 10 9.4 0.49 
G 8 9 10 10 9 9.2 0.75 
I 9 10 9 8 10 9.2 0.75 
K 10 10 10 10 10 10 0 
L 10 10 9 10 10 9.8 0.4 
M 9 9 10 10 10 9.6 0.49 
N 10 10 10 10 10 10 0 
O 10 10 10 10 10 10 0 
P 9 10 10 9 10 9.6 0.49 
Q 9 10 10 10 9 9.6 0.49 
R 9 9 10 10 9 9.4 0.49 
S 8 8 10 10 9 9 0.89 
V 8 9 9 7 9 8.4 0.8 
Y 8 9 9 10 8 8.8 0.75 
Z 9 10 10 10 10 9.8 0.4 

μTA 8.95 9.42 9.58 9.47 9.58   
σTA 0.69 0.59 0.67 0.88 0.59    
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σTA T1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Z

A

(
NP T1 − μTA T1

)2

19

√

(3)  

σTA T5 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Z

A

(
NP T5 − μTA T5

)2

19

√

(4)  

The different equations corresponding to μAT and σAT for alphabets A and Z are given below in Eqn. (5). to Eqn. (8). μAT A and σAT A 
corresponds to the estimation of mean and standard deviation concerning alphabet A in each of the trials from T1 to T5. Similarly, μAT Z 
and σAT Z corresponds to the estimation of mean and standard deviation concerning alphabet Z in each of the trials from T1 to T5. The 
summation as given below in these equations varies from NP T1 to NP T5 based on the data entries as per Table 3. Similarly other 
equations of mean and standard deviation concerning other alphabets can be computed. 

μAT A =

∑NP T5
NP T1

(A)
5

(5)  

μAT Z =

∑NP T5
NP T1

(Z)
5

(6)  

σAT A =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑NP T5

NP T1

(
A − μAT A

)2

5

√

(7)  

σAT Z =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑NP T5

NP T1

(
Z − μAT Z

)2

5

√

(8) 

The second case is based on the estimation of the number of correct signs of different alphabets spelled by different persons under 
different experimental trials by the dual robotic hand. The required results are shown below in Table 4. 

As per Table 4, NA T1 corresponds to the number of signs of the alphabets out of 19, that persons P1 to P10 are responsible for the 
correct generation by the dual robotic hand. Similarly, NA T2, NA T3 NA T4 and NA T5, corresponds to the number of the signs of the 
alphabets correctly generated by the dual robotic hand based on the speech commands uttered by different persons from P1 to P10 
under trials T2, T3, T4, and T5. 

The first entry of 16 corresponding to persons P1 in Table 4 is calculated by counting the number of ‘SS’ in column P1 under T1 of 
Table 2. Similarly, all the row entries in Table 4 corresponding to other persons from P2 to P10 are computed based on the entries of 
Table 2 under different experimental trials. 

In the different column entries from T1 to T5 and different row entries from persons P1 to P10, the corresponding mean and 
standard deviation are calculated. The results are presented in the last two rows and last two columns of Table 4. μTP denotes the 
average number of alphabets that are correctly generated by 10 persons from P1 to P10. σTP denotes the standard deviation of the data 
corresponding to different column entries from T1 to T5. μPT denotes the average number of alphabets that are correctly generated by 
the dual robotic hand based on the speech commands uttered by a particular person under different experimental trials from T1 to T5. 
σPT denotes the standard deviation of the data of different persons in a particular row. 

The different equations corresponding to μTP and σTP for trials T1 and T5 are given below in Eqn. (9). to Eqn. (12). μTP T1 and σTP T1 
corresponds to the estimation of mean and standard deviation concerning trial T1. Similarly, μTP T5 and σTP T5 corresponds to the 
estimation of mean and standard deviation concerning trial T5. The summation as given below in these equations varies from person 
P1 to person P10 based on the data entries as per Table 4. Similarly other equations of mean and standard deviation concerning trials 
T2 to T4 can be computed. 

Table 4 
Details of the number and percentage of correct signs of 19 alphabets generated by a particular person under different experimental trials.  

Persons NA T1 NA T2 NA T3 NA T4 NA T5 μPT σPT 

P1 16 17 19 19 18 17.8 1.17 
P2 16 18 18 18 18 17.6 0.8 
P3 16 18 19 18 17 17.6 1.02 
P4 19 19 19 19 19 19 0 
P5 16 18 18 17 17 17.2 0.75 
P6 17 17 18 18 19 17.8 0.75 
P7 16 17 17 18 17 17 0.63 
P8 18 19 18 17 19 18.2 0.75 
P9 19 19 18 18 19 18.6 0.49 

P10 17 18 17 18 19 17.8 0.75 
μTP 17 18 18.1 18 18.2   
σTP 1.18 0.77 0.7 0.63 0.87    
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μTP T1 =

∑P10
P1 (NA T1)

10
(9)  

μTP T5 =

∑P10
P1 (NA T5)

10
(10)  

σTP T1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑P10

P1

(
NA T1 − μTP T1

)2

10

√

(11)  

σTP T5 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑P10

P1

(
NA T5 − μTP T5

)2

10

√

(12) 

The different equations corresponding to μPT and σPT for trials T1 and T5 are given below in Eqn. (13). to Eqn. (16). μPT P1 and σPT P1 

corresponds to the estimation of mean and standard deviation concerning person P1 in each of the trials from T1 to T5. Similarly, 
μPT P10 and σPT P10 corresponds to the estimation of mean and standard deviation concerning person P10 in each of the trials from T1 to 
T5. The summation as given below in these equations varies from NA T1 to NA T5 based on the data entries as per Table 4. Similarly 
other equations of mean and standard deviation concerning other persons can be computed. 

μPT P1 =

∑NA T5
NA T1

(P1)
5

(13)  

μPT P10 =

∑NA T5
NA T1

(P10)
5

(14)  

σPT P1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑NA T5

NA T1

(
P1 − μPT P1

)2

5

√

(15)  

σPT P10 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑NA T5

NA T1

(
P10 − μPT P10

)2

5

√

(16)  

4.6. Different plots to show the analysis of experimental results 

This section presents the pictorial representation of the results of Tables 3 and 4 in the form of different plots for each of the 
experimental trials from T1 to T5, as shown below in Figs. 3 and 4. These plots are constructed in the form of a vertical bar chart for a 
better understanding of the results. The first plot in Fig. 3 is plotted against the number of persons with correct sign generation of a 
particular alphabet vs the corresponding alphabet under different experimental trials. The second plot in Fig. 4 is plotted against the 
number of correct signs of generated alphabets vs the corresponding persons from P1 to P10 under different experimental trials. 

The accuracies of the robotic hand model during the process of sign generation of some of the alphabets are further discussed in the 
form of plots, as shown in Figs. 5–8. These plots are related to data entries in Table 2. Out of the 19 alphabets, the detailed analysis of 
the following four alphabets, namely Y, G, D, and A, are discussed below in detail. In the various plots as shown below, “NT_Alphabet” 
denotes the number of times a sign of the particular alphabet is generated by the robotic hands in all the five experimental trials. 
Similarly, “NP_Alphabet” denotes the number of persons responsible for the generation of the sign of a particular alphabet in each of 
the five experimental trials. 

The first plot in Fig. 5 (a) presents the number of times a particular person from P1 to P10 was responsible for the successful 
generation of the sign of the alphabet Y by the robotic hands in five different trials from T1 to T5. It can be observed from the first plot 
that persons P1, P3, P4, P6, P7, P8, P9, and P10 were 100 percent successful in generating the sign of the alphabet Y by the robotic 

Fig. 3. Plot of the number of persons with correct sign generation of a particular alphabet vs the corresponding alphabet under different experi-
mental trials. 
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hand. All these eight persons successfully generated the sign of the alphabet Y five times out of five. The remaining leftover persons, P2 
and P5, could generate one and three times the sign of the alphabet Y by the robotic hands, as observed from the plot in Fig. 5 (a). Thus, 
if we add the number of times the alphabet Y was generated in five different trials by ten persons from P1 to P10, the result obtained is 
44. This means that out of a total of 50 and 44 times, the sign of the alphabet Y was successfully generated by the robotic hand. Based 
on this fact, it can be concluded that the accuracy of the robotic hand model during the generation of the sign of the alphabet Y is 88 %. 

It can also be observed from the plot shown in Fig. 5 (b) that in different trials from T1 to T5, the alphabet Y was generated by 8, 9, 
9, 10, and 8 persons. If these observed values from Fig. 5 (b) are added, the result obtained is again 44. Based on the above analysis 
carried out from Fig. 5 (b), it can again be concluded that the accuracy of the robotic hand model during the generation of the sign of 
the alphabet Y is 88 %. 

The first plot in Fig. 6 (a) presents the number of times a particular person from P1 to P10 was responsible for the successful 
generation of the sign of the alphabet G by the robotic hands in five different trials from T1 to T5. It can be observed from the first plot 
that persons P1, P2, P4, P5, P6, P8, P9, and P10 were 100 percent successful in generating the sign of the alphabet G by the robotic 
hand. All these eight persons successfully generated the sign of the alphabet G five times out of five. The remaining leftover persons, P3 

Fig. 4. Plot of the number of correct signs of generated alphabets vs. the corresponding persons from P1 to P10 under different experimental trials.  

Fig. 5. (a) Plot of the number of times the sign of alphabet Y is generated in different trials vs the corresponding persons. (b) The plot of the number 
of persons involved in the successful generation of the sign of the alphabet Y in a particular trial vs. the corresponding trial number. 

Fig. 6. (a) Plot of the number of times the sign of the alphabet G is generated in different trials vs the corresponding persons. (b) Plot of the number 
of persons involved in the successful generation of the sign of the alphabet G in a particular trial vs the corresponding trial number. 
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and P7, could generate four and two times the sign of the alphabet G by the robotic hands, as observed from the plot in Fig. 6 (a). Thus, 
if we add the number of times the alphabet G was generated in five different trials by ten persons from P1 to P10, the result obtained is 
46. This means that out of a total of 50 and 46 times, the sign of the alphabet G was successfully generated by the robotic hand. Based 
on this fact, it can be concluded that the accuracy of the robotic hand model during the generation of the sign of the alphabet G is 92 %. 

It can also be observed from the plot shown in Fig. 6 (b) that in different trials from T1 to T5, the alphabet G was generated by 8, 9, 
10, 10, and 9 persons. If these observed values from Fig. 6 (b) are added, the result obtained is 46. Based on the above analysis carried 
out from Fig. 6 (b), it can again be concluded that the accuracy of the robotic hand model during the generation of the sign of the 
alphabet G is 92 %. 

The first plot in Fig. 7 (a) presents the number of times a particular person from P1 to P10 was responsible for the successful 
generation of the sign of the alphabet D by the robotic hands in five different trials from T1 to T5. It can be observed from the first plot 
that persons P2, P4, P5, P6, P7, P8, P9, and P10 were 100 percent successful in generating the sign of the alphabet D by the robotic 
hand. All these eight persons successfully generated the sign of the alphabet D five times out of five. The remaining leftover persons, P1 
and P3, could generate three and four times the sign of the alphabet D by the robotic hands, as observed from the plot in Fig. 7 (a). 
Thus, if we add the number of times the alphabet D was generated in five different trials by ten persons from P1 to P10, the result 
obtained is 47. This means that out of a total of 50 times 47 times, the sign of the alphabet D was successfully generated by the robotic 
hand. Based on this fact, it can be concluded that the accuracy of the robotic hand model during the generation of the sign of the 
alphabet D is 94 %. 

It can also be observed from the plot shown in Fig. 7 (b) that in different trials from T1 to T5, the alphabet D was generated by 9, 9, 
10, 10, and 9 persons. If these observed values from Fig. 7 (b) are added, the result obtained is again 47. Based on the above analysis 
carried out from Fig. 7 (b), it can again be concluded that the accuracy of the robotic hand model during the generation of the sign of 
the alphabet D is 94 %. 

The first plot in Fig. 8 (a) presents the number of times a particular person from P1 to P10 was responsible for the successful 
generation of the sign of the alphabet A by the robotic hands in five different trials from T1 to T5. It can be observed from the first plot 
that all persons except P2 were 100 percent successful in generating the sign of the alphabet A by the robotic hand. All these nine 
persons successfully generated the sign of the alphabet A five times out of five. The remaining leftover person, P2, could generate three 
times the sign of the alphabet A by the robotic hands, as observed from the plot in Fig. 8 (a). Thus, if we add the number of times the 
alphabet A was generated in five different trials by ten persons from P1 to P10, the result obtained is 48. This means that out of a total of 

Fig. 7. (a) Plot of the number of times the sign of alphabet D is generated in different trials vs the corresponding persons. (b) The plot of the number 
of persons involved in the successful generation of the sign of alphabet D in a particular trial vs. the corresponding trial number. 

Fig. 8. (a) Plot of the number of times the sign of alphabet A is generated in different trials vs the corresponding persons. (b) The plot of the number 
of persons involved in the successful generation of the sign of alphabet A in a particular trial vs. the corresponding trial number. 
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50 times, 48 times, the sign of alphabet A was successfully generated by the robotic hand. Based on this fact, it can be concluded that 
the accuracy of the robotic hand model during the generation of the alphabet A sign is 96 %. 

It can also be observed from the plot shown in Fig. 8 (b) that in different trials from T1 to T5, the alphabet A was generated by 9, 10, 
10, 9, and 10 persons. If these observed values from Fig. 8 (b) are added, the result obtained is again 48. Based on the above analysis 
carried out from Fig. 8 (b), it can again be concluded that the accuracy of the robotic hand model during the generation of the sign of 
alphabet A is 96 %. 

4.7. Discussion on experimental results 

In the experimental results, as discussed in Table 2, under different trials, it is to be noted that the effect of gender type does not 
have any impact on the results. The inbuilt recognizer of the Raspberry Pi 4, along with the external microphone, functions as a 
speaker-independent module, which was observed during the experimental results in multiple trials. The results are affected by certain 
other factors as discussed below. 

The first factor that affects the results is the inability of both the robotic hands to carry out the sideways movements of fingers, 
including the thumb and wrist movements. These robotic hands can perform forward and backward movements. It is to be noted that 
the backward movements of the robotic hand’s fingers only occur once the forward movements of the fingers take place. In other 
words, the backward movements are completely dependent on the forward movements of the fingers. Furthermore, the movements of 
the different fingers of the robotic hand cannot overlap. These artificial hands also could not generate dynamic signs. Greater flexibility 
in robotic hands is needed to perform lateral movements of the fingers, including those of the thumb and wrist, for certain alphabets 
such as J and X. The sign for the alphabet J is dynamic in nature. To generate the sign for the alphabet X in Indian Sign Language, there 
is a need for overlapping the index fingers of both hands, as observed from the actual sign of the alphabet X from Table 1. Additionally, 
most signs of the different words in Indian Sign Language involve dynamic movements, including forward, backward, sideways, and 
overlapping movements, along with wrist movement. However, our robotic hands lack the necessary flexibility to carry out over-
lapping movements of different fingers. To generate signs for different words in Indian Sign Language, robotic hands must also be 
capable of independent backward movements without relying on forward movements. Currently, our robotic hands can only perform 
backward movements when a particular finger or thumb is partially or completely closed (i.e., during a forward movement). In cases 
where a finger or thumb is fully open, backward movements associated with those fingers or thumb cannot occur. Therefore, 
considering these factors, the need for greater flexibility in robotic hands becomes evident. 

The second factor that affects the results is the presence of background noises that includes extreme cases of noisy environments. 
During experimentation, it was observed that background noises significantly impact speech quality when an individual speaks in front 
of a microphone. These unwanted sounds—such as air conditioning units, computer fans, and street traffic—interfere with accurate 
recording. In extreme cases of noise, the microphone fails to capture the intended sound of specific alphabets. When multiple sources of 
sound, including the individual’s voice and background noise, reach the microphone, noise often dominates over the desired input. 
However, in milder noise conditions, the microphone can accurately capture alphabet patterns. The microphone volume was also kept 
in the range of 20–30 percent as higher levels of microphone volumes catch the background noises frequently. During the case of lower 
levels of the microphone volume (less than 20 percent), the microphone failed to catch the sound pattern of the alphabet as spelled by 
an individual in front of the microphone. The gain of the microphone was adjusted in the range of 10–20 dB during its operation. 

The third factor that affects the results is the distance of the individual from the microphone that significantly affects the system’s 
performance. When an individual is closer to the microphone, the signal-to-noise ratio improves, capturing clearer audio with less 
background noise and thus increases the microphone sensitivity. However, being too close can lead to distortion due to overwhelming 
sound pressure levels. Conversely, increased distance reduces the direct sound received by the microphone, potentially introducing 
more ambient noise and decreasing the audio clarity. During the process of experimentation, the distance of the individual from the 
microphone was in the range of 10–15 cm so that the device could accurately capture the audio input from the individual. There are 
some other factors as well that affects the system’s performance that are discussed in Section 6 of the manuscript. 

In Table 2, among the different alphabets, the following alphabets, namely “K, L, M, N, O, P”, were recognized by the speech 
recognizer of the Raspberry Pi 4 along with the externally connected microphone in some of the Experimental Trials from T1 to T5 
during the conduction of the experiments. The recognition of these alphabets varies due to the following most common factors, namely 
the sensitivity of the microphone, the presence of noisy environments, the way the individual utters the speech commands, and the 
distance of the individual from the microphone. The recognition of these alphabets is not limited to these factors only; there can be 
multiple other factors as well. Furthermore, the signs of the following alphabets, namely “K, L, M, N, O, P,” can be generated without 
any fail since these alphabets have distinct signs as per the dataset. 

Furthermore, in Table 2, we also excluded the failure results involving the seven alphabets because the signs of these seven al-
phabets were not distinct. In other words, the robotic hand showed the same sign orientation for some of these alphabet pairs. Also, the 
sign of the letter ‘J’ could not be generated because of its dynamic nature. These artificial hands cannot generate dynamic signs due to 
their inbuilt hardware design. The various values of accuracies of the robotic hand model for some of the four alphabets, namely Y, G, 
D, and A, were also discussed in detail in the forms of different plots. In the same way, the estimation of different values of accuracies of 
the robotic hands during the process of sign generation of other alphabets can also be visualized through separate plots. The discussion 
related to the performance evaluation of the robotic hand interpreter system model during the generation of different alphabets is 
stated in Section 5. 
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5. Performance evaluation 

In the existing research, a system involving a Field Programmable Gate Array-based wearable gesture recognition system was 
proposed. The main purpose of this system was to assist individuals with speech impairments. In this particular approach, the main 
attention was based on the lesser number of features for the classification of gestures for the purpose of minimizing the need for 
computational power. In the proposed system, only one feature, namely the Root Mean Square signal value along with the KNN su-
pervised classification algorithm, was taken into consideration. This algorithm was very simple to implement, with high interpret-
ability and low computational complexity. The performance of the system was assessed in a DE10-Standard Field Programmable Gate 
Array to demonstrate portability to wearable devices with finite hardware resources. Based on the performance evaluation, the results 
showed that the subjects required only 3 s per gesture for the purpose of training the system. The main advantage of the technique was 
to avoid the processing of large amounts of data. The system was observed to reach 95 % accuracy using only 2 s of data effectively 
[12]. 

In the past, research based on electromyography electric signals was carried out to control different devices, and the EMG signals 
were preprocessed. The approach was based on the design and test of a filter. The designed filter eliminated any non-EMG signal 
component from the electrical network. For the validation process and interpretation of the preprocessing efficiency, the analysis of 
different frequency components and the distribution of the filtered EMG signals were implemented. In the next stages, the filtered data 
was processed using K-means, DBSCAN, and hierarchical clustering algorithms to determine the intention of a subject while carrying 
out different tasks. Based on the results, the K-means clustering algorithm was successful in grouping the nine gestures made by the 
subjects when compared with the DBSCAN and Hierarchical algorithms. It was also concluded that the K-means algorithm obtained a 
mean success rate near 50 % with all nine clusters taken into account. The algorithms based on DBSCAN and Hierarchical Clustering 
presented a low success rate [13]. 

Based on the above research in Refs. [12,13], it was observed that the research was based on gesture recognition using Machine 
Learning techniques without incorporating any artificial robotic aids for assisting speech and hearing-impaired individuals. Also, in 
Ref. [13], the overall accuracy was observed to be near 50 %. 

In our study, we adopted the use of robotic hands to generate different gestures based on speech commands in the form of the 
alphabet uttered by an individual. In this section, we estimated the different performance parameters followed by different plots for 
better analysis and interpretation of the results. Further, we also calculated the overall accuracy of the robotic hand interpreter system 
model, as discussed below, based on the estimation of the performance parameters. This section is further divided into two sub- 
sections. Section 5.1 discusses the evaluation of the performance parameters along with the estimation of accuracy for the robotic 
system. Section 5.2 discusses the overall analysis of the experimental results based on the different plots. 

5.1. Evaluation of performance parameters 

In this section, as shown below in Table 5, the different performance parameters are estimated based on the entries of Tables 3 and 
4. All the acronyms used in Table 5 below are already discussed in Section 4.5. 

In Table 6 we estmate the minimum, maximum and average values of the different performance parameters as discussed below. All 
the acronyms used in Table 6 below are already discussed in Section 4.5. 

5.2. Analysis of results of the performance parameters 

In this section, various plots have been constructed to give a detailed analysis of the results of the performance parameters. The plot 
of the mean number of generated alphabets by different persons and the plot of the standard deviation of the data of persons vs. the 
corresponding persons from P1 to P10 under experimental trials from T1 to T5 is shown below in Fig. 9. The plot of the mean number of 
persons and the plot of the standard deviation of the data of alphabets vs. the corresponding alphabets under experimental trials from 
T1 to T5 is shown below in Fig. 10. The reproducibility accuracy of the individual alphabets can be observed by the plot of μAT in 
Fig. 10. For getting the accuracy in percentage, the observed values can be directly multiplied by 100. 

The plot of the mean number of persons responsible for the generation of the different alphabets and the plot of the standard 
deviation of the data corresponding to different alphabets vs the experimental trials from T1 to T5 is shown below in Fig. 11 (a). The 
plot of the mean number of alphabets generated by different persons from P1 to P10 and the plot of the standard deviation of the data 
corresponding to different persons vs the experimental trials from T1 to T5 is shown below in Fig. 11 (b). 

Table 5 
Different values of performance parameters corresponding to different trials.  

Number of persons in different trials Name of the Parameter Number of alphabets concerning different trials Name of the Parameter 

μTA σTA μTP σTP 

NP T1 8.95 0.69 NA T1 17 1.18 
NP T2 9.42 0.59 NA T2 18 0.77 
NP T3 9.58 0.67 NA T3 18.1 0.7 
NP T4 9.47 0.88 NA T4 18 0.63 
NP T5 9.58 0.59 NA T4 18.2 0.87  
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Table 6 
Estimation of minimum, maximum and average value of the performance parameters.  

Parameter Name Min value Max value Average value 

μAT 8.4 10 9.4 
σAT 0 0.89 0.51 
μTA 8.95 9.58 9.4 
σTA 0.59 0.88 0.68 
μPT 17 19 17.86 
σPT 0 1.17 0.71 
μTP 17 18.2 17.86 
σTP 0.63 1.18 0.83  

Fig. 9. Plot of the mean number of generated alphabets vs the corresponding persons from P1 to P10 and the plot of the standard deviation of the 
data of persons vs the corresponding persons from P1 to P10 under experimental trials from T1 to T5. 

Fig. 10. Plot of the mean number of persons vs. the corresponding alphabets and the plot of the standard deviation of the data of alphabets vs the 
corresponding alphabets under experimental trials from T1 to T5. 

Fig. 11. (a) Plot of the mean number of persons responsible for the generation of the different alphabets and plot of the standard deviation of the 
data corresponding to different alphabets vs the experimental trials from T1 to T5. (b) Plot of the mean number of alphabets generated by different 
persons from P1 to P10 and plot of the standard deviation of the data corresponding to different persons vs the experimental trials from T1 to T5. 
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Based on the analysis of results given by Table 4, Table 6 and Fig. 9, the following observations can be made. Among all the persons 
from P1 to P7, the data associated with person P7 has a minimum reproducibility accuracy of 89.47 % since it has the minimum value 
of μPT based on the different experimental trials from T1 to T5. Also, since P7, on average was responsible for the generation of 17 
alphabets out of 19 by the dual robotic hand, its reproducibility accuracy comes out to be 89.47 %. Among all the persons from P1 to 
P7, the data associated with person P4 has a maximum reproducibility accuracy of 100 % since P4, on an average was responsible for 
the generation of complete 19 alphabets by the dual robotic hand. The data associated with person P4 also has the greatest repro-
ducibility (least variation in the data) since it has the maximum value of μPT and minimum value of σPT based on the different 
experimental trials from T1 to T5. Among all the persons from P1 to P7, the data associated with person P1 has the least reproducibility 
since it has the maximum value of σPT based on the different experimental trials from T1 to T5. 

Based on the analysis of results given in Table 3, Table 6, and Fig. 10, the following observations can be made. The data associated 
with the generation of alphabet V by the dual robotic hand based on the speech input uttered by different persons from P1 to P10 has a 
minimum reproducibility accuracy of 84 % since it has the minimum value of μAT based on the different experimental trials from T1 to 
T5. The data concerning the generation of alphabets K, N, and O by the dual robotic hand based on the speech input uttered by 
different persons from P1 to P10, has a maximum reproducibility accuracy of 100 %. The data associated with these three alphabets has 
the greatest reproducibility (least variation in the data) since it has the maximum value of μAT and minimum value of σAT based on the 
different experimental trials from T1 to T5. Similarly, the data associated with the generation of the alphabet S by the dual robotic hand 
has the least reproducibility (greatest variation in the data) since it has the maximum value of σAT based on the different experimental 
trials from T1 to T5. 

Based on the analysis of results given by Table 3, Table 6, and Fig. 11 (a), the following observations can be made. As per Fig. 11 (a), 
when considering the case of the mean number of persons responsible for the generation of different alphabets by the dual robotic 
hand, it can be observed that Trial T1 has a minimum accuracy of 89.5 % during the generation of different alphabets since it has the 
minimum value of μTA which equals 8.95 out of 10. Trial T3 and T5 have a maximum accuracy of 95.8 % during the generation of 
different alphabets by the dual robotic hand, since these have the maximum value of μTA, which equals 9.58. Trial T4 has the least 
reproducibility of data due to the maximum value of σTA. Trial T2 and T5 have the greatest reproducibility of data due to the minimum 
value of σTA. 

Based on the analysis of results given by Table 4, Table 6, and Fig. 11 (b), the following observations can be made. As per Fig. 11 (b), 
when considering the case of the mean number of alphabets correctly generated, it can be observed that the data associated with Trial 
T1 has a minimum accuracy of 89.47 % due to the minimum value of μTP which equals 17 out of 19. Trial T5 has a maximum accuracy 
of 95.79 % due to the maximum value of μTP which equals 18.2 out of 19. Trial T1 has the least reproducibility of data due to the 
maximum value of σTP. Trial T4 has the greatest reproducibility of data due to the minimum value of σTP. 

Based on Table 6, the overall accuracy of the robotic hand interpreter system model is 94 %, considering the average generation of 
given 19 alphabets from A to Z under various experimental trials from T1 to T5. The accuracy value is obtained from the average value 
of μAT which is also equal to μTA as per Table 6. The overall accuracy of the robotic hand interpreter system model is also 94 % based on 
the average number of persons responsible for the generation of different numbers of alphabets by the dual robotic hand under various 
experimental trials from T1 to T5. The accuracy value is obtained from the average value of μPT which is also equal to μTP as per Table 5. 
Since the value of μPT equals 17.86 out of 19, therefore converting the value to percentage, it becomes 94. 

In Section 4.6, from Figs. 5–8, we have discussed the accuracies of the robotic hand model during the generation of the signs of 
some of the alphabets in detail. The different values of accuracies of the robotic hand model during the generation of all 19 alphabets 
can also be checked graphically in Fig. 10 as well as in the last second column of Table 3. These values can be converted to percentages 
by directly multiplying them by 100. The details corresponding to the count of the generated alphabets based on the ranges of their 
reproducibility accuracy are shown below in Table 7. These entries are based on the plots shown in Fig. 10. 

From the above Tables 7 and it can be observed that 16 alphabets have reproducibility accuracy of more than 90 % during the 
process of sign generation by different persons under different experimental trials. Furthermore, the plots corresponding to the count 
of generated alphabets vs the different ranges of their reproducibility accuracy are presented below in Fig. 12. Thus, it can be observed 
that the following three alphabets, namely V, E, and Y, require slight improvement in their accuracy during the process of sign 
generation by the robotic hands. 

6. Conclusion 

The accessible languages for speech and hard-of-hearing individuals include sign languages, which are widely used by speech and 
hearing-impaired persons in India. Learning sign language is essential for communicating with speech and hard-of-hearing individuals 
and provides a unique experience. As the need for sign language interpreters grows, it is becoming increasingly important to 

Table 7 
Details of the 19 alphabets grouped in different ranges of their reproducibility accuracy during sign generation.  

Range of μAT in percentage Count of generated alphabets Name of the Alphabets 

80–85 1 V 
85–90 2 E, Y 
90–95 7 S, B, G, I, D, F, R 

95–100 9 A, M, P, Q, L, Z, K, N, O  
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understand and learn Indian Sign Language. Interpreters are needed in various public places, such as railway stations, police stations, 
hospitals, and courts, to help hard-of-hearing individuals communicate effectively. 

To address this need, a robotic hand interpreter system has been developed to generate signs based on Indian Sign Language. This 
system helps speech and hard-of-hearing individuals interact with others who do not have hearing disabilities. The performance 
analysis of the robotic hand during the Indian Sign Generation was tested out by ten different persons under different experimental 
trials, as discussed in the Experimental Results section. 

Considering the signs of the 26 alphabets as per the Indian Sign Language system, 19 alphabets were generated by the robotic hand 
model due to their distinct sign representation. The remaining seven alphabets could not be generated since the robotic hand generated 
similar signs corresponding to some of these alphabets, which highlights the limitations of our study. Out of these 19 alphabets the 
reproducibility accuracy of the 16 alphabets is greater than equal to 90 percent. The remaining three alphabets, namely V, E, and Y, 
require slight improvement in their accuracy values, as already discussed previously. Other limitations of our study are also discussed 
below. Both the left and right robotic hands need to be more flexible to carry out the sideways movements of fingers, including the 
thumb and wrist movements. These robotic hands must also carry out overlapping movements and can generate dynamic signs. The 
need for requirements of these above additional features in the robotic hands was already discussed in Section 4.7. 

The generation of signs by the robotic hand is also influenced by background noise, extreme noise levels in the environment, the 
sensitivity of the microphone, the manner in which individuals articulate speech commands, and the distance of individuals from the 
microphone. Further details on these limitations can also be checked in Section 4.7. 

It is due to some of these above-discussed limitations that the accuracy of the gesture generation by the robotic hand is affected. The 
overall accuracy of the robotic hand interpreter system model based on the experimental results comes out to be approximately 94 
percent and varies in the range of 90 to 95 percent. The design of the robotic hand interpreter system model is a cost-effective 
solution with features of improved efficiency and productivity, enhanced precision, and greater flexibility during the process of 
gesture generation. 

The future scope of our study is to overcome the limitations discussed above. Furthermore, an effective approach should be 
incorporated in future studies to generate all 26 alphabets distinctly to carry out further improvement in accuracy. The generation of 
dynamic signs, as well as the generation of different words and sentences, should also be incorporated by the application of these 
artificial robotic hands. 
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Fig. 12. Plot of the count of generated alphabets vs the range of reproducibility accuracy in percentage.  
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