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The hypothesis that links the increase in the intake of plant-source foods to a decrease

in colorectal cancer (CRC) risk has almost 50 years. Nowadays, systematic reviews and

meta-analysis of case-control and cohort studies confirmed the association between

dietary patterns and CRC risk, in which the non-digestible carbohydrates (NDC) from

plant-source foods are known to play beneficial effects. However, the mechanisms

behind the physicochemical properties and biological effects induced by NDC on the

decrease of CRC development and progression remain not fully understood. NDC from

plant-source foods consist mainly of complex carbohydrates from plant cell wall including

pectin and hemicellulose, which vary among foods in structure and in composition,

therefore in both physicochemical properties and biological effects. In the present

review, we highlighted the mechanisms and described the recent findings showing

how these complex NDC from plant-source foods are related to a decrease in CRC

risk through induction of both physicochemical effects in the gastrointestinal tract,

fermentation-related effects, and direct effects resulting from the interaction between

NDC and cellular components including toll-like receptors and galectin-3. Studies

support that the definition of the structure-function relationship—especially regarding

the fermentation-related effects of NDC, as well as the direct effects of these complex

carbohydrates in cells—is crucial for understanding the possible NDC anticancer effects.

The dietary recommendations for the intake of NDC are usually quantitative, describing

a defined amount of intake per day. However, as NDC from plant-source foods can exert

effects that vary widely according to the NDC structure, the dietary recommendations for

the intake of NDC plant-source foods are expected to change from a quantitative to a
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qualitative perspective in the next few years, as occurred for lipid recommendations.

Thus, further studies are necessary to define whether specific and well-characterized

NDC from plant-source foods induce beneficial effects related to a decrease in CRC risk,

thereby improving nutritional recommendations of healthy individuals and CRC patients.

Keywords: colorectal cancer, dietary fiber, fermentation, galectin-3, non-digestible carbohydrates, pattern

recognition receptors, pectin, tool-like receptors

RELATIONSHIP BETWEEN THE INTAKE OF
PLANT-SOURCE FOODS AND DECREASE
IN COLORECTAL CANCER RISK

Cancer is one of the leading cause of death globally. Around one-
third of cancer-related death are mostly connected to behavioral
and dietary habits including tobacco and alcohol use, lack of
physical activity, high body mass index, and low intake of fruits
and vegetables (1). Colorectal cancer (CRC) is known to be
associated mainly with dietary patterns of the so-called western
lifestyle. The incidence of CRC is higher in developing countries
and this incidence is increasing fast in both low- and middle-
income countries. This is mainly due to a shift in dietary patterns
toward a decreased intake of plant-source foods and an increased
intake of fat, sugar and animal-source foods (2). Despite CRC
is the second most diagnosed type of cancer in men and the
third in women, as well as the third leading cause of all cancer
death, only <10% of CRC arise from inherited syndromes (3,
4). Thus, studies have systematically pointed out that tackling
modifiable risk factors, specially changing the dietary patterns,
can substantially reduce CRC-related deaths (5–10).

Recently, a prospective longitudinal study revealed that a
dietary pattern characterized by the high intake of plant-source
foods is associated to a delayed CRC risk up to 10 years (11).
Systematic reviews and meta-analysis of case-control and cohort
studies also reported an inverse association between the intake of
plant-source foods and CRC risk (12–14). Besides scientific data,
the traditional knowledge suggests the intake of plant-source
foods as adjuvant treatment against CRC (15). As plant-source
foods contain relatively high amounts of biologically active
molecules, such as polyphenols and non-digestible carbohydrates
(NDC), the adoption of specific nutritional interventions using
fruits and vegetables has been taken into consideration to assist
cancer therapies (16). Furthermore, the increased ingestion of
dietary fiber from plant-source foods, which are composed

Abbreviations: AceA, aceric acid; Ac, acetylated; Api, Apiose; Ara, Arabinose;

CRD, Carbohydrate recognition domain; CLR, C-type lectin receptors; CRC,

Colorectal cancer; DAMP, damaged-associated molecular patterns; Fuc, fucose;

Gal, galactose; GalA, galacturonic acid; Gal-3, Galectin-3; Glc, Glucose; HSP,

heat shock proteins; HDAC, hystone deacetylases; HG, homogalacturonan;

IEC, intestinal ephitelial cells; LPS, lipopolysaccharide; LRR, C-terminal

leucine-rich repeat motif; Man, mannose; MAPK, mitogen-activated protein

kinase; Me, methylated; MCP, modified citrus pectin; NDC, non-digestible

carbohydrates; NRL, nucleotide binding oligomerization domain (NOD)-

like receptors; PAMP, pathogen-associated molecular patterns; PRR, pattern

recognition receptors; RIPK, receptor-interacting serine/threonine-protein kinase;

RG, rhamnogalacturonan; Rha, rhamnose; SCFA, short-chain fatty acids; TLR,

toll-like receptors; Xyl, xylose.

mainly by the NDC that constitute the plant cell wall, is known
for a long time to play a pivotal role in the reduction of CRC
risk (17–20).

Although NDC are resistant to digestion by human
enzymes, these carbohydrates are not a static collection of
food components that pass through the gastrointestinal tract
without inducing biological effects. Instead, NDC modulate
nutrient absorption through binding to organic molecules
that induce indirect biological effects acting as substrate for
colonic fermentation by the gut microbiota (21). Furthermore,
recent efforts have focused on exploring the direct interaction
between NDC and CRC cells that will be described further in
this review. However, the composition and chemical structure
of NDC may vary depending of plant species and tissues,
thereby resulting in great heterogeneity of structure with
variability in composition and branching pattern. Thus, although
NDC from plant-source foods share common patterns and
biological functions, the ingestion of these food components
that have great variation in size and structure will result
in structure-dependent properties and therefore diverse
biological effects. In this review, we will describe some known
mechanisms through which NDC from plant-source foods
induce beneficial health effects that relate to a decrease in
CRC risk.

STRUCTURE OF NON-DIGESTIBLE
CARBOHYDRATES FROM PLANT-SOURCE
FOODS

As the chemical structure strongly influences the
physicochemical properties and the biological effects of
NDC from plant-source foods, it is necessary to define the
main structural patterns of biologically active NDC in CRC
models. NDC are comprised mainly by polysaccharides
from plant cell wall, such as cellulose, hemicellulose and
pectin (Figure 1). Cellulose consists of relatively conserved
polysaccharides with long and linear β-(1,4)-linked glucose
(Glc) residues that vary in size according to plant species and
tissue. On the other hand, hemicellulose consists of structurally
complex and heterogeneous oligo- and polysaccharides with
β-(1,4)-linked backbone of xylose (Xyl), Glc, mannose (Man),
or galactose (Gal). The hemicellulosic fractions include
xylans (glucoronoxylan, arabinoglucoronoxylan, arabinoxylan,
and other heteroxylans), mannans (acetylated and non-
acetylated mannan, galactoglucomannan, galactomannan,
and glucomannan), galactans (galactan and arabinogalactan),
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FIGURE 1 | General structure of plant cell wall-derived non-digestible carbohydrates (NDC). Cell-wall derived NDC from plant-source foods include cellulose,

hemicelluloses and pectin. Glc, Glucose; Man, Mannose; Gal, Galactose; Xyl, Xylose; Ara, Arabinose; GalA, galacturonic acid; Api, Apiose; Rha, Rhamnose; AceA,

Aceric acid; Fuc, Fucose; Ac, Acetylated; Me, Methylated.

xyloglucans, and mixed-linkage glucans (22), which vary in size
and branching pattern.

Similar to hemicellulose, pectin consists of linear and ramified
homo- and heteropolysaccharides; however, pectin contains
relatively high amount of acidic monomers compared to
hemicellulose including mainly galacturonic acid (GalA). The
major fraction of pectin usually consists of linear α-(1,4)-linked

GalA residues (homogalacturonan, HG) with varying degree
of methyl and acetyl esterification. Xylogalacturonan is also a
component of pectin and have the same α-(1,4)-linked GalA
backbone as HG but substituted at C2 and C3 with β-(1,3)-
linked Xyl residues (23). The pectic fraction also consists of

branched structures named rhamnogalacturonan (RG-) I and

II. RG-I is usually pointed out as the second major pectic
fraction in plant-source foods and consists of a backbone of
alternate α-(1,4)-GalA and α-(1,2)-rhamnose (Rha), in which the
latter can be substituted at O4 mainly by arabinans, galactans,
and arabinogalactans—although substitutions with Xyl and Glc
residues coexist in specific plant-source foods (24). Finally, RG-

II consists of an α-(1,4)-linked GalA backbone with complex
branches made up of rare monomers (e.g., aceric acid and apiose)
with different side chain, size and conformation depending on
plant-food source (25–27).

As mentioned above, even though NDC is generally
considered as a dietary fiber, the diversity of NDC structure
from plant-source foods results in different physicochemical
properties, fermentation patterns, and biological effects, thereby
making the evaluation of the structure-function relationship
challenging. Thus, there is an increasing number of studies
exploring which specific structural patterns of NDC induce
beneficial biological effects in CRC models (28–30).

EFFECTS OF THE NON-DIGESTIBLE
POLYSACCHARIDES ON CRC
DEVELOPMENT AND PROGRESSION

Studies have shown the association between the intake of specific
food components and cancer, such as an inverse correlation
between the intake of NDC from plant-source foods and CRC
development and progression (12, 18, 31–33). However, despite
the evidence that high intake of NDC could reduce the risk of
CRC up to 38% (34), the levels of this evidence is still considered
as probable, because of both the broad spectrum of CRC subtypes
(35), and the heterogeneity of physical and biological functions
of NDC from distinct plant sources (36–38). Besides that, there
is the presence of others dietary components in food matrix that
influence the physicochemical properties and biological effects of
NDC (39). Therefore, as some studies did not consider dietary
components other than NDC in plant-source foods, such as
polyphenols, vitamins, andminerals (34), it is difficult to establish
an inverse association between the intake of NDC and CRC
risk. A reliable characterization of the complex NDC structure,
followed by their isolation, purification and the study of their
biological effect, is crucial to reach a desirable structure-function
relationship between NDC and the anticancer effects.

There are three main mechanisms in which NDC act against
CRC development and progression. The consumption of NDC
can induce (A) physicochemical effects in the gastrointestinal
tract, (B) fermentation-related effects, and (C) direct effects
resulting from the interaction between NDC and cells, such
as intestinal epithelial cells (IEC), immune system cells, and
CRC cells (Figure 2). Below we summarized the physicochemical
and the fermentation-related effects of NDC from plant-source
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foods, and focused on the recent findings that show the
possible mechanisms through which distinct NDC directly
interact with cells, thereby suggesting new beneficial effects
regarding the intake of NDC and decreased CRC development
and progression.

Physicochemical Effects
The physicochemical effects of NDC in the gastrointestinal
tract are related to the interaction of these carbohydrates
with other components through gel-forming properties, water
holding capacity, and the ability of binding to other organic
compounds (40).

Both gel-forming properties and water holding capacity
result in increased stool bulk, thereby providing satiety (41).
Promising results concerning the effects of specific NDC on
satiety have been stimulating industry to reformulate the
nutritional composition of foods and community to change
their dietary pattern, aiming to reduce obesity trends (42),
which is a risk factor for CRC development (11, 43). The
increase in stool bulk also contributes to the dilution of
possible carcinogens. Furthermore, the reduction in stool transit
time, which is a result of gastrointestinal mobility due to
increased luminal content, reduces the exposition of IEC cells to
carcinogens (44). NDC can also entrap other food components
or metabolites, thereby influencing macronutrient digestibility
or metabolite reabsorption (e.g., glucose, lipids, bile acid) (37),
and having a positive impact on post-prandial insulin levels and
glycaemic response. As example, β-glucan from barley, which
consists mainly of linear and mixed β-(1,4)- and β-(1,3)-linked
Glc polysaccharides, reduces post-prandial glycaemic response
improving glycaemic control (45). Furthermore, β-glucan from
distinct barley varieties bind to primary and secondary bile acids
in intestine (46) and reduces bile acid reabsorption through the
enterohepatic circulation, which is associated to a reduction of
serum cholesterol levels (47, 48).

The abovementioned physicochemical effects of NDC are
dependent on both their macrostructure (e.g., molecular weight,
degree of crystallinity, and particle size) and microstructure
(e.g., presence of functional groups). In terms of macrostructure,
studies suggest that β-glucans from cereals should have a
molecular weight above 100 kDa to increase the viscosity of
the digestive effluents and to induce a positive effect on post-
prandial response (49). However, oat β-glucans with lower
molecular weight have also increased bile acid capacity (50).
The overall structure is also a major source of variability in the
physicochemical effects, since the threshold for arabinoxylans
to induce a similar effect to that of β-glucans on post-
prandial response is significantly lower—approximately 20 kDa
(49). Furthermore, as the crystallinity of NDC influences their
interaction with other components in the gastrointestinal lumen,
changes in the crystallinity of NDC have a strong impact in
their physicochemical effects. In this context, it was shown that
rats fed with distinct celluloses with a degree of crystallinity
ranging from 8 to 20% had differences in their fecal water
content, which appears to be related to an inverse relationship
between crystallinity and water holding capacity (51). This
inverse relationship is not observed only for cellulose (52),

but also for other NDC from plant-source foods including
galactomannans from coconut flour (53) and fenugreek (54). The
particle size of NDC also influences the physicochemical effects of
NDC, as shown by the increase in water holding and lipid binding
capacity of NDC from coconut after grinding (55). However,
other studies demonstrated that the reduction in the particle size
of NDC decreased the water holding capacity, as observed for
NDC from rice bran (56), wheat bran (57), and citrus (58).

Recent studies that applied distinct processing methods (e.g.,
micronization, milling, and enzymatic degradation) in NDC
from plant-source foods also support the relationship between
changes in both the degree of crystallinity and particle size with
changes in the physicochemical effects (59–61). For example, the
reduction in the particle size of NDC from carrots subjected to
high-pressure micronization, but not by ball milling, increases its
water holding and lipid binding capacity (56).

In addition to the enzymatic- and physical-induced changes
in the microstructure of NDC, studies are also exploring whether
the introduction/removal of functional groups influences the
physicochemical effects of specific NDC from plant-source foods.
The phosphorylation of NDC from soybean does not appear
to change its bile acid binding capacity. However, the water
holding capacity of the phosphorylated NDC are 1.5-fold higher
compared to the native NDC (62). The degree of esterification
also appears to be directly related to the water holding capacity of
NDC, as was found for citrus pectin (63) and more recently for
NDC extracted from eggplant (64).

Therefore, processing methods that affect the macrostructure
or the microstructure of NDC can be applied to control
the physicochemical effects of these dietary components. The
knowledge and control in NDC characteristics may in turn be
useful for the selection and production of NDC from plant-
source foods with desired physicochemical properties that are
related to a decreased CRC risk.

Fermentation-Related Effects
The chemical structures of NDC are crucial for colonic
fermentation because not all NDC are fermented, and because
different metabolites resulting from the fermentation of distinct
NDC act on a broad range of downstream signaling pathways
in non-cancer cells and in CRC cells (65). Besides the structure-
dependent effects, the fermentation-related effects of NDC in the
decrease of CRC risk are dependent of the gut microbiota itself
since distinct bacteria profile will result in differentially bioactive
metabolites production in a time- and structure-dependent
manner (66–68).

Some bacteria from the human gut microbiota possess a
large repertoire of enzymes that hydrolyse glycosidic linkages
from complex carbohydrates to use the hydrolysates and some
metabolites as energy sources (69). However, the identification
of key bacterial species in the gut microbiota that are responsible
for the disassembling of specific NDC structural patterns remains
somewhat limited (25, 28, 69–72). Despite the questions that
still need to be answered, the main outcomes of fermentation-
related effects that contribute to a decreased CRC risk are the
modulation of gut microbiota profile and the production of
biologically active metabolites including short-chain fatty acids
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FIGURE 2 | Physicochemical and biological effects of non-digestible carbohydrates (NDC) after the intake. (A) The physicochemical properties of NDC influence the

absorption of other nutrients and reduce the interaction between carcinogens and the intestinal epithelium. Furthermore, NDC can promote an increase in satiety and

stool bulk, as well as reduce the transit time throughout the gastrointestinal tract. (B) The fermentation-related effects result in the production of short-chain fatty acids

(SCFA) and other metabolites, which can induce biological effects in epithelial intestinal cells, immune system cells and cancer cells. The fermentation of NDC by the

gut microbiota can also influence the microbiota profile itself. (C) NDC can also interact directly with cellular components, such as the Pattern recognition receptors

(PRR) and galectin-3 (Gal-3), thereby inducing downstream signaling pathways in cells and affecting cancer cell adhesion and invasion. The figure was modified from

Smart Servier Medical Art (http://smart.servier.com/), licensed under a Creative Common Attribution 3.0 Unported Licens

(https://creativecommons.org/licenses/by/3.0/).

(SCFA), such as acetate, propionate and butyrate (73). The
association between SCFA and the reduction of CRC risk was
reviewed elsewhere (21, 74).

SCFA produced after fermentation of NDC could help to
maintain the lumen pH at lower levels, thereby inhibiting
pathogens growth and favoring the establishment of a healthy
gut microbiota. SCFA, especially butyrate, also stimulate IEC
growth by functioning as the primary source of energy for
these cells while being metabolized by β-oxidation in the
mitochondria. Several mechanisms for SCFA uptake across the
apical membrane of IEC had been proposed including transport
by monocarboxylate transporter (e.g., MCT1 and SMCT1),
counter-transport with bicarbonate, and passive diffusion (75).
These SCFA also act in downstream signaling pathways in CRC
cells (76, 77) and in non-cancer cells including IEC and immune
system cells (78, 79) through interaction with G protein coupled
receptors (FFAR2/GPR43, FFAR3/GPR41, GPR109a, and Olfr78)
(80). Thus, the uptake of SCFA by IEC results not only in
the provision of energy to normal metabolic functions but also
in the production of interleukin (IL-) 18 (81), involved in the
maintenance of epithelial integrity, as well as in the increased
secretion of antimicrobial peptides (82). For example, butyrate
reduces pro-inflammatory effects by inhibiting nuclear factor-κB
(NF-κB) activation (83), as well as the Wnt signaling pathway, a

pro-inflammatory pathway (84) constitutively expressed in some
CRC cells (85). Besides effects in CRC cells, butyrate contributes
to the normal turnover of cells in the gastrointestinal tract, as
it induces proliferation of IEC at the crypt of the colon and
increases apoptosis of IEC at the villus (86). Notably, this effect
on proliferation does not occur at the same extent in CRC cells
because cancer cells present a shift from oxidative metabolism
to anaerobic glycolysis (the so-called Warburg effect), which
results in the accumulation of lactic acid. As CRC cells rely on
glucose as their primary energy source instead of butyrate, this
shift in the metabolism of CRC cells results in accumulation
of butyrate, whose increased intracellular levels inhibits histone
deacetylases (HDAC), thereby resulting in cell cycle arrest and
further induction of apoptosis in cancer cells (87) (Figure 3).

In addition to the induction of IL-18 by IEC, which is also
crucial for intestinal immune homeostasis since IL-18 helps
maintaining the balance between T helper 17 cells (Th17) and
regulatory T cells (Treg) (88, 89), SCFA also interact directly with
innate mechanisms of defense. In neutrophils, SCFA modulate
recruitment, effector function, and cell survival (90). Phagocytes
including dendritic cells and macrophages also respond to SCFA,
which regulates pro-inflammatory cytokine production (91, 92).

Thus, despite CRC cells can use SCFA as energy source
for proliferation (93), the fermentation-related effects on IEC
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FIGURE 3 | Effects of butyrate in normal cells and colorectal cancer cells (CRC). The butyrate produced during fermentation of non-digestible polysaccharides induces

distinct effects in normal cell and CRC cells, as the latter rely on glucose—instead of butyrate—as their primary energy source. Increased glycolysis results in increased

intracellular levels of lactate and decreased clearance/utilization of butyrate, whose increased intracellular levels inhibit histone deacetylases (HDAC) and induce death

of CRC cells. As normal cells usually use butyrate as the main energy source, relatively low levels of butyrate is accumulated. The figure was modified from Smart

Servier Medical Art (http://smart.servier.com/), licensed under a Creative Common Attribution 3.0 Unported Licens (https://creativecommons.org/licenses/by/3.0/).

and immune system cells have a clear relationship with
the maintenance of host defense mechanisms and therefore
with regulation of inflammatory response. As the molecular
pathobiology of CRC usually implicates in pro-inflammatory
conditions with an increase in the secretion of cytokines
and chemokines that will promote malignant progression,
invasion, and metastasis (94), the fermentation-related effects are
generally regarded as an essential mechanism through which the
intake of NDC relate with reduced inflammation and reduced
CRC development and progression. For more detailed reviews
regarding these fermentation-related effects of NDC in non-
cancer and CRC cells, as well as the interplay between gut
microbiota and fermentation-related beneficial effects, the reader
is referred to Lam et al. (95), McNabney and Henagan (96), van
der Beek et al. (97), and Zhou et al. (98).

Despite the mechanisms through which the fermentation-
induced SCFA production relates to a decrease in CRC
risk appear to be well-known, recent studies have also
been conducted to explore how specific NDC affect gut
microbiota composition. As bacterial strains have distinct
prebiotic properties, changes in the microbiota composition

induced by these dietary components may influence SCFA
production, thereby influencing CRC risk. A previous study
strongly supports this hypothesis by showing changes in the
microbiota composition of children from Europe and rural
Africa during the transition between breast milk feeding and
the introduction of solid diet (99). The study has shown
that differences between the fecal microbiota composition
of children from Europe and rural Africa occurred only
after the introduction of a solid diet. Children from Europe
have reduced consumption of NDC from plant-source foods
(e.g., arabinoxylans) compared to children from rural Africa,
and this difference appears to induce an enrichment of
Bacteroidetes phylum—whose members have specific genes
encoding xylanases—in the gut microbiota of children from
rural Africa. After this finding, numerous studies have applied
in vivo analysis of fecal microbiota and/or in vitro human
fecal fermentation to explore whether specific NDC induce
changes in the microbiota composition, providing insights into
the relationship between structure of NDC and their prebiotic
function, as showed by the structure-dependent effects of NDC in
promoting the survival of Lactobacillus spp. (100). Furthermore,
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a recent study (101) explored the relationship between the
structure of distinct NDC from orange, lemon, lime and sugar
beet, and their beneficial effects on the modulation of gut
microbiota. Using an in vitro colonic fermentation model (TIM-
2), the authors had found that the increase in the degree of
esterification of HG appears to be the most important parameter
in determining beneficial effects on gut microbiota composition,
followed by the composition of neutral sugars (e.g., increase in
HG/RG ratio and the presence of arabinose) and the reduction in
the degree of branching (101).

Thus, although studies are successfully proving insights into
the relationship between the structure and prebiotic function
of purified NDC from plant-source foods, the preference of a
specific bacterial strain in utilize an NDC from a food matrix
appears to be more complex, as the fermentation rate of a single
NDC is affected when others NDC and other dietary components
(e.g., polyphenols) are present (39). In this context, it was found
that mixing fast-fermenting NDC including HG from citrus
pectin and xyloglucan from tamarind reduces their fermentation
rate, thereby delaying the prebiotic effect (102). This reduction
in the fermentation rate probably make NDC reach the distal
parts of the colon, which is of particular importance in terms
of CRC risk. The reduced fermentation rate in the distal part
of the colon have been thought as one of the reasons why most
of CRC are detected in this region. This delay in the prebiotic
effect by mixing different NDC appear to occur because of the
hierarchical preference, which refers to the ability of a bacterial
strain in prioritize the utilization of some NDC before others
(103). Studies confirm the hierarchical preference by observing
that a bacterial strain can prioritize the fermentation of specific
host mucosal glycans (104) or NDC from plant-source foods
(105). Examples of hierarchical preference include the preference
of Bacteroides thetaiotaomicron in utilizing galactan from potato
instead of arabinan from sugar beet (103), as well as the increased
ability of Bacteroides spp., Bifdobacterium spp., Faecalibacterium
spp., and Lactobacillus spp. in utilize fructans with low molecular
weight compared to fructans with high molecular weight (106,
107). These hierarchical preferences appear to be strain-specific,
as closely related gut bacterial strains (e.g., B. thetaiotaomicron
and B. ovatus, or L. delbruckii and L. paracasei) prioritize the
use of distinct NDC (71, 108). Furthermore, recent studies
are focusing on evaluating whether distinct gut microbiota
profiles can utilize specific NDC from plant-source foods, such
as arabinoxylans from corn and sorghum, and fructans from
chicory root (105, 109). Therefore, studies using more complex
samples such as the whole food or a mix of NDC instead of using
a single NDC, as well as studies comparing the ability of distinct
microbiota profiles in utilizing the same NDC—as performed by
Yang et al. (110), Chen et al. (105) and Brahma et al. (111)—are
elucidating practical knowledge required to use prebiotic therapy
or diet modifications to benefit the function of specific bacterial
strains that relates to a decreased CRC risk.

Direct Effects
NDC share structural features to lipopolysaccharides and other
structural carbohydrate-containing molecules at the surface
of bacteria (112, 113). As these carbohydrates from bacteria

directly interact with IEC and immune system cells along the
gastrointestinal tract, it was hypothesized that NDC from plant-
source foods also directly interact with cells in the gut.

The abovementioned hypothesis has been confirmed through
in vitro studies and most recently through in vivo studies (114).
Since pattern-recognition receptors (PRR) in cells are the main
responsible for the recognition of bacterial carbohydrates, efforts
have beenmademainly on the investigation of the PRR-mediated
effects of NDC (115), although some direct but PRR-independent
mechanisms have also been described (116, 117) and will be
pointed out later in this review.

Pattern Recognition Receptor-Mediated Effects
PRR existing in IEC and immune system cells regulates
epithelial proliferation and intestinal permeability, andmaintains
gut homeostasis through recognition of harmful organisms
and endogenous metabolites (118). Furthermore, PRR plays
an important role in shaping intestinal microbiota in both
composition and number by interacting with commensal bacteria
(119). Thus, PRR-mediated signaling pathways result in immune
surveillance and in maintenance of host-bacteria interaction
alongside the gastrointestinal tract, whose dysregulation is clearly
associated with increased CRC risk (98, 120). As NDC influence
microbiota profile and therefore the formation of specific
metabolites in the gut lumen, the intake of plant-source foods
rich in NDC influences the PRR-mediated responses through an
indirect mechanism. Interestingly, NDC also directly interacts
with PRR in a structure-dependent manner (114, 115).

The PRR include RNA helicases (RLR), Nucleotide binding
oligomerization domain (NOD)-like receptors (NLR), C-
type lectin receptors (CLR), and Toll-like receptors (TLR),
which recognize distinct evolutionarily conserved pathogen-
associated molecular patterns (PAMP) of microorganisms—such
as the carbohydrate-containing molecules at the surface of
microorganisms—as well as endogenous damaged-associated
molecular patterns (DAMP) (120). Despite the variety of PRR in
human cells, only few PRR has been shown to recognize NDC
from plant-source foods (Table 1). Most of studies focused in the
interaction between NDP from plant-source foods and TLR, but
we will also describe published studies that report the effects of
NDC from foods through NLR- and CLR-dependent pathways.

Nucleotide Binding Oligomerization Domain-Like

Receptor
All NLR have C-terminal leucine-rich repeat motifs (LRR) for
ligand sensing, except NLRP10 (135), and a NACHT domain that
facilitates protein oligomerization (136). The presence of the LRR
motif and NACHT domain are essential for NLR function, which
acts as a scaffolding cytosolic protein that assembles signaling
platforms triggering NF-κB andmitogen-activated protein kinase
(MAPK) signaling pathways, thereby controlling the activation
of several caspases (136). Thus, the activation of NLR usually
results in the assembling of pro-inflammatory complexes termed
inflammasomes, which relates not only to NF-κB- and MAPK-
mediated secretion of cytokines and chemokines but also to the
activation of a myriad of cell death regulators (137). Therefore,
the dysregulation of NLR have been associated with infections,
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TABLE 1 | Pattern-recognition receptors (PRR) that recognizes non-digestible carbohydrates (NDC) from plant-source foods.

PRR NDC Plant-source food Effects References

NLR

NOD2 Inulin Chicory root Activation in HEK cells, NF-κB release (115)

NLRP3 HG, RG-II and HC Chayote Inhibition of NLRP3 priming in macrophage-like cells (121)

CLR

Dectin-1 Mixed linkage β-glucan Barley Activation in immune cells, NF-κB release, IL-6 and IL-8 release (122)

Dectin-1 Arabinoxylan Wheat Inhibition in HEK cells (123)

TLR

TLR2 Inulin Chicory Activation in THP-1 cells, NF-κB release (115)

TLR2 RS2 Maize Activation in HEK cells, NF-κB release (124)

TLR2 Maltooligosaccharides Wheatgrass Activation in immune cells (125)

TLR2 and 4 FOS Rice Induction of dendritic cell maturation in mice (126)

TLR2 and 4 HG (varying degree of ME) Lemon Activation in T84 cells, maintenance of intestinal epithelial barrier integrity (127)

TLR2 and 5 RS3 Maize Activation in HEK cells, NF-κB release (124)

TLR4 Galactan Apple Inhibition of LPS-induced activation in a colitis model (128)

TLR4 HG (varying degree of ME) Citrus Inhibition of LPS-induced activation in a colitis model (129, 130)

TLR4 HG (branched) Citrus Inhibition in immune cells (129)

TLR4 Levan Soybean Cytokine release in mice (131)

TLR4-8 Inulin Chicory Activation in THP-1 cells, NF-κB release (115)

HETERODIMERS

TLR1\TLR2 HG (low degree of ME) Lemon Inhibition of intestinal inflammation (132)

Dectin-1\TLR2 Galactomannan Guar gum Inhibition of IEC in vitro and in a colitis model (133)

Dectin-1\TLR2 Galactomannan Guar gum Inhibition of IEC in a colitis model (134)

NLR, nod-like receptors; CLR, C-type lectin receptors; TLR, tool-like receptors; HG, homogalacturonan; RG-II, rhamnogalacturonan II; AG, type II arabinogalactan; ME, methyl

esterification; RS, resistant starch; FOS, fructooligosaccharides.

autoimmune diseases, inflammatory disorders and cancer, such
as CRC (138, 139).

Among the more than 20 NLR that have been identified in
human cells (140), NOD1, NOD2 and NLRP3 are pointed out
as the most important in terms of relevant biological functions
and CRC development (137). The mechanisms through NLR-
mediated effects are associated with increased CRC risk related
mainly to an excessive NLR-induced chronic pro-inflammatory
microenvironment (141). Intriguingly, NLR agonists, specially
NOD1 and NOD2 agonists, have been proposed as therapeutic
agents in CRC treatment because both experimental studies
showed that NOD1 deficiency leads to increased tumorigenesis
in mice (142) and the activation of these NLR may regulate the
pro-inflammatory effects induced by other PRR (143, 144). Thus,
although both beneficial and deleterious effects of NLR activation
on CRC remain not fully understood, it seems that punctual
activation or inhibition of NLR could differentially induce effects
during cancer development, progression, and metastasis.

Despite the relevance of NLR in CRC risk, few studies have
focused on exploring the effects of NDC from plant-source foods
in the regulation of NLR because they are cytosolic receptors.
Phagocytes including macrophages can internalize NDC (145),
but the exact mechanism of interaction between NDC and
cytosolic receptors is not proven. Furthermore, it is known
that IEC can transfer exosome-like vesicles from their apical or
basolateral surface to bothmesenteric lymph node and gut lumen
(146), and these cells can also take up exosomes from foods

(e.g., bovine milk exosomes) or produced by immune system
cells (147). However, despite these evidences, it is not possible
to assert that vesicle trafficking between cells—or between cells
and food components—is responsible for the internalization of
NDC. Despite the lack of evidences on the mechanisms through
which NDC interact with cytosolic receptors, linear β-(1,2)-
linked fructose oligosaccharides (inulin) from chicory root also
activate NOD2 in HEK 293 hNOD2 reporter cells (115).

Furthermore, NDC from chayote fruit, which consists mainly
of pectic homogalacturonan and highly branched RG-II, as well
as hemicellulosic material including glucomannan, xyloglucan,
and glucurono(arabino)xylan, inhibits NLRP3 inflammasome
activation in human THP-1 macrophage-like cells. The effects
of this NDC on NLRP3 inflammasome can be considered an
indirect effect of the interaction between the NDC and other PRR
that are essential to induce priming signals required for NLRP3
inflammasome activation (121). In fact, cross-talk between PRR
may occur through three main mechanisms. It can be a (a)
requirement of two or more PRR for a specific biological
response, (b) an interaction between PRR for robustness or
redundancy of biological response, or (c) a negative regulation
between PRR (148). Thus, although the effects of NDC from
chayote were not directly explored in CRC cells, it can be
proposed that NDC-mediated effects on the modulation of
cytosolic NLR may occur through indirect mechanisms that
involve the interaction between NDP and other PRR. Therefore,
despite the investigation of NDC-induced effects on NLR is
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important to gain further insights into the biological effects
induced by NDC from plant source foods, further analyses are
necessary to explore the interaction between the NDC and other
PRR, such as CLR and TLR.

C-type lectin receptors
Unlike NLR that are cytosolic proteins, the main CLR (Dectin-1,
Dectin-2, Mannose receptor, and macrophage inducible Ca2+-
dependent lectin—Mincle) are trans-membrane PRR widely
expressed in myeloid cells. Glycosylated structures are the
natural ligands of CLR, which contain conserved carbohydrate-
recognition domains (CRD). Thus, it is easy to think that
some food-derived carbohydrates interact with CLR. In this
regard, studies had explored the interaction between NDC
from foods and CLR, especially Dectin-1. However, the effects
were investigated mainly using fungal-source foods (149–151)
compared to plant-source foods (122, 133). As CLR is expressed
mainly in antigen-presenting cells including macrophages and
dendritic cells, the study of the interaction between NDC from
foods and CLR focused mainly on innate immune responses
against pathogens and cancer, including CRC.

Activation of CLR can induce anti-inflammatory effects, as
observed by the activation of the heterodimer Dectin-1\TLR2,
which increases suppressor of cytokine signaling (SOCS)-1
expression, thereby resulting in anti-inflammatory effects (152).
However, in general, the inhibition of CLR in some CRC cells
(153) promotes cell apoptosis (154) and suppresses a pro-
inflammatory phenotype, thereby reducing CRC risk (155). As
CLR also facilitates adhesion of head, neck and breast cancer cells
to the lymphatic endothelium and thus favor tumor invasiveness
(156), NDC-mediated inhibition of CLR may directly impact
in the invasiveness of cancer cells. On the other hand, CLR is
essential for the recognition of altered glycosylated membrane
proteins of CRC cells by immune system cells (157, 158). Thus,
as NDC-mediated inhibition is beneficial in cancer cells but
may suppress anticancer response by the innate immune system,
further studies using in vivo models may elucidate possible
benefits on the interaction between NDC from plant-source
foods and CLR in decreasing CRC risk.

Among all CLR, Dectin-1 seems to have a major impact
in innate immune responses against cancer and are present
in CRC cells (153, 157). Dectin-1 is a specific receptor for β-
glucan (159, 160), which is the most abundant fungal cell wall
polysaccharide—and is also a constituent of the bacterial cell
wall (161, 162). As β-glucan is a naturally occurring NDC in
mushrooms and some plant-source foods, especially in cereal
grains (163), Dectin-1 is by far the most studied CLR in terms
of interaction with food-derived NDC. Furthermore, as Dectin-
1 expression is high in phagocytes such as macrophages and
dendritic cells, β-glucan from foods seems to act first through
interaction with these innate immune system cells (164).

Phagocytes can extrude their dendrites across the intestinal
epithelium into the gastrointestinal lumen and diet-derived
β-glucan could interact with them through Dectin-1. Upon
activation of Dectin-1, β-glucan induces mainly the Spleen
tyrosine kinase (Syk)-dependent pathway, which triggers
adaptive immune response in T cells and B cells that results

in the inhibition of both tumor growth and metastasis (165).
Despite the inhibition of Dectin-1 induces apoptosis in CRC
cells in vitro (154), evidence that showed the positive role of
Dectin-1 activation in the decrease of CRC risk comes from
the findings that a loss of function of this CLR is associated
with increased risk of ulcerative colitis (166). Furthermore,
the relationship between the loss of Dectin-1 function due to
polymorphism and the increasing risk of inflammatory disorders
in the gastrointestinal tract (158), as well as other in vivo studies
(167, 168), supports the beneficial effects of Dectin-1 activation
in the reduction of CRC risk.

In this context, a barley-derived β-glucan that consists
of linear and mixed β-(1,4)- and β-(1,3)-linked Glc residues
interacts with Dectin-1 and triggers a Syk-dependent pathway
that results in the activation of NF-κB of immune system cells,
leading to cytokine secretion including IL-6 and IL-8 (122). Thus,
it is possible that some NDC from plant-source foods, especially
β-glucans, directly activate Dectin-1 and induce positive effects
in the reduction of CRC risk. In addition to enhancing the
innate immune response, CRL seems to function together with
other PRR, especially with TLR (151, 169, 170), to regulate the
function of IEC. In this context, a recent study showed that guar
gum exerted in vitro and in vivo anti-inflammatory effects in
IEC through a Dectin-1\TLR2-dependent pathway (133). The
same mechanism seemed to be related to the anti-inflammatory
effects of partially hydrolysed guar gum—which consists of
a backbone containing β-(1,4)-linked Man residues and short
branches containing Gal at C4—in a colitis model (134).

Toll-like receptors (TLR)
TLR are the most studied class of PRR because of both the
variety of PAMP and DAMP that interact with these germline-
encoded PRR and also because of the biological outcomes that
TLR-induction/inhibition could cause in human health (171).
Currently, 13 TLR have been identified in human cells, among
intracellular and extracellular receptors (172). As NLR, TLR are
evolutionary conserved PRR-containing LRR motifs for ligand
sensing that induces NF-κB and MAPK signaling. Most of TLR
activate NF-κB and MAPK mainly through the adaptor myeloid
differentiation factor 88 (MyD88), except TLR3, which triggers
NF-κB and MAPK through a TIR-domain-containing adapter-
inducing interferon-β (TRIF)-dependent pathway (173).

Among all TLR, TLR2 and TLR4 have been the most studied
ones concerning the interaction with NDC from plant-food
sources (115, 127). TLR2 recognizes different kinds of PAMP
including lipoprotein, lipoteichoic acid, and peptidoglycan
molecules from Gram-positive bacteria, as well as DAMP,
such as heat shock proteins (HSP). TLR4 interacts with
lipopolysaccharide (LPS) from Gram-negative bacteria and
with several DAMP including HSP, fibronectin, and heparan
sulfate (174).

In the context of CRC, several studies had explored the role
of TLR on cancer development, progression, and invasion, as
reviewed by Li et al. (175). Furthermore, results of a recent
prospective cohort study suggested that the protective effect
of NDC on CRC risk may involve interactions between the
NDC and TLR4, and that polymorphisms in TLR2 and TLR4
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are associated with increased CRC risk (176). In fact, CRC
development and progression have been correlated with TLR2
and TLR4 overexpression in CRC (177). CRC cells express
both mutated TLR2 and MyD88, thereby resulting in increased
activation of TLR2-dependent pathways. Thus, TLR2 inhibitors
were proposed as therapeutic agent in CRC (178).

TLR4 is considered the most important inflammatory inducer
amongst all TLR, thereby playing a key role in immune
response against intestinal pathogens. However, excessive
activation of TLR4 may enhance not only immune response
but also gives rise to cancer progression through disruption of
intestinal immune homeostasis (179). Excessive TLR4 activation
also induces macrophages apoptosis after activation of the
receptor-interacting serine/threonine-protein kinase (RIPK) 1
and RIPK3, which induces cell lysis and necroptotic death
(180). Furthermore, enhanced expression of TLR4 in CRC
cells promotes cell survival, epithelial-mesenchymal transition
(181), and downregulates the expression of the death receptor
Fas in cancer cells (182, 183). Thus, excessive activation of
TLR4 increases the risk of inflammatory diseases and CRC,
and—as occur to TLR2—potential inhibitors of TLR4/NF-κB
pathway have also been considered as therapeutic agents in
CRC (184).

Despite the abovementioned evidences show that inhibition
of TLR4-dependent signaling pathways may reduce CRC risk,
some NDC from plant-source foods including citrus pectin
and ginseng polysaccharides have potential anticancer effects
that seems to be related to TLR4-mediated activation (127,
185–187). The most reasonable explanation is that these
NDC from plant-source foods do not activate TLR4 at
the same extent as natural PAMP, such as LPS. Therefore,
NDC-induced TLR4 activation reduces the interaction of this
PRR with more potent ligands (186–188). Furthermore, TLR-
mediated activation can launch a strong immune response
to assist cancer treatments and/or activate TLR-dependent
programmed cell death, including apoptosis, autophagy, and
necroptosis (189).

Apart from the biological relevance of TLR2 and TLR4, TLR3
activation with polyinosinic:polycytidylic acid induced apoptosis
of in CRC cells (190), whereas TLR5 activation suppressed
CRC growth and induced necrosis of cancer cells in vivo (191).
Furthermore, TLR9-induced activation in immune system cells
promoted cell survival and therefore enhanced immune response
against cancer; however, the role of TLR9 in CRC remains
unclear (175), as CRC cells have reduced expression of TLR9,
suggesting a protective role of TLR9 expression against malignant
transformation in the gastrointestinal tract (192).

Molecules from plant-source foods including polyphenols
(193, 194) and NDC have been found to exert effects on TLR-
mediated pathways (114, 115, 132). In the context of NDC from
plant-source foods, it was found that apple galactan suppressed
LPS-induced activation of TLR4 downstream signaling in an
in vivo model of colitis-induced CRC (128). Furthermore,
NDC from apple reduced the migration of CRC cells in vitro
(195), and enhanced the inhibitory effect of 5-fluorouracil
in the growth of CRC cells (196). Homogalacturonan-rich
fractions from lemon pectin with varying degree of methyl

esterification also induced TLR2- and TLR4-mediated responses
(127). Authors have showed that the varied degree of methyl
esterification in the homogalacturonan residues of lemon
pectin strongly influenced TLR2-mediated responses, but did
not affect TLR4-mediated response. Furthermore, both low-
and high-methoxylated lemon pectin seemed to exert positive
effects on the maintenance of intestinal epithelial barrier
integrity in vitro (127). Recently, it was found that the
inhibitory effect of low-methoxylated pectin from lemon
suppressed the pro-inflammatory TLR2\TLR1 pathway while
the heterodimerization between TLR2 and TLR6, which induces
a tolerogenic effect, was not induced by lemon pectin
(132). Furthermore, authors found that the administration
of low-methoxylated pectin from lemon prevented intestinal
inflammation in vivo in a fermentation-independent manner.
Notably, similar TLR-inhibitory effects are in agreement with
in vivo studies using low- and high-methoxylated citrus pectin,
which attenuated both endotoxin shock through a TLR-
dependent pathway (129), as well as inflammatory effects in a
colitis model (130).

In addition to the TLR-mediated effects of NDC from apple
and citrus, it was found that inulin from chicory roots with
distinct chain-lengths interacted not only with TLR4, but also
with TLR5, TLR6, TLR7, and TLR8 in a MyD88-dependent
pathway, and had no effects on cytosolic TLR3 and TLR9 (115).
Although it is not clear the biological outcome resulted from
the interaction between these NDC and TLR, the observation
of TLR-mediated effects by NDC from plant-source foods may
support further studies aiming to evaluate the direct effects of
these dietary components in CRC development and progression.

Direct Interaction With Galectin-3
In addition to the direct effects of NDC from plant-food
sources through PRR-dependent mechanisms in IEC, immune
system cells and CRC cells, NDC can also directly interact
with cellular components in a PRR-independent pathway. The
main PRR-independent effect seems to be related with the
interaction between NDC from plant-source foods and the
galectin-3 (Gal-3).

Gal-3 is a protein of the lectin family that has a CRD
with strong affinity for β-galactosides. Notably, it has been
consistently shown in the past two decades a strong association
between increased levels of Gal-3 and several types of cancer
including CRC (197, 198). Gal-3 expression had been correlated
not only with CRC incidence, but also with CRC severity, as
increased levels of Gal-3 are associated with a worse cancer
prognostic (197–199). A recent study supported this correlation
by showing that the positive expression rate of Gal-3 in CRC
tissues is approximately 5-fold higher compared to cancer-
adjacent tissues (198). Furthermore, authors suggest a direct
association between positive expression of Gal-3 and both tumor
size and malignant progression.

Gal-3 is present intracellularly—at the cytoplasm or within the
nucleus—attached to cell surface, or in the extracellular media
as a dimer or as a pentamer (200). Regardless the localization
of Gal-3, the increase in its levels is related with increased CRC
risk and severity because this protein is involved in a wide
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FIGURE 4 | Features that influence the effects of non-digestible carbohydrates (NDC) from plant-source foods in colorectal cancer (CRC). Some of the intrinsic

properties of NDC, as well as individual characteristics among cells and individuals, that influence the physicochemical, fermentation-related and direct effects of NDC

from plant-source foods on the reduction of CRC risk.

range of cancer-promoting effects including CRC cells adhesion,
invasiveness, growth, and proliferation (201, 202). Notably,
some NDC from plant-source foods bind to the CRD of Gal-
3 and therefore inhibits Gal-3-mediated effects, which includes
not only attachment to glycan-containing surfaces (203), but
also with downstream signaling mechanisms that inhibits both
apoptosis and cell cycle arrest in CRC cells (204). Furthermore,
Gal-3 appears to be associated to multiples mechanisms related
to chemo-resistance of CRC cells by enhancing drug efflux, DNA
repair mechanisms and activating signaling pathways (e.g., Wnt,
Hedgehog and Notch) associated with multi-drug resistance
(205). Thus, since the observation of specific bind of NDC from
plant-source foods to Gal-3 (206), several studies have been
performed to assess the interaction between distinct NDC and
Gal-3, as well as the effects of this interaction in CRC progression,
as described previously (117).

Among NDC from plant-food sources and Gal-3
inhibition, the modified citrus pectin (MCP) is the most
studied one (185, 207–209). MCP is a preparation derived
from citrus pectin that is modified by high temperature,
alteration of pH and/or pectinase treatment, which result
in the partial hydrolysis of glycosidic linkages, thereby
generating smaller and less ramified NDC structure. These
processes of MCP modification release neutral chains of
galactan with high affinity to the CRD of Gal-3 (206, 207),
which induce a broad range of inhibitory effects that
had been extensively studied through in vitro and in vivo
studies (207, 210, 211).

Modified sugar beet pectin, papaya pectin, and ginseng
pectin have structures composed of neutral (1,4)-β-galactose
residues, which were related to Gal-3 interaction and inhibition
(208, 209, 212, 213). As observed for MCP, the binding
between these pectin and Gal-3 has been associated with
both in vitro and in vivo effects on CRC (209, 214). Besides
the interaction with Gal-3, molecular size-fractionated MCP

showed other effects than inhibit Gal-3, as leading CRC
cells to apoptosis and inhibiting their migration (215). NDC
from plant-source food also seem to interact with Gal-3
through non-specific binding as suggested by previous study
(216). Since homogalacturonans contain relatively high amounts
of charged GalA residues, it is possible that charge-charge
interactions between GalA residues and Gal-3 induce a non-
specific binding that may exert inhibitory effects on Gal-3
activity. Recently, it was also shown that NDC from plant-
source foods can interact with Gal-3 by a combination of
homogalacturonan and RG residues acting in concert, as the
homogalacturonan seem to interact with RG exposing additional
galectin-binding sites of the NDC, thereby enhancing Gal-3-
binding properties (217).

As NDC are essentially polyhydroxy molecules, which are
often esterified, it is possible that the NDC from plant-source
foods interacts with other cellular components. The studies that
had shown anticancer effects of NDC through interaction with
Gal-3 support further studies aiming the investigation of the
interaction between NDC and other signaling mediators related
to the decreased CRC risk.

CONCLUDING REMARKS

The complexity of biological effects resulting from the intake
of NDC from plant-source foods and their relationship with
decreased CRC risk can be divided into physicochemical effects,
fermentation-related effects, and PRR-dependent and PRR-
independent direct effects. However, in biological systems, these
complex NDC effects occur at the same time in an intricate—
and poorly understood—relationship. Although the evaluation
of a specific biological effect does not fully answer whether a
single NDP from a plant-source food relates to a decreased
CRC risk, it can provide further insights to elucidate the
structure-function relationship between NDC and their effects
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in CRC development and progression. Therefore, as recent
studies are demonstrating that intrinsic properties of NDC
from plant-source foods, as well as individual characteristics
among cells and individuals, strongly influence the beneficial
effects of NDC on the reduction of CRC risk (Figure 4),
similarities between the intrinsic properties of NDC from
distinct plant-source foods may drive the discovery of new
bioactive NDC. Clearly, studies that integrate the structural
characterization of NDC from plant-source foods with their
physicochemical, fermentation-related, and/or direct effects
will provide insights not only for a better understating
of the structure-function relationship between the intake
of NDC and CRC risk but also for improving nutritional
recommendations of NDC for healthy individuals, as well as
CRC patients.
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