
https://doi.org/10.1177/1756284820944088 
https://doi.org/10.1177/1756284820944088

Ther Adv Gastroenterol

2020, Vol. 13: 1–14

DOI: 10.1177/ 
1756284820944088

© The Author(s), 2020. 
Article reuse guidelines:  
sagepub.com/journals-
permissions

Therapeutic Advances in Gastroenterology

journals.sagepub.com/home/tag 1

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License  
(https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction
Inflammatory bowel diseases (IBDs) are chronic 
relapsing–remitting diseases of the gastrointestinal 
tract whose management is changing with close 
monitoring of disease control, but there is less 
adoption of prediction of adverse events due to 
drugs or tests to explore symptoms not directly 
related to inflammation.1,2 The aetiology is com-
plex, involving the interaction of genetic predispo-
sition, environmental triggers, microbial dysbiosis 
and immunological disorders.3 Immune dysregu-
lation in IBD depends on the overproduction of 
several pro-inflammatory cytokines, which are 
responsible for intestinal inflammation and consti-
tute targets for current and future therapeutic 
development.4 Investigations that are now widely 

used include therapeutic drug levels and anti-
drug antibodies for biologics, faecal calprotectin 
for monitoring tight control of disease, endo-
scopic investigations, transabdominal ultrasonog-
raphy and magnetic resonance enterography for 
assessment of intestinal healing, small intestinal 
and pan-enteric video capsule endoscopy as well 
as other blood tests such as C-reactive protein, 
genotypes and metabolites for thiopurine moni-
toring – these are now part of comprehensive 
investigation and staging of IBD.

Over the years, a number of new investigations 
have been proposed but these have not been 
adopted widely at all, despite strong supporting 
evidence. On the other hand, tests such as faecal 
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calprotectin have been well known since the nine-
ties but required changing disease management 
strategies and strong commercial support from 
diagnostic assay industries and pharmaceutical 
companies to become widely available. While the 
identification of stratification markers for disease 
progress and drug response could improve medical 
decision-making, patient outcomes and costs,5 
robust validation of these biomarkers is still neces-
sary and some, such as anti-Saccharomyces cerevi-
siae antibodies (ASCA), perinuclear anti-neutrophil 
cytoplasmic antibodies (pANCA), other microbial 
antibodies and mucosal healing panels, have not 
proved to be highly valuable despite commercial 
availability and therefore are infrequently used in 
clinical practice.

We have reviewed a small number of investigations 
that can stake a strong claim to be adopted in rou-
tine IBD clinical practice, but currently their usage 
is limited. In particular, the four tests highlighted 
below deserve serious consideration in most rou-
tine clinical practice involving IBD patients. We 
have reviewed the rationale for advocating these 
tests to be adopted in management of IBD patients.

Methodology
Combined automated and manual literature 
searches were performed on PubMed/Medline 
using the search terms: inflammatory bowel dis-
ease/Ulcerative Colitis/Crohn’s disease (5-ASA/
mesalamine/adverse effects/adverse events/pan-
creatitis/nephrotoxicity) (thiopurine/pancreatitis/
hepatotoxicity) [‘anti-TNF’/‘anti-TNFalpha (α)’/ 
‘TNF inhibitor’/‘TNF-alpha (α) inhibitor’/ 
‘anti-tumour necrosis factor’/‘TNF antagonist’ 
‘bile acid malabsorption’ AND ‘anti-drug antibod-
ies’ ‘ADA’(infliximab/adalimumab/golimumab/)] 
AND immunogenicity/diarrhoea.

No other limits were applied. The search results were 
manually searched; the number of articles identified 
at the beginning was 685, of which 101 were selected 
for their clinical relevance and alignment to the goal 
of this review by NB and SG. The bibliographies of 
relevant papers and reviews were also searched to 
identify suitable papers for inclusion.

Diagnosis of bile acid diarrhoea in Crohn’s 
disease – 7α-hydroxy-4-cholesten-3-one
Bile acids are predominantly absorbed in the 
ileum by an active transport process.6 Ileal 

resection causes bile acid malabsorption resulting 
from imbalances in the homoeostasis of bile acids 
in the enterohepatic circulation.7 Bile acid diar-
rhoea is common, and likely under-diagnosed, 
but it should be considered relatively early in the 
differential diagnosis of chronic diarrhoea.7 As 
early as 1969 Hoffman et  al. demonstrated the 
effects of cholestyramine as symptomatic treat-
ment, improving faecal consistency by abolishing 
bile acid-induced secretion of water and electro-
lytes in the colon.8

Patients with Crohn’s disease (CD) may have 
multiple causes of diarrhoea and it is common for 
these patients to receive cholestyramine or other 
bile acid sequestrant (BAS) drugs empirically 
without testing but this approach has limitations 
and is not precise or predictably effective.

Bile acid malabsorption (BAM) has been reported 
in up to 50% of adult patients with CD, especially 
those with ileal involvement and dysfunction or 
resection.9,10 Depending on the extent of disease or 
resection, this usually predisposes to diarrhoea, but 
may also cause steatorrhoea with malabsorption of 
fat soluble vitamins and formation of gallstones and 
kidney stones.11,12 Secretory diarrhoea (bile acid 
diarrhoea) is due to the effects of unabsorbed bile 
acids (BAs) on various mechanisms, such as ade-
nylate cyclase affecting water and electrolyte absorp-
tion, in the colonic epithelium. This may be 
compounded by an increase in intestinal permeabil-
ity and also motility, produced by actions of primary 
and secondary bile acids on the farnesoid X and 
G-protein-coupled bile acid receptors.13

There are several causes for the increase in BAs 
entering the colon in active ileal CD.14 Ileal dys-
function produces malabsorption of BAs, due to a 
decrease in BA absorptive transporters, particu-
larly the apical sodium-linked BA transporter.10,15 
Active inflammatory disease also reduces synthe-
sis of the regulatory hormone, fibroblast growth 
factor 19 (FGF19), and this results in excess BA 
synthesis, with increased BA precursors.16 
Similarly, ileal resection reduces the amount of 
specialized tissue for active BA absorption and 
FGF19 production. These changes in the entero-
hepatic circulation and synthesis of BAs can be 
measured to help the differential diagnosis of 
symptoms in people with CD.

The gold standard in diagnosing BAM is the 
75seleno-homocholic-acid-taurine (SeHCAT) 
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test,12 which is a relatively simple low-gamma 
radiation nuclear medicine test requiring two 
scans 7 days apart, which will detect increased loss 
of the tracer. Patients with CD and a previous ileal 
resection who have diarrhoea have a >90% likeli-
hood of an abnormal SeHCAT, which means that 
the predictive value of this test is mostly redun-
dant in them. In CD without resection, results are 
more variable.17 Forty-eight-hour stool collection 
to measure faecal BAs is hardly ever used and 
cumbersome. Patients with BAM or reduced lev-
els of FGF19 also develop compensatory increases 
in the synthesis of BA precursors, specifically the 
intermediate in the classical synthetic pathway, 7α-
hydroxy-4-cholesten-3-one (C4; also called 7αC4) 

(Figure 1). This can be measured in fasting serum 
or plasma. There is a good inverse correlation 
between C4 test and the SeHCAT-test18 and the 
blood test has many advantages: the C4 test is 
easier for patients to perform, less time consuming 
and burdensome, and less expensive, although it 
only provides a measure at a single time point.19 
Whether the C4 test can provide useful support-
ing evidence to indicate ileal inflammation in CD 
will require further investigations.

Several studies found increased C4 levels in 42–
46% of CD patients with ileal disease and in 55% 
of those with ileal resections.9,10 Furthermore, 
elevated C4 levels were detected also in 14% of 

Figure 1. Bile acid metabolism pathway.  
Two major pathways are involved in bile acid synthesis. The classic pathway is controlled by CYP7A1 in 
the endoplasmic reticulum. CYP8B1 is required to synthesize cholic acid and CYP27A1 is able to form 
chenodeoxycholic acid. Patients with loss of bile acids, as in ileal disease or resection, develop compensatory 
increases in the synthesis of bile acids precursors, specifically the intermediate in the classical synthetic 
pathway, 7α-hydroxy-4-cholesten-3-one (C4).
AKR1C4, aldo-keto reductase family 1 member C4; AKR1D1, aldo-keto reductase family 1 member D1; CYP7A1, cytochrome 
P450 family 7 subfamily A member 1; CYP8B1, cytochrome P450 family 8 subfamily B member 1; CYP27A1, cytochrome P450 
family 27 subfamily A member 1; HSD3B7, hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7.
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CD patients with only colonic involvement.9,20 
A  cut-off concentration of C4 of 48.3 ng/ml or 
greater identified patients with diarrhoea attribut-
able to bile acid malabsorption with 90.9% sensi-
tivity, 84.4% specificity.21 C4 testing is available 
to clinicians but not widely across the world and 
an abnormal value should be used to guide appro-
priate and effective treatment, in particular, the 
use of BAS drugs.

C4 is a relatively simple, straightforward test that 
should be available more widely, ideally per-
formed by laboratories serving hospitals or region-
ally. While this may be helpful for investigation of 
diarrhoea in general, it can play an important role 
in investigating an important morbidity in CD 
patients. (Figure 2.)

Prediction of thiopurine-induced 
myelosuppression – NUDT15 genotypes
Thiopurines, consisting of azathioprine (AZA) 
and its analogues 6-mercaptopurine and 6-thio-
guanine, are the most commonly prescribed 
immunosuppressive agents in IBD used to main-
tain corticosteroid-free remission, prevent post-
operative recurrence22 and to avoid the 
development of antidrug antibodies in those 
receiving anti-tumour necrosis factor (TNF)-α.23 
They are effective and cheap but their use is lim-
ited by several adverse events: 17% of Europeans 

using thiopurines develop adverse events24 and 
this percentage is higher in Asian populations, 
despite doses of thiopurines in Asian countries 
being lower than in Europe.25,26

Genetic polymorphisms have been identified as 
important determinants of adverse events and a 
detailed meta-analysis showed that thiopurine 
s-methyltransferase (TPMT) polymorphisms 
were significantly associated with AZA-induced 
overall adverse effects.27 TPMT catalyses the 
S-methylation of thiopurines; its activity is 
inversely proportional to the levels of thiogua-
nine nucleotide metabolites (6-TGN), whose 
accumulation determines most of the adverse 
events.

However, TPMT polymorphisms cannot explain 
all episodes of AZA-related adverse events and, 
furthermore, a normal TPMT genotype cannot 
exclude the development of side effects. 
Weinshilboum et al.28 showed that TPMT activ-
ity has a bimodal distribution in the general popu-
lation: 89% have high enzymatic activity, 11% 
intermediate activity and only 0.3% lack activity. 
Currently, 37 alleles responsible for TPMT defi-
ciency (TPMT*2-38) are known29 but four allelic 
variants, TPMT*2, *3B, *3C and *3A, were 
found in more than 80% of Caucasian and the 
most frequent was *3A.30 The frequency of 
TPMT*3C, which is associated with low or 

Figure 2. C4 test: when to use it and positive and negative aspects.
BAM, bile acid malabsorption; C4, 7α-hydroxy-4-cholesten-3-one; CD, Crohn’s disease
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intermediate TPMT activity, is between 1.1% 
and 2.9% in Japanese people.31

Among adverse events there is thiopurine-induced 
myelosuppression (TIM), which occurs in 4% of 
European individuals and in up to 15% of Asian 
individuals.24 Most patients are asymptomatic, 
but when serious opportunistic infections occur 
in IBD patients with TIM there is an estimated 
mortality of 1%.32 There is substantial evidence 
linking TPMT and Nudix hydrolase 15 
(NUDT15) enzyme activity to TIM.33 TIM has 
been attributed to low TPMT activity;34 never-
theless in a multicentre study, thiopurine therapy 
was prescribed with classic therapeutic dosage 
and with dose adjusted according to the TPMT 
mutations: the overall proportion of TIM was the 
same in the two groups.35

Although the standard dose of thiopurines in 
Japan (AZA: 1–2 mg/kg per day) is half of that in 
Europe (AZA: 2–2.5 mg/kg per day), and approx-
imately 10% of Europeans36 versus 3% of Asians 

carry TPMT genetic variants, the incidence of 
TIM in Asian populations is higher than that in 
Caucasians.25,37 These data suggest that in IBD 
patients bone-marrow suppression is not solely 
dependent on TPMT activity, but is also associ-
ated with other genetic and environmental 
factors.38,39

This difference is explained by widespread genetic 
variation in NUDT15 in East Asian populations, 
approximately 10%, which has now been identi-
fied as a determinant of TIM.40,41 Moreover a 
recent case–control study described NUDT15 
variants also in patients of European ancestry: 
three NUDT15 coding variants in chromosome 
13, including p.Gly17_Val18del, were associated 
with TIM independent of TPMT genotype and 
thiopurine dose in European patients.38 NUDT15 
catalyses the conversion of cytotoxic thioguanine 
metabolites to non-toxic thioguanine metabolites. 
Genetic variants lead to low NUDT15 enzyme 
activity and high levels of cytotoxic thioguanine 
that may lead to myelosuppression40 (Figure 3). 
Japanese and Korean studies have revealed that 
severe leukopenia and complete hair loss are inev-
itable in patients with the homozygous variant of 
NUDT15 R139C (T/T genotype),42 and patients 
with heterozygous variant (C/T genotype) experi-
ence early leukopenia more frequently than those 
with wild-type genotype (C/C genotype).42–45 For 
alopecia, it is a well-recognized, dose-dependent 
adverse event in Asian populations, with an inci-
dence of around 1.5%,25,37 and it is rare in 
Europeans.24 It is recommended that treatment 
with thiopurines should be avoided for patients 
with the T/T genotype and low-dose mercap-
topurine (0.2–0.3mg/kg per day) may be used for 
C/T genotype.42

More recent studies have identified additional 
NUDT15 genetic variants predictive for TIM in 
Asian populations.43,46

Patients with both TPMT and NUDT15 genetic 
variants are at excessive risk of TIM if they receive 
standard thiopurine dosing. The Clinical Pharmaco-
genetics Implementation Consortium has pub-
lished detailed dosing recommendations based on 
TPMT and NUDT15 genotypes: a reduction of 
starting doses (30–80% of target dose) should be 
considered for TPMT or NUDT15 intermediate 
metabolizers, while 10% of target dose or the use 
of an alternative agent should be used for TPMT 
or NUDT15 poor metabolizers.47

Figure 3. Thiopurine metabolism and role of 
NUDT15.  
NUDT15 catalyses the conversion of cytotoxic 
thioguanine metabolites to non-toxic thioguanine 
metabolites. Genetic variants lead to low NUDT15 
enzyme activity and high levels of cytotoxic 
thioguanine that may lead to myelosuppression.
6-MMP, 6-methylmercaptopurine; 6-MP, 6-mercaptopurine; 
6-TGDP, 6-tioguanine diphosphate; 6-TGMP, 6-tioguanine 
mono-phosphate; 6-TGN, 6-tioguanine nucleotide; 
6-TGTP, 6-tioguanine tri-phosphate; 6-TIMP, 6-thiosine 
5 ¢ -monophosphate; 6-TU, 6-thiouric acid; 6-TXMP, 
6-thioxanthosine 5 ¢-monophosphate; Me-TIMP, Me-
thiosine 5 ¢ -monophosphate; NUDT15, Nudix hydrolase 15 
enzyme; TPMT, thiopurine methyltransferase; XO, xanthine 
oxidase.

https://journals.sagepub.com/home/tag


Therapeutic Advances in Gastroenterology 13

6 journals.sagepub.com/home/tag

TPMT testing is cost-effective48 and widely avail-
able in routine service laboratories: in UK it was 
used by 67% of clinicians prior to AZA prescrip-
tion49 whilst, worldwide, testing is used by 43% of 
gastroenterologists in the management of IBD.50 
In the United States, the Food and Drug 
Administration has suggested the genotyping of 
TPMT before starting AZA or mercaptopurine 
treatment to prevent myelotoxicity.51 With a sig-
nificant proportion of patients developing myelo-
toxicity despite TPMT testing, routine use of 
both TPMT and NUDT15 genotype should be 
considered as a routine prior to thiopurine ther-
apy in IBD. Currently in Europe and North 
America, NUDT15 genotypes are not routinely 
checked despite significant presence of patients 
with relevant ethnicity. Prior to using thiopurine, 
it is recommended that clinicians should consider 
testing for NUDT15 not only in East Asian popu-
lations, but, as the study by Walker et al. suggests, 
also in European ancestry patients.38 Exome-wide 
association studies have shown that in NUDT15 
variants may be associated with thiopurine associ-
ated myelosuppression in IBD patients of 
European ancestry (odds ratio 38.2, 95% confi-
dence interval 5.1–286.1).46

If NUDT15 genotyping is not available, thiopu-
rine needs to be started at a low dose and titrated 
up gradually to a minimal effective dose in order 
to minimize risk of bone marrow toxicity and 
therefore slows achieving optimum therapeutic 
doses.

Prediction of thiopurine-induced pancreatitis: 
HLA Class II haplotypes
Acute pancreatitis after thiopurine therapy (thio-
purine-induced pancreatitis; TIP), which usually 
occurs within the first few weeks of therapy, is a 
well-recognized, idiosyncratic, unpredictable 
dose-independent adverse drug reaction with an 
incidence of approximately 4–7% in patients 
with IBD.24 The pathogenesis is likely related to 
genetic variants in HLA-DQA1*02:01-HLA-
DRB1*07:01.52 The risk allele frequency in 
Europeans is 27% with a risk of approximately 
17% of developing TIP in homozygous patients.53 
Although these data show that the potential of pre-
treatment HLA-DQA1-HLA-DRB1 genotyping 
would be useful to avoid administration of thiopu-
rines to patients with IBD who are homozygous, it 
has not yet been incorporated in clinical treatment 
protocols. As mentioned above, HLA Class II 

panel could provide a relatively useful solution as 
the test is relatively inexpensive.

Prediction of immunogenicity to anti-TNF 
monoclonal antibodies: HLA Class II haplotypes
Biological therapy has transformed the manage-
ment of IBD:54 since the introduction of inflixi-
mab for CD in 1998, TNF inhibitors have become 
widely used in moderate-to-severe IBD, in patients 
with extensive disease, in CD with stricturing and 
penetrating phenotypes or in patients who do not 
tolerate or do not respond to conventional thera-
pies. Despite their established efficacy, up to one-
third of patients with IBD will have no response to 
these agents (primary non-response) and another 
third will fail TNF-antagonist therapy after initial 
response (loss-of-response).55

Treatment failure in many cases is due to the for-
mation of anti-drug antibodies (ADAs)56 that can 
also cause serious adverse events such as allergic 
infusion reactions and vasculitis.57,58 Immuno-
genicity is more common (65%) in patients treated 
with infliximab (a murine–human chimeric mono-
clonal antibody) than with adalimumab (38%), a 
fully human monoclonal antibody.56,59 Risk of 
immunogenicity can be reduced with combination 
immunomodulator therapy and for infliximab this 
strategy improves treatment outcomes.59 Despite 
these benefits, many patients are still treated with 
anti-TNF monotherapy because of concerns 
about the increased risk of adverse drug reactions, 
opportunistic infections and malignancies associ-
ated with combination therapy.60 As a result of 
clinical evidence, assessment of immunogenicity is 
now a mandatory requirement of the European 
Medicines Agency and the Food and Drug 
Administration prior to approval of all biological 
agents:61–63 the ability to identify patients at 
increased risk of immunogenicity may influence the 
choice of anti-TNF treatment and the use of pre-
ventive strategies, including combination with 
immunomodulator. Retrospective studies have sug-
gested that variants in FCGR3A64 and HLA-
DRB1*0365 increase susceptibility to immuno genicity 
to anti-TNF therapy. These associations did not 
achieve genome-wide significance and are yet to be 
independently replicated.66 Recently, the HLA-
DQA1*05 haplotype, in particular the specific alleles 
HLA-DQA1*05:01 and HLA-DQA1*05:05, were 
identified as a genetic determinant of immuno-
genicity to TNF-antagonists: it is associated with a 
two-fold increased risk of immunogenicity.66 So 
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pre-treatment HLA-DQA1*05 and HLA-DRB1*03 
genetic testing thus has the potential to personalize 
TNF-antagonist therapy and should lead to preven-
tive measures such as the use of concomitant immu-
nomodulator to maximize response.66,67 This 
strategy will also spare patients combination ther-
apy (thiopurines) if it is not required. Further rep-
lication studies from other geographical regions are 
necessary.

While combination therapy of anti-TNF mono-
clonal antibodies with thiopurines may reduce the 
rate of immunogenicity, it also increases the risk 
of infections, neoplastic lesions and myelotoxic-
ity. For these reasons a stratified approach to 
determine the requirement of combination ther-
apy to prevent immunogenicity by the use of 
HLA Class II genotyping is an elegant solution 
worthy of widespread adoption in clinical prac-
tice. HLA genotyping is inexpensive and rela-
tively easy to introduce (Figure 4). However, the 
findings will require confirmation in cohorts from 
different geographical regions and ethnicities.

Miscellaneous investigations that are promising 
but not ready for primetime
Predicting 5-aminosalicylic acid nephrotoxicity: HLA 
Class II haplotypes. 5-Aminosalicylates (5-ASAs) 
are safe, cheap and effective drugs prescribed to 
induce and maintain steroid-free remission in 

patients with mild to moderately active ulcerative 
colitis (UC). The use of these agents for most 
patients is lifelong, so the long-term toxicity 
should not be underestimated. Common side 
effects associated with 5-ASAs include flatulence, 
abdominal pain, nausea, diarrhoea, headache, dys-
pepsia and nasopharyngitis, which may occur in up 
to 10% of patients. There are other two adverse 
events, rare but more serious: pancreatitis (0.3%) 
and nephrotoxicity (0.2%).68 Regarding pancre-
atitis in a randomized controlled trial comparing 
mesalamine 2.4 g versus 4.8 g daily, it was found 
that in both groups, only one patient in each 
developed pancreatitis. Both clinical episodes 
resolved upon discontinuation of the drug and 
pancreatitis was postulated to be secondary to 
mesalamine hypersensitivity.69

Nephrotoxicity has been reported for both sul-
fasalazine and the newer 5-ASA agents: there is 
an annual risk of 0.26% and an incidence of one 
case per 4000 patient-years.70 A review of the UK 
General Practice Research Database calculated 
the incidence at 0.17 cases per 100 patients per 
year but the authors noted that only 13% of these 
patients had a histological diagnosis of interstitial 
nephritis.71 The 5-ASA-induced nephrotoxicity is 
not associated with duration of therapy and has a 
probable genetic basis: HLA-DRB1*03:01 has 
been identified as one of its determinants.72 
Carriership of the risk allele is associated with a 

Figure 4. Thiopurine-induced pancreatitis and immunogenicity predictors: positive and negative aspects.
TNF, tumour necrosis factor
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three-fold increased risk of renal injury after 
5-ASA administration. However, the high fre-
quency of this risk allele in the general population 
and the low frequency of the adverse event limits 
its clinical utility.72 Currently only yearly moni-
toring of renal function is recommended: if there 
is an increase in serum creatinine, it is important 
to check urine electrolytes and proteinuria. 
Discontinuation of mesalamine is suggested if 
fractional excretion of sodium is >2% or in the 
presence of proteinuria.68,73

Predicting myelotoxicity and haematological can-
cers after thiopurine: ITPase enzymes. Adverse 
events of thiopurines can be divided into: dose-
independent, such as pancreatitis and flu-like ill-
ness, and dose-dependent, such as myelosuppression 
and hepatotoxicity. As mentioned above TPMT 
polymorphisms explains many but not all of thio-
purine-related adverse events.

Another significant enzyme, involved in the bio-
transformation of thiopurine drugs is inosine 
triphosphatase (ITPA). It catalyses the pyrophos-
phohydrolysis of inosine triphosphate (ITP) to 
inosine monophosphate, preventing the accumu-
lation of potentially toxic ITPs.74 Two mutations 
reduce activity of the ITPA causing the most 
effect: IVS2 21AC (rs7270101) and p.P32T 
(c.94C/A, rs1127354). Deficiency in the ITPase 
activity occurs in approximately 1 in 1000 
Caucasians, while in Asian populations the fre-
quency is of 14–19%.75 Furthermore, it was 
observed that the ITPA c.94C/A genotype makes 
a contribution to the concentration of 6-methyl-
mercaptopurine in red blood cells and the occur-
rence of hepatotoxicity and acute lymphoblastic 
leukaemia in paediatric patients.76

Predicting response to treatment with anti-TNF 
antibodies: TREM1, OSM, gene expression profiling 
of CD8+ T lymphocytes. Arijs et al. demonstrated 
that various genes involved in the inflammatory 
cascade account for resistance to anti-TNFa ther-
apy and predicted the response to infliximab ther-
apy with 89% accuracy.77 Among these, IL13RA2 
was the highest ranked common gene for both 
CD and UC analyses. Recently, expansion of 
apoptosis-resistant intestinal TNFR2+ IL-23R+ 
T-cells has been associated with resistance to anti-
TNF therapy in CD.78

Triggering receptor expressed on myeloid cells 
1 (TREM1). TREM1 looks a promising predictive 

biomarker for anti-TNF therapy in CD, although 
conflicting results are currently reported.79,80 It 
is a receptor expressed on innate immune cells, 
which amplify inflammatory signals triggered by 
Toll-like receptors contributing to the pathophys-
iology of many acute and chronic inflammatory 
conditions.81 Pre-test probabilities for primary 
(non)-response to anti-TNF therapy could be 
optimized using mucosal TREM1 expression or 
blood TREM1 levels.79,82 However, more evi-
dence is required and blood TREM1 may be less 
accurate.

Oncostatin M (OSM). An important and highly 
expressed cytokine in IBD patients is OSM. It 
has been proved that a single-nucleotide poly-
morphism in the OSM locus is strongly associ-
ated with risk of developing IBD,83 while mucosal 
OSM correlates closely with histopathological 
disease severity84 and furthermore it is associated 
with anti-TNF resistant disease. OSM is part of 
the IL-6 cytokine family85 that can induce signal-
ling via the JAK-STAT pathway, the phosphati-
dylinositol-3-kinase (PI3K)-Akt pathway, and 
mitogen activated protein kinase cascades via 
heterodimeric receptors such as gp130, OSMR 
and leukaemia inhibitory factor receptor-β.86 
However, OSM and OSMR expression was 
increased in patients with IBD who required sur-
gery, suggesting an association with complicated 
disease, and high expression in pre-treatment 
biopsies was strongly associated with primary 
non-responsiveness to anti-TNF therapy.77,84,87

This association was confirmed in two additional 
prospective UC patient cohorts treated with inf-
liximab and golimumab88,89 and also an analysis 
of five datasets demonstrates that high baseline 
OSM expression in the intestinal mucosa is repro-
ducibly associated with decreased responsiveness 
to anti-TNF therapy.84 Similar results have also 
been shown for vedolizumab and corticoster-
oids,90,91 even though findings concerning high 
levels of mucosal OSM and response to vedoli-
zumab are still preliminary.92 At present, mucosal 
OSM should probably be considered as a novel 
pharmacodynamic marker predicting disease 
severity and response to therapy.93

Gene expression profile of CD8+T. Lee et  al. 
at first described a prognostic transcriptional 
signature in CD8 + T cells able to separate IBD 
patients into two phenotypically distinct sub-
groups.94 This can be explained because CD8 + 
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T cell gene expression signature corresponds to 
differences in T cell exhaustion. T cell exhaus-
tion is the phenomenon by which effector T cells 
progressively lose their ability to respond to tar-
get antigens. Patients with more T cell exhaus-
tion had a better prognosis with longer time to 
disease relapse and fewer flares over time.95 This 
team developed a blood-based test, qPCR-based 
classifier, to identify the same subgroups without 
cell separation, thus creating a test more suit-
able for IBD clinical practice. The two subgroups 
were IBD1 (exhaustion low) or IBD2 (exhaustion 
high) and they experienced very different disease 
courses: IBD1 subgroup had consistently more 
aggressive disease, which was characterized by 
the need to escalate treatment earlier, with immu-
nomodulators, biological therapies or surgery.96

This new biomarker could be a valuable tool for 
the clinician to stratify patients to receive person-
alized therapy, predicting the course of the dis-
ease, and a randomized trial is ongoing.

Conclusion
Patients with IBD, due to the chronic relapsing 
disease course, have to take medications for a life-
time to maintain disease remission, improve qual-
ity of life and prevent long-term complications 
such as uncontrolled bleeding, colorectal cancer 
and surgery.97 Patients who achieve endoscopic 
remission have improved long term outcomes 
compared with those who do not.98 Although the 
outcomes of medical therapies have greatly 
improved over the last decades, substantial indi-
vidual variability remains in terms of both efficacy 
and toxicity: CD and UC are heterogeneous 

disorders and we cannot apply a ‘one-size-fits-all’ 
principle in terms of treatment strategy. Many 
patients with IBD do not achieve disease remis-
sion: they lose response after initial successful 
treatment or develop severe drug-induced adverse 
events.

The lack and/or loss of response, the concern of 
safety and the control on health budget are con-
tinuously driving IBD research: not only trying to 
find alternative therapeutic target, but also char-
acterizing pre-treatment tests to incorporate into 
clinical daily IBD management.

It will be problematic to have precise guidance for 
clinical practice but several new markers have been 
identified as strong determinants of (adverse) 
response to drugs used in the management of IBD.

In this review we show that some of these can guide 
clinicians in choosing the right therapeutic strategy, 
predicting the risk of adverse events, and therefore 
they should be considered for use in clinical prac-
tice (Table 1): TPMT/NUDT15 genotype and 
HLA-DQA1*02:01/HLA-DRB1*07:01 predict 
myelosuppression and pancreatitis induced by thi-
opurine respectively; while as regards immuno-
genicity to TNF-antagonists, HLA-DQA1*05:01/
HLA-DQA1*05:05/HLA-DRB1*03 are useful in 
predicting response or adverse events to therapies. 
The C4 test is a simple and inexpensive test that 
can help the clinician to understand the real causes 
of diarrhoea in CD patients pre- and even post-
surgery. Other new investigations are promising 
but not ready for primetime as they still lack strong 
evidence (Table 2): HLA-DRB1*03:01 as predic-
tor of 5-ASA-induced renal injury, ITPA for 

Table 1. Tests strongly recommended in inflammatory bowel disease clinical practice.

Pre-treatment test Response References

○ C4 test Diarrhoea in Crohn’s disease due to 
BAM

Vijayvargiya et al.19; Battat et al.21

○ TPMT genotype
○ NUDT15 genotype

Myelosuppression, thiopurine induced Coenen et al.35; Colombel et al.38; 
Moriyama et al.40,41; Kakuta et al.42

○ HLA-DQA1*02:01
○ HLA-DRB1*07:01

Acute pancreatitis, thiopurine induced Wilson et al.52

○ HLA-DQA1*02:01
○ HLA-DQA1*05:05
○ HLA-DRB1*03

Immunogenicity to TNF-antagonists Garcês et al.61; Sazonovs et al.66

BAM, bile acid malabsorption; NUDT15, Nudix hydrolase 15; TPMT, thiopurine s-methyltransferase
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haematological cancer and TREM1/OSM/gene 
profile of CD8+T in non-response of TNF ther-
apy. However, the uptake of routine pre-treatment 
testing to better stratify IBD patients is slow and 
extensive validation is required.

Recent efforts led by the United Kingdom IBD 
Genetics Consortium have successfully con-
ducted prospective and retrospective studies 
about genetic pre-treatment tests in the context of 
IBD management.66,99 However, additional large 
international consortia are needed to facilitate the 
collection of rigorous cohorts of patients who 
develop (rare) adverse events and future studies 
should focus on the cost-effectiveness of these 
tests in the different ethnic populations.
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