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The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in low-grade adipose tissue inflammation

and development of insulin resistance during obesity. In this context, nuclear factor κ-light-chain-enhancer of activated B

cells (NFκB) is directly involved and required for the acute activation of the inflammatory gene program. Here, we show

that the major transactivating subunit of NFκB, v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), is

also required for acute TNF-induced suppression of adipocyte genes. Notably, this repression does not involve RELA bind-

ing to the associated enhancers but rather loss of cofactors and enhancer RNA (eRNA) selectively from high-occupancy

sites within super-enhancers. Based on these data, we have developedmodels that, with high accuracy, predict which enhanc-

ers and genes are repressed by TNF in adipocytes. We show that these models are applicable to other cell types where TNF

represses genes associated with super-enhancers in a highly cell-type–specific manner. Our results propose a novel paradigm

for NFκB-mediated repression, whereby NFκB selectively redistributes cofactors from high-occupancy enhancers, thereby

specifically repressing super-enhancer–associated cell identity genes.

[Supplemental material is available for this article.]

Obesity is associated with low-grade inflammation in the adipose
tissue leading to impaired adipocyte differentiation and function
(Guilherme et al. 2008). Proinflammatory signals originating pri-
marily from the M1 macrophages lead to impaired insulin signal-
ing in the adipocytes, thereby increasing lipolysis, decreasing lipid
storage, and decreasing the release of adiponectin from adipocytes.
The increase in plasma fatty acids from lipolysis and the decrease
in adiponectin in turn contribute to the compromised insulin sen-
sitivity in other tissues (Maury and Brichard 2010; Turer and
Scherer 2012). In this context, tumor necrosis factor (TNF) released
from theM1macrophages is one of themost important proinflam-
matory cytokines, and targeted disruption of TNF or its receptors
has been shown to protect against obesity-induced insulin resis-
tance in mice (Uysal et al. 1997; Ventre et al. 1997). In addition
to directly inhibiting the insulin signaling pathway (Cawthorn
and Sethi 2008), TNF up-regulates expression of proinflammatory
cytokines in the adipocytes, thereby leading to a feed-forward ac-
tivation of the inflammatory response. TNF stimulation has also
been shown to lead to repression of the expression of many adipo-
cyte-specific genes (Ruan et al. 2002; Lo et al. 2013), where
decrease in expression and activity of the master regulator of adi-
pogenesis, peroxisome proliferator activated receptor γ (PPARG)
(Zhang et al. 1996; Tang et al. 2006), is likely to contribute to re-
pression of these genes during long-term exposure to TNF (>24
h). However, the mechanisms underlying the acute (<2 h) gene re-
pression by TNF are not fully understood (Ye 2008), and genome-

wide insight into the transcriptional reprogramming of the ge-
nome in response to TNF is lacking.

TNF signaling activates several proinflammatory transcrip-
tion factors including the master inflammatory transcription fac-
tors nuclear factor κ-light-chain-enhancer of activated B cells
(NFκB), which appears to be invariably involved in the inflamma-
tory response inmany different cell types (Moynagh 2005) and re-
quired for the inflammatory response in adipocytes (Ruan et al.
2002). The major transactivating subunit of NFκB is v-rel avian
reticuloendotheliosis viral oncogene homolog A (RELA; also
known as p65), which, following inflammatory activation, trans-
locates to the nucleus and binds DNA as a heterodimer with the
mature product of NFKB1 (p50) to GGGRNYYYCC response ele-
ments in the genome (Karin and Ben-Neriah 2000). This appears
to be highly dependent on the chromatin landscape shaped by lin-
eage-determining factors (Jin et al. 2011); however, RELA can also
direct recruitment of chromatin remodeling factors (Agalioti et al.
2000; Natoli 2009) and facilitate chromatin remodeling at a subset
of its binding sites (Lo et al. 2013). In addition to chromatin re-
modeling factors, RELA recruits histone acetylases and epigenetic
reader proteins like bromodomain-containing protein 4 (BRD4),
ultimately leading to recruitment of basal transcription machin-
ery, Mediator, RNAPII, and elongation factors (Barboric et al.
2001; Gao et al. 2005; Huang et al. 2009; Zhao et al. 2013).

In contrast to gene activation, the mechanisms underlying
transcriptional repression by RELA, and signal-dependent tran-
scription factors in general, are incompletely understood. It has
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been proposed that TNF-induced suppression of glucocorticoid-ac-
tivated genes involves RELA tethering to the glucocorticoid recep-
tor (Rao et al. 2011), and such a mechanism may also be involved
in repression of, e.g., inflammatory gene expression by nuclear re-
ceptors (Jonat et al. 1990; Pascual et al. 2005). Furthermore, it has
been suggested that transcription factors compete for a limited
amount of coactivators in the cell, whereby activation of one tran-
scription factor reduces the amount of cofactors available for other
transcription factors (Meyer et al. 1989; Kamei et al. 1996). While
this mechanism has been suggested by recent genomic studies to
account for transcriptional repression following ligand activation
of nuclear receptors (He et al. 2012; Guertin et al. 2014; Step
et al. 2014), the fact that only a small subset of active enhancers
and genes is repressed has remained poorly understood.

Here, we show that TNF stimulation of human Simpson-
Golabi-Behmel syndrome (SGBS) adipocytes induces acute RELA-
dependent redistribution of cofactors and enhancer transcrip-
tion in adipocytes leading to induction of inflammatory gene pro-
grams at the cost of adipocyte genes. We show that this repression
does not involve RELA binding to the associated enhancers but
rather loss of cofactors and eRNA transcription selectively from
high-occupancy sites within super-enhancers. We furthermore
demonstrate that gene repression by TNF is highly cell-type specif-
ic, reflecting cell-type–specific cofactor loss from high-occupancy
enhancers and suppression of super-enhancer–associated cell
identity genes.

Results

Acute reprogramming of adipocyte genes and enhancers by TNF

Exposure of adipocytes to TNF is known to lead to acute activation
of inflammatory genes as well as repression of adipocyte genes;
however, the mechanisms underlying acute repression of adipo-
cyte genes are not well understood. We performed time-course ex-
periments in human SGBS adipocytes using a dose of 10 ng/mL
previously demonstrated to be required for biologically relevant ef-
fects of TNF treatment such as increased basal lipolysis (Ryden
et al. 2002; Zhang et al. 2002). These experiments showed that
TNF-mediated repression of PPARG mRNA is manifested after 3 h
of TNF treatment (Supplemental Fig. S1A, left) and that this repres-
sion is preceded by a pronounced and rapid (within 45–90 min)
suppression at the nascent transcript level that coincides with
the initial TNF-induced burst in inflammatory gene expression
(Supplemental Fig. S1A, right). Subsequent dose-response experi-
ments confirmed that 10 ng/mL is required for efficient activation
of inflammatory gene expression as well as acute and chronic re-
pression of PPARG expression (Supplemental Fig. S1B). Thus, for
subsequent analyses, we treated adipocytes with 10 ng/mL TNF
for 90 min.

To investigate the acute effects of TNF on genome-wide tran-
scription in human adipocytes, we took advantage of our recently
developed computational method, iRNA-seq, which determines
changes in transcriptional activity based on unique intron reads
from total RNA-seq (Madsen et al. 2015). Using this, we detected
a pronounced acute transcriptional reprogramming of the adipo-
cyte genome in response to TNF, with 1143 and 654 genes signifi-
cantly induced and repressed, respectively (FDR < 0.01) (Fig. 1A).
In line with our recent study (Madsen et al. 2015), concordant re-
sults were obtained when assessing transcriptional changes by
RNAPII chromatin immunoprecipitation (ChIP)-seq (Supplemen-
tal Fig. S1D) and by qPCR using intron-targeting primers (Supple-

mental Fig. S1E,F). The genes analyzed by qPCR (n = 26) were
selected based on their iRNA-seq-estimated fold changes to achieve
coverage across the dynamic range of the TNF response. Pathway
analyses revealed that TNF-induced genes, as expected, are
enriched in pathways related to cytokine signaling (Fig. 1B;
Supplemental Table S1A,B). In contrast, genes acutely repressed
by TNF are enriched in pathways related to lipid metabolism,
and repressed genes are typically up-regulated during adipogenesis
(Fig. 1C; Supplemental Fig. S1G). Further inspection of the genes
repressed by TNF (Fig. 1A) revealed that several well-known tran-
scriptional activators of adipocyte differentiation and function
are acutely repressed by TNF, and like for PPARG, this repression
is manifested and sustained at the mRNA level 3–6 h after TNF
treatment (Supplemental Fig. S1H). Thus, in addition to induction
of inflammatory gene expression, TNF signaling leads to acute re-
pression of a subset of adipocyte genes, including multiple adipo-
genic transcription factors, the down-regulation of which is likely
tocontribute to the long-termeffectsofTNFonadipocyte function.

To investigate the mechanisms underlying the acute TNF-
induced transcriptional changes in human adipocytes, we deter-
mined the effect of TNF exposure for 60 min on enhancer activity.
UsingMediator complex subunit 1 (MED1) ChIP-seq as a surrogate
for enhancer activity (Heintzman et al. 2009; Kagey et al. 2010), we
identified 5454 activated and 1840 repressed enhancers (FDR <
0.01) (Fig. 1D). For both activated and repressed enhancers, TNF-
induced changes in MED1 occupancy are associated with corre-
sponding changes in occupancy of BRD4 (Fig. 1E; Supplemental
Fig. S1I), as well as othermarkers of enhancer activity such as RNA-
PII occupancy (Supplemental Fig. S1J,K; Bonn et al. 2012) and
eRNA transcription (Fig. 1F,G; Kim et al. 2010). In contrast, TNF-
induced changes in chromatin accessibility, assessed by DNase I
hypersensitive (HS) sites sequencing (DNase-seq) (Crawford et al.
2006), primarily involves increased accessibility at TNF-activated
enhancers, whereas TNF-induced loss of MED1 is associated with
rather modest changes in chromatin accessibility (Fig. 1H; Supple-
mental Fig. S1L). Importantly, regions with a gain of MED1 are
highly enriched in the vicinity of induced genes, whereas regions
with a loss of MED1 are highly enriched near genes repressed by
TNF (Fig. 1I). Conversely, the expression of genes with TSS within
20 kb of TNF-regulated enhancers tends to follow the activity of
the enhancers (Fig. 1J). Thus, TNF treatment leads to acute and
comprehensive reprogramming of the adipocyte genome through
activation of enhancers associated with inflammatory genes such
as CCL2 (Fig. 1K), as well as through repression of enhancers asso-
ciated with many adipocyte genes like PLIN1 (Fig. 1L). Intriguing-
ly, acute repression appears to occur largely independently of
changes in the chromatin structure, suggesting that enhancers
are not deconstructed during acute repression.

RELA mediates reprogramming of the adipocyte transcriptome

through cofactor redistribution

To determine the role of RELA in the acute transcriptional repro-
gramming of human adipocytes by TNF, we knocked down RELA
in SGBS adipocytes at day 6 of differentiation using lentiviral vec-
tors. This resulted in robust knockdown of RELA and decreased
TNF-mediated induction of well-known RELA target genes such
as TNF and IL1A at day 10 of differentiation (Supplemental Fig.
S2A). Total RNA-seq followed by iRNA-seq was then used to deter-
mine the genome-wide impact of RELA depletion on the acute
transcriptional response to TNF. Interestingly, in addition to the
expected decrease in TNF-mediated induction of inflammatory
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Figure 1. Acute reprogramming of adipocyte genes and enhancers by TNF. Following 10 d of differentiation, human SGBS adipocytes were treated with
vehicle or TNF for 90 or 60min before harvest of RNA for total RNA-seq and chromatin for ChIP-seq. In addition, total RNA-seq was performed in SGBS cells
harvested at day 0 of differentiation. Changes in transcriptional activity andmRNA expression were determined using the iRNA-seq pipeline. (A) Scatter plot
illustrating log2 normalized mean tag counts in introns of RefSeq gene bodies in control vs. TNF-stimulated SGBS adipocytes. Green and red dots represent
genes that were determined to be induced and repressed, respectively (FDR < 0.01). Blue dots represent constitutive genes (FDR > 0.9; |log2FC| < 0.2). (B)
Heat map representing −log(P-values) for the top four enriched pathways for genes induced and repressed by TNF. (C ) Box plots representing fold change
in mRNA expression (exon reads) during adipogenesis for TNF-regulated and constitutive gene groups defined in A and Supplemental Figure S1C. P-value:
¤ = 3.73 × 10−9,∗ < 1.99 × 10−15, Wilcoxon rank-sum test. (D) Scatter plot illustrating log2 normalized mean MED1 tag counts in MED1 sites in vehicle vs.
TNF-stimulated SGBS adipocytes. Green and red dots represent sites with gain and loss of MED1, respectively, following TNF stimulation (FDR < 0.01). Blue
dots represent sites with constant MED1 binding (FDR > 0.8; |log2FC| < 0.2). (E) Box plot showing log2 fold change in BRD4 tag counts for TNF-regulated
and constant MED1 sites defined in D. P-value: ∗ < 2.2 × 10−16, Wilcoxon rank-sum test. (F) Aggregate plots showing enhancer transcript levels in a 3-kb
window around the center of intergenic TNF-regulated and constant MED1 sites defined in D. (G) Box plot representing log2 fold change in enhancer
transcript levels at intergenic TNF-regulated and constitutiveMED1 sites defined inD. Tags were counted in a region of 2 kb around theMED1 peak center.
P-value: ∗ < 2.2 × 10−16, Wilcoxon rank-sum test. (H) Box plot showing log2 fold change in DNase-seq tag counts for TNF-regulated and constant MED1
sites defined in D. P-value: ∗ < 2.2 × 10−16, Wilcoxon rank-sum test. (I) Enrichment of TNF-regulated MED1 sites defined in D near TNF-regulated genes
defined in A. Enrichment was determined as the number of binding sites per gene within different distances from the TSS (10–100 kb) of regulated genes
relative to the number of binding sites per gene of constitutive genes. (J) Box plots representing log2 fold change (TNF/Veh) in iRNA-seq (left) and RNAPII
(right) read counts for genes with TSSwithin 20 kb of TNF-regulated and constantMED1 sites defined in A. P-value: ∗ < 2.2 × 10−16,Wilcoxon rank-sum test.
(K,L) UCSC Genome Browser screenshots of RNAPII (green) andMED1 (red) occupancy and DNase-seq (black) tags at gene loci of a typical induced (CCL2)
(K) and repressed (PLIN1) (L) gene.



genes, RELA depletion also significantly diminished gene repres-
sion by TNF (Fig. 2A). In linewith this, RELA depletion diminished
the TNF-induced increase in eRNA and MED1 occupancy near
TNF-activated genes as well as the loss of eRNA and MED1 on en-
hancers near TNF-repressed genes (Fig. 2B,C). Collectively, these
results place RELA as a central mediator of acute TNF-induced tran-
scriptional reprogramming through activation of inflammatory
enhancers and genes as well as repression of adipocyte enhancers
and genes.

To investigate towhat extent RELA is associatedwith TNF-reg-
ulated enhancers,weperformedRELAChIP-seqandanalyzedRELA
occupancy at sites which gain, lose, or have constant MED1 occu-
pancy in response to TNF treatment. In linewith RELA being ama-
jor driver of TNF-induced inflammatory gene expression, TNF-
activated regions are highly enriched for RELA binding (Fig. 2D;
Supplemental Fig. S2B). In contrast, repressed enhancers showed

no enrichment of RELA compared with regions with unchanged
MED1 occupancy (Fig. 2D; Supplemental Fig. S2B). This indicates
that although RELA is required for TNF-induced repression of adi-
pocyte enhancers, it does not bind repressed enhancers directly.
Thus, these data do not support tethering of RELA to other tran-
scription factors as a major mechanism involved in repression of
adipocyte genes by TNF. In linewith this, RELAbinding is enriched
within 20 kb of TNF-induced but not TNF-repressed genes relative
to constitutive genes (Fig. 2E). Taken together, acute activation of
inflammatory genes like IRF1 by TNF (Fig. 2F) involves direct
RELA action at nearby enhancers, whereas RELA-mediated repres-
sion of adipocyte genes such as CIDEC (Fig. 2G) appears to be indi-
rect. A possible mechanism for this indirect repression is
redistribution of cofactors such as MED1 and BRD4 from adipo-
genic enhancers to RELA-activated enhancers near proinflamma-
tory genes by mechanisms such as squelching (Meyer et al. 1989).
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Figure 2. RELA mediates reprogramming of the adipocyte transcriptome through cofactor redistribution. (A–C) At day 6 of differentiation, SGBS adipo-
cytes were transduced with lentiviruses expressing shRNA targeting RELA (shRELA, light blue) or scrambled control shRNA (shScr, dark blue). At day 10, the
cells were treatedwith vehicle or TNF for 90min before harvest of RNA for total RNA-seq and 60min before harvest of chromatin for ChIP-qPCR. (A) Box plot
representing log2 fold change (TNF/Veh) in nascent RNA for TNF-regulated genes (shScrV vs. shScrT, FDR < 0.01) in shScr- and shRELA-treated cells. P-
value: ∗ < 2.2 × 10−16, Wilcoxon rank-sum test. (B) Box plots representing log2 fold change in eRNA at intergenic TNF-regulated MED1 sites defined in
Figure 1D in shScr and shRELA-treated SGBS adipocytes. P-value: ∗ < 2.2 × 10−16, ¤ = 2.58 × 10−06, Wilcoxon rank-sum test. (C) Box plots representing
log2 fold change in MED1 occupancy at a subset of TNF-regulated MED1 sites in shScr- and shRELA-treated SGBS adipocytes, n = 7–8. Data are represen-
tative of three independent experiments. P-value: ∗ = 9.66 × 10−05, ¤ = 1.06 × 10−06, Student’s t-test. (D) Box plots representing RELA occupancy at
TNF-regulated and constant MED1 sites defined in Figure 1D. Differentiation and treatment of cells for RELA ChIP-seq was performed as described in
Figure 1. P-value: ∗ < 2.2 × 10−16, Wilcoxon rank-sum test. (E) Box plots representing summarized RELA occupancies at all RELA binding sites within 20
kb of the TSS of TNF-regulated genes defined in Figure 1A. P-value: ∗ < 2.2 × 10−16, Wilcoxon rank-sum test. (F,G) UCSC Genome Browser screenshots
of RNAPII (green), MED1 (red), and RELA (blue) occupancy at gene loci of a typical induced gene, IRF1 (F), and a typical repressed gene, CIDEC (G).
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A model of selective redistribution of MED1 from

high-occupancy sites predicts loss of MED1 and gene

repression by TNF

A general problem with a cofactor redistribution model is that it
does not explain why only a subset of active enhancers and genes
are repressed by TNF. Indeed,whenwe explored the ability of RELA
occupancy to predict loss of MED1 binding following TNF stimu-
lation, we found that low RELA binding to an enhancer is not in
itself a strong predictor of MED1 loss (Fig. 3A). Thus, despite the
important role of RELA in acute repression of gene expression
and enhancer activity by TNF, lack of RELA is not the sole determi-
nant of enhancer repression. In contrast, and as expected from the
enrichment of RELA binding at TNF-activated enhancers, RELA oc-
cupancy is a strong predictor of enhancer activation (Fig. 3A).

Interestingly, we noticed that TNF-repressed enhancers are
characterized by markedly higher occupancy of MED1 and BRD4
in unstimulated cells compared with constant enhancers (Fig.
3B; Supplemental Fig. S3A), indicating that siteswith high cofactor
binding are more sensitive to cofactor loss in response to in-
flammatory signals. In support of this, sites with highMED1 occu-
pancy display a higher relative loss of MED1 following TNF
stimulation compared with sites with low MED1 occupancy (Fig.
3C). Consequently, sites with high MED1 also display a markedly
higher absolute loss ofMED1 (Supplemental Fig. S3B), with 75%of
the total MED1 loss occurring from the upper quartile of MED1
sites (Fig. 3D). This indicates that the combination of initial cofac-
tor occupancy and the level of RELA binding after TNF stimulation
determines whether cofactors are redistributed from or to a given
site. To further investigate this, we grouped putative enhancers
in unstimulated cells based on their basal MED1 occupancy and
the level of RELA binding in TNF-stimulated cells and calculated
the average fold change in MED1 binding for each group.
Indeed, these analyses revealed that higher relative MED1 occu-
pancy compared with RELA at a given site is associated with loss
ofMED1 and conversely siteswith higher relative RELA occupancy
are associated with gain of MED1 (Fig. 3E). Accordingly, by sub-
tracting the two occupancies, we significantly improved the pre-
diction of MED1 loss, compared with using either occupancy
alone (Fig. 3F). Importantly, BRD4 occupancy substitutes well for
MED1 occupancy to predict MED1 loss (Supplemental Fig. S3C),
suggesting a general ability of high cofactor occupancy to predict
enhancer repression.

Next, to predict gene regulation, we assigned enhancers to
nearby genes and calculated distance scores for each enhancer-
gene pair as previously described (Supplemental Fig. S3D; Tang
et al. 2011), thereby giving higherweight to an enhancer the closer
it is to the TSS. These distance scores weremultiplied by occupancy
scores for each enhancer before the distance-adjusted occupancy
scores were summarized for each gene. Notably, this allowed us
to predict TNF-mediated gene repression with similar accuracy as
prediction of gene induction based on RELA binding (Fig. 3G;
Supplemental Fig. S3E). Importantly, the performance of this
model is not simply due to prediction of genes that are transcribed
and hence has the potential to be repressed. Thus, when the min-
imum transcription threshold assessed as intron reads per kb (RPK)
for included genes is increased, the area under the curve (AUC) for
the receiver operator characteristics (ROC)-curve is relatively unaf-
fected (full model). In contrast, the performance drops rapidly
with increasing minimum transcription threshold when using
transcription levels (RPK) as the predictor (Fig. 3H). Thus, the
full model is much better than the actual level of transcription

for prediction of which genes in a group of highly expressed genes
will be repressed by TNF.

Interestingly, we noticed that a model considering only the
summarized distance scores for all MED1 sites, thus disregarding
the level of MED1 and RELA binding, is also a relatively strong pre-
dictor of gene repression (Fig. 3I), although not as strong as the full
model (Supplemental Fig. S3F). This implies that adipocyte genes
being repressed by TNF are characterized by having a high number
ofMED1 sites in the vicinity of the TSS, and indeed repressed genes
generally havemore MED1 sites within 50 kb of the TSS compared
with constitutive genes (Fig. 3J). Taken together, RELA appears to
mediate cofactor redistribution predominantly from sites with
high cofactor occupancy, and this has the greatest impact on genes
with multiple enhancers nearby. Importantly, our models predict
enhancer and gene repression with similar accuracy as enhancer
and gene activation by TNF.

Adipocyte super-enhancers and associated genes are sensitive

to RELA-mediated redistribution

Recent results from the Young and Collins laboratories have dem-
onstrated at the genome-wide level the importance of clusters of
enhancers, termed super-enhancers or stretch-enhancers, for the
regulation of cell identity genes (Hnisz et al. 2013; Parker et al.
2013; Whyte et al. 2013). It has been shown that constituent
enhancers within super-enhancers display extremely high occu-
pancies of master transcription factors and cofactors and that
super-enhancers and their associated genes are highly sensitive
to perturbation by knockdown of Mediator subunits or by chemi-
cal inhibition of bromodomains (Loven et al. 2013; Whyte et al.
2013).

To investigate the role of super-enhancers in repression of ad-
ipocyte-specific gene expression by RELA-mediated cofactor redis-
tribution, we mapped super-enhancers in unstimulated cells
essentially as previously described (Whyte et al. 2013).We thereby
identified 933 basal super-enhancers (Fig. 4A), with markedly
higher constituent levels of bothMED1 and BRD4 than regular en-
hancers (Supplemental Fig. S4A,B). Interestingly, and in line with
the results in Figure 3, super-enhancer constituents are more sen-
sitive to MED1 and BRD4 redistribution than regular enhancers
(Fig. 4B; Supplemental Fig. S4C,D). Furthermore, in contrast to
regular enhancers, super-enhancers are highly enriched in the vi-
cinity of genes repressed by TNF (Fig. 4C). Accordingly, super-
enhancer–associated genes are more likely to be repressed by
TNF than genes associated only with regular enhancers (Supple-
mental Fig. S4E,F). Interestingly, the basal super-enhancers identi-
fied in SGBS cells are enriched in the vicinity of genes suppressed
in adipose tissue from obese human subjects compared with lean
subjects in three independent studies (Supplemental Fig. S4G).
This suggests that these super-enhancers may also be particularly
sensitive to signals induced by the low-grade inflammation associ-
ated with obesity. Based on our work we hypothesize that this sen-
sitivity includes cofactor redistribution.

The RELA-mediated redistribution of cofactors from super-
enhancers leads to the loss of 432 of the 933 basal super-enhanc-
ers, whereas 315 super-enhancers are established de novo (Fig.
4D; Supplemental Fig. S4H). Interestingly, the 501 super-enhanc-
ers that are maintained following TNF treatment are characterized
byhigher occupancy of RELA comparedwith super-enhancers that
are lost (Supplemental Fig. S4I,J), indicating that RELA recruitment
contributes to stabilization/maintenance of these super-enhancers
following TNF treatment. Notably, TNF-activated constituents

Gene repression by cofactor redistribution
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within the 315 TNF-induced super-enhancers are highly enriched
in the vicinity of TNF-induced genes compared with regular TNF-
activated enhancers (Fig. 4E), suggesting that RELA-directed super-
enhancer formation plays an important role in induction of in-
flammatory gene expression. These results are in line with recent

studies from the Plutzky/Bradner and Evans laboratories demon-
strating that inflammation induces de novo formation of RELA-
bound super-enhancers at inflammatory genes in human umbili-
cal vein endothelial cells (HUVECs) andmacrophages, respectively
(Brown et al. 2014; Hah et al. 2015).
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Due to the assignment method, super-enhancers are identi-
fied based on both the number of constituents as well as the
MED1 occupancy at these. To assess the importance of these two
parameters individually, we defined clusters based solely on the
number of constituent enhancers (Supplemental Fig. S4K), as
well as high-occupancy enhancers based solely onMED1 occupan-
cy at individual enhancers (Supplemental Fig. S4L). We then over-
lapped the constituents of these two groups (Fig. 4F) and
investigated the sensitivity to RELA-mediated MED1 redistribu-
tion. Interestingly, while high MED1 occupancy alone appears to
determine sensitivity to redistribution at the individual enhancer
(Fig. 4G; Supplemental Fig. S4M), clustering of enhancers is an ad-
ditional strong determinant of sensitivity to cofactor re-
distribution at the level of gene repression (Fig. 4H). Thus, RELA
appears to mediate cofactor redistribution selectively from high-
occupancy enhancers largely independent of their super-enhancer
status, but the greatest effect on gene repression appears when
these enhancers are part of an enhancer cluster. We propose
that these two levels allow RELA to, in an indirect fashion, specif-
ically repress super-enhancer–associated genes like PPARG (Fig. 4I),
without affecting regular enhancer-associated genes like PRDX6
(Fig. 4J).

TNF-regulated genes are sensitive to repression

by BRD4-inhibition

The above analyses indicated that repression of genes by TNF in ad-
ipocytes primarily is driven by indirect RELA-mediated cofactor
depletion from high-occupancy enhancers. Thus, we hypothe-
sized that the same set of high-occupancy enhancers and their as-
sociated genes would also display increased sensitivity to other
general perturbations of cofactor recruitment, and treated adipo-
cytes with the JQ1 chemical inhibitor of BRD4 (Fig. 5A; Filippako-
poulos et al. 2010). Consistent with our predictions, iRNA-seq
analyses showed that TNF-repressed genes are more sensitive
than constitutive genes to transcriptional repression by JQ1 treat-
ment (Fig. 5B), and adipocyte super-enhancers are highly enriched
in the vicinity of JQ1-repressed genes (Supplemental Fig. S5A). In-
terestingly, in TNF-treated adipocytes, the TNF-repressed genes are
not further repressed by the combined treatment with JQ1 (Fig.
5C; Supplemental Fig. S5B). In contrast, TNF-induced genes are
now highly sensitive to JQ1 treatment (Fig. 5C; Supplemental
Fig. S5C), indicating that inhibition of BRD4 now primarily inter-
feres with TNF-induced super-enhancers near these genes. This is
supported by enrichment of TNF-induced super-enhancers pri-
marily in the vicinity of genes repressed by JQ1 in TNF-treated ad-
ipocytes (Fig. 5D), whereas lost super-enhancers are primarily
enriched in the vicinity of genes repressed by JQ1 in vehicle-treat-
ed adipocytes. Accordingly, maintained super-enhancers are
enriched in the vicinity of genes repressed by JQ1 in both condi-
tions (Fig. 5D). Thus, inflammatory genes like SERPINE2 (Fig. 5E),
which are associated with TNF-induced super-enhancers, become
sensitive to BRD4 inhibition, while genes such as ADH1B (Fig. 5F)
that are associated with lost super-enhancers become insensitive
to further repression by BRD4. Genes such as ZEB2 (Supplemental
Fig. S5D), which are associated with amaintained super-enhancer,
are subject to repression by JQ1 in both vehicle and TNF-treated
cells. In summary, these results further support our model that re-
pression of specific gene programs can bemediated by nonspecific
perturbations of cofactor activity and that sensitivity of genes to
these perturbations seems to be defined at least in part by associa-
tion with high levels of cofactor binding at super-enhancers.

Gene repression by TNF is highly cell-type specific

Previous studies have demonstrated that TNF stimulation in differ-
ent cell types leads to induction of both cell-type–specific and
shared gene programs, which is correlated with cell-type–specific
and shared RELA binding, respectively (Jin et al. 2011). However,
TNF-induced gene repression in this context has received little at-
tention. Based on the central role of super-enhancers in gene re-
pression by TNF in SGBS adipocytes, combined with results
showing that super-enhancers are highly cell-type specific (Hnisz
et al. 2013; Whyte et al. 2013; Loft et al. 2015), we hypothesized
that TNF treatment should lead to acute repression of highly dis-
tinct gene programs in different cell types. To further investigate
this, we analyzed publically available total RNA-seq and RNAPII
ChIP-seq data from four additional human cell types (A549,
IMR90, HeLa, and HUVEC) treated with vehicle or TNF for 1 h
(Rao et al. 2011; Jin et al. 2013; Yang et al. 2013; Brown et al.
2014). iRNA-seq was used to determine acute changes in transcrip-
tion based on total RNA-seq.We identified acutely induced and re-
pressed genes in each cell type and determined the pathways
enriched in these gene groups. Cross cell type comparison demon-
strated that the gene programs and pathways repressed by TNF are
indeed highly cell-type specific, whereas induction of inflammato-
ry gene programs and pathways is more conserved across cell types
(Fig. 6A,B; Supplemental Fig. S6A,B).

To investigate to what extent our prediction models for re-
pression apply to other cell types, we chose to furthermine recent-
ly published data from TNF-induced changes in enhancer activity
and RELA binding in HUVECs (Brown et al. 2014). We first identi-
fied regions with gain or loss of BRD4 binding following TNF stim-
ulation of HUVECs and compared these with regions with gain or
loss ofMED1occupancy following TNF stimulation of SGBS adipo-
cytes. Interestingly, the cell-type–specific gene repression by TNF
is paralleled by highly cell-type–specific loss of cofactor binding,
whereas gain of cofactor binding is more conserved across the
two cell types (Supplemental Fig. S6C). Furthermore, there is a rel-
atively high enrichment of enhancers activated in HUVECs near
genes induced by TNF in SGBS adipocytes and vice versa, whereas
repressed enhancers are selectively enriched in the vicinity of
genes that are specifically repressed in each cell type (Supplemen-
tal Fig. S6D). Importantly, predictionmodels based on RELA-bind-
ing following TNF treatment, and BRD4-binding in the basal state
(i.e., similar to models defined by RELA and MED1 binding in
SGBS cells [Fig. 3F,G]), are able to predict loss of BRD4 binding
and gene repression by TNF in HUVEC cells (Supplemental Fig.
S6E). Thus, our prediction models appear to be generally applica-
ble. Interestingly, and in line with the results in Supplemental Fig-
ure S6D, RELA binding in SGBS cells can be used to predict gene
activation in HUVECs and vice versa, whereas the repressionmod-
els based onhigh cofactor and lowRELA occupancy are highly cell-
type specific (Fig. 6C). Importantly, basal super-enhancers are en-
riched specifically in the vicinity of genes repressed by TNF in each
cell type (Fig. 6D), likeCEBPA in adipocytes and SOX18 inHUVECs
(Fig. 6E). Taken together, these results indicate that redistribution
of cofactors is a general mechanism underlying specific repression
of super-enhancer–associated cell identity genes by TNF.

Discussion

Here, we have extensively characterized the acute transcriptional
response to TNF in human adipocytes and taken major steps
toward understanding the mechanisms underlying acute gene
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repression by TNF in adipocytes as well as in other cell types. Using
human SGBS adipocytes as a model system, we demonstrate that
TNF induces a rapid genomic reprogramming leading to induction
of inflammatory gene programs and repression of cell identity
genes. This reprogramming, as evidenced by redistribution of
MED1, BRD4, and enhancer transcription, appears to be driven
by a prioritization of inflammatory enhancers at the expense of
cell-type–specific enhancers. Interestingly, although RELA is re-
quired for both activation and repression of gene expression,
RELA is not associated with repressed enhancers, demonstrating
that repression is primarily indirect. Furthermore, in contrast to ac-
tivation, repression occurs largely independent of changes in chro-
matin structure, suggesting that loss of cofactors precedes changes
in chromatin accessibility at repressed enhancers.

The indirect repression by RELA appears to be mediated by
redistribution of cofactors, such as MED1 and BRD4, from adipo-

cyte enhancers to RELA-activated enhancers near proinflamma-
tory genes. Similar mechanisms have recently been suggested by
other studies to account for transcriptional repression following li-
gand activation of nuclear receptors (He et al. 2012; Guertin et al.
2014; Step et al. 2014), with redistribution of different coregulators
like NCOA3, EP300, CREBBP, and MED1. Thus, nuclear receptors
and RELA appear to share the ability to repress gene expression
by eliciting a general redistribution of transcriptional coregulators.
The fact that only a small subset of active enhancers and genes
is repressed has so far remained poorly understood. Here, we
show that cofactors are redistributed selectively from high-oc-
cupancy sites, thus providing a possible mechanism whereby
RELA-mediated cofactor redistribution can elicit repression of a
specific subset of active enhancers in adipocytes. In support of
thismechanism,models based solely on the position of high-occu-
pancy enhancers in the unstimulated state and RELA binding sites
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following acute TNF stimulation are able to predict the subset of
enhancers and genes that are repressed by TNF. The accuracy in
these predictions is similar to the accuracy with which RELA bind-
ing predicts acute enhancer and gene activation by TNF.

Interestingly, our results reveal that genes repressed by TNF
are characterized by having a high number of MED1 enhancers
in the vicinity of the TSS, which prompted us to investigate the
role of super-enhancers in TNF-induced suppression of adipocyte
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genes. Super-enhancers are large clusters of enhancers with ex-
tremely high cofactor occupancy, and such enhancers have recent-
ly been described to be central drivers of gene programs that define
cell identity (Hnisz et al. 2013; Whyte et al. 2013), thus extending
previous work on the role of locus control regions in developmen-
tal- and cell-lineage–specific regulation of gene expression
(Grosveld et al. 1987; Raich et al. 1990). While the basic mecha-
nisms underlying the properties of these clusters of enhancers re-
main incompletely understood, super-enhancers have been
shown to be more sensitive to perturbation by, e.g., knockdown
of Mediator subunits or chemical inhibition of bromodomains
than typical enhancers, possibly due to the cooperative and syner-
gistic manner in which they recruit cofactors (Loven et al. 2013;
Whyte et al. 2013). Interestingly, we find that super-enhancers
and their associated genes are also more sensitive than regular
enhancers to the perturbation that RELA-mediated cofactor redis-
tribution constitutes. Importantly, we demonstrate that the sensi-
tivity of super-enhancer–associated genes to perturbation is dual.
First, cofactor loss is determined by the occupancy level at the in-
dividual enhancer largely independent of super-enhancer status;
and second, gene repression is additionally determined by the
clustering of high-occupancy enhancers into super-enhancers.
We propose that these two levels reflect cooperative and synergis-
tic recruitment of cofactors bymultiple transcription factors at the
individual enhancers and cooperative regulation of nearby genes
by super-enhancer constituents, respectively. In line with this,
we recently demonstrated that coactivator levels correlate with
the number of transcription factors bound in specialized genomic
loci designated transcription factor hotspots and that hotspots fur-
thermore are enriched and appear to cooperate within super-
enhancers (Siersbæk et al. 2014). We suggest that these two levels
of cooperativity, and consequently also sensitivity to perturbation,
allow super-enhancer–associated genes to be specifically andmost
dramatically repressed by RELA-mediated cofactor redistribution.
Interestingly, and in line with recent studies by the Plutzky/
Bradner and the Evans laboratories, TNF treatment in adipocytes
also leads to de novo formation of RELA-bound super-enhancers,
which appear to play an important role in the induction of the in-
flammatory gene program (Brown et al. 2014; Hah et al. 2015). The

Plutzky/Bradner laboratories further demonstrated that inflamma-
tory super-enhancers in endothelial cells are subject to repression
by the BRD4 inhibitor JQ1 and that treatment with this inhibitor
reduced TNF-induced atherogenic endothelial responses and ath-
erosclerosis in vivo (Brown et al. 2014).

JQ1 has also been demonstrated to specifically target super-
enhancer–associated genes driving cancer (Loven et al. 2013);
thus, it presents as an attractive drug to target undesired transcrip-
tional programs, but little attention has been given to how this af-
fects the cell identity gene programs in normal cells in their basal
state. We showhere that the same set of cell identity genes that are
repressed by TNF also display high sensitivity to JQ1 treatment,
consistent with perturbation at the cofactor level as the major
mechanism underlying gene repression by TNF. In TNF-treated ad-
ipocytes, JQ1 expectedly reduces inflammatory gene expression;
however, TNF-repressed genes are not further affected by JQ1 treat-
ment. Thus, while JQ1 effectively blocks inflammatory gene ex-
pression, it does not restore the expression of cell identity genes
suppressed by inflammation.

Consistent with the selective repression of super-enhancer–
associated adipocyte genes by TNF, we show that gene repression
by TNF across five different human cell types is highly cell-type
specific. As previously reported (Jin et al. 2011), gene induction
by TNF is also to some extent cell-type specific; however, the over-
lap between TNF-activated genes in different cell types is much
larger than the overlap between TNF-repressed genes. Further-
more, the induced genes are largely enriched in the same in-
flammatory pathways in all five cell types, whereas pathways
enriched for repressed genes are highly cell-type specific. Further
mining of comparable data from TNF-treated HUVECs, including
application of our models, indicated that cell-type–specific gene
repression by TNF is driven by cell-type–specific cofactor loss
from high-occupancy enhancers not occupied by RELA. This sug-
gests that selective cofactor redistribution from high-occupancy
enhancers and the consequent repression of super-enhancer–
associated genes is a general mechanism for gene repression by
RELA. Our results indicate that this may contribute to repression
of cell identity genes in adipocytes by the chronic low-grade in-
flammation associated with obesity. The molecular mechanisms
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underlying the selective cofactor redistribution in response
to activation of RELA or activation of nuclear receptors is incom-
pletely understood. We consider it likely that squelching
(Meyer et al. 1989) of cofactors by these potent signal-dependent
transcription factors plays a role; however, it is clear that formal
proof of squelching requiresmore detailedmolecular analyses. Fur-
thermore, it remains to be understood why high-occupancy en-
hancers are significantly more sensitive to cofactor redistribution
than low-occupancy enhancers.

In conclusion, our results propose a novel paradigm forNFκB-
mediated repression, whereby NFκB selectively redistributes cofac-
tors from high-occupancy enhancers, thereby specifically repress-
ing super-enhancer–associated cell identity genes (Fig. 7). Recent
studies have indicated that mRNAs compete for access to the ribo-
somes (Baumgartner et al. 2011), and gene repression associated
with acute stress has been suggested to serve primarily to redirect
translational capacity to newly synthesized mRNAs (Lee et al.
2011; Lackner et al. 2012). Thus, repression of cell identity genes
in response to TNF may be beneficial in the context of fighting
an infection by allowing different cell types to transiently decrease
their respective specialized functions, thereby gaining translation-
al capacity for, e.g., proinflammatory cytokines to support local
professional immune cells in the defense response in the tissue.
We further propose that cofactor redistribution selectively from
high-occupancy enhancers is a general mechanism contributing
to transcriptional repression associated with activation of signal-
dependent transcription factors.

Methods

Cell culture, differentiation, and treatment

SGBS cells were differentiated to adipocytes as previously de-
scribed (Schmidt et al. 2011), and at day 10 of differentiation, cells
were treated with 10 ng/mL human recombinant TNF (Life
Technologies).

RNA extraction, cDNA synthesis, and quantitative

real-time PCR

RNA extraction, cDNA synthesis, and quantitative real-time PCR
(qPCR) were performed as previously described (Boergesen et al.
2011). Sequences of primers used for qPCR are included in
Supplemental Table S2A.

RNA-seq

Following Isol-RNA lysis Reagent (5-Prime) extraction and Econo-
Spin (Epoc Life) column purification of total RNA, contaminant
genomicDNAwas removed by TURBODNase digestion (Life Tech-
nologies), and ribosomal RNAs were removed using the Ribo-Zero
Human/Mouse/Rat kit (Epicentre).

ChIP and ChIP-seq

ChIP experiments were performed according to standard protocols
as described (Siersbæk et al. 2012). Antibodies used were RELA
(C-20, sc-372, Santa Cruz), MED1 (M-255, sc-8998, Santa Cruz),
BRD4 (A301-985A, Bethyl). Sequences of primers used for qPCR
are included in Supplemental Table S2B.

DNase-seq

DNase-seq was performed on ∼10million nuclei essentially as pre-
viously described (Siersbæk et al. 2011).

Library construction and sequencing

RNA-, DNase-, and ChIP-seq libraries were constructed according
to the manufacturer’s instructions (Illumina) as described
(Nielsen and Mandrup 2014). Sequencing was performed on the
Illumina HiSeq 1500 platform.

Lentiviral knockdown

shRNAi oligo DNA directed against RELA was cloned into pSicoR
PGK Puro vectors (Addgene), and lentiviral particles were pro-
duced in Human Embryonic Kidney 293T cells as previously de-
scribed (Nielsen et al. 2008). As a control, a shRNA nontargeting
oligo (shScramble) was used. Sequences of shRNA oligos are in-
cluded in Supplemental Table S2C. At day 6 of differentiation,
SGBS adipocytes were transduced with shRNAi-expressing lenti-
viruses. Cells were used for further experiments on day 10 of
differentiation.

Additional data sets

Total RNA-seq and RNAPII ChIP-seq data from TNF treatment of
human SGBS adipocytes were previously published (Madsen
et al. 2015) and are deposited to NCBI Gene Expression Omnibus
(GEO) (accession GSE60462). An overview of accession numbers
and experimental conditions for additional data sets used can be
found in Supplemental Table S3.

Data analysis

Sequencing reads were mapped to the hg19 genome with STAR
(Dobin et al. 2013) and further analyzed using iRNA-seq (Madsen
et al. 2015) and HOMER (Heinz et al. 2010). Differential signal in-
tensity in binding was determined using EdgeR (Robinson et al.
2010), and intersections between genomic position files were gen-
erated using BEDTools (Quinlan 2014). All ROC-curveswere gener-
ated using the pROC package for R (Robin et al. 2011), and the
UCSC Genome Browser (Kent et al. 2002) was used for data visual-
ization. Further details about the data analyses are available in
Supplemental Methods.

Data access

The RNA-seq, ChIP-seq, and DNase-seq data sets generated in this
study have been submitted to theNCBIGene ExpressionOmnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE64233.
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