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With the rapid advancement of artificial intelligence (AI), the field of infectious diseases (ID) faces both innovation and disruption. 
AI and its subfields including machine learning, deep learning, and large language models can support ID clinicians’ decision 
making and streamline their workflow. AI models may help ensure earlier detection of disease, more personalized empiric 
treatment recommendations, and allocation of human resources to support higher-yield antimicrobial stewardship and infection 
prevention strategies. AI is unlikely to replace the role of ID experts, but could instead augment it. However, its limitations will 
need to be carefully addressed and mitigated to ensure safe and effective implementation. ID experts can be engaged in AI 
implementation by participating in training and education, identifying use cases for AI to help improve patient care, designing, 
validating and evaluating algorithms, and continuing to advocate for their vital role in patient care.
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The United States (US) Presidential Executive Order on Safe, 
Secure, and Trustworthy Artificial Intelligence marks the im-
pending impact of artificial intelligence (AI) on a variety of 
fields, including healthcare. The executive order highlights 
the important balance between mitigating the disruption of 
AI on jobs and human safety while promoting innovation to 
improve productivity and well-being [1]. AI refers to machines 
performing tasks that typically require human intellect. In var-
ious forms, these algorithms and models impact our daily lives 
as healthcare professionals and private citizens [2, 3]. AI en-
compasses various techniques, many of which are likely to im-
pact the field of infectious diseases (ID). These non–mutually 
exclusive approaches include but are not limited to retrospec-
tive models (eg, surveillance), prospective models (eg, risk 

prediction), large language models (LLMs), image recognition, 
and robotics (Table 1).

Similar to past technological revolutions, automation simul-
taneously contributes to scientific and economic progress while 
disrupting lives of humans potentially displaced by, or at least 
impacted by, machines. The AI revolution may automate ap-
proximately 300 million full-time jobs globally, with 80% of 
the US workforce experiencing a change in at least 10% of their 
tasks. While past revolutions displaced “unskilled” labor forces, 
today, “office jobs,” or those requiring cognitive skills, creativ-
ity, and higher education levels, may be the most vulnerable to 
current and future generations of automation [6, 7].

Job satisfaction among the ID workforce stems from human 
connections, its dynamic roles, exciting new discoveries, di-
verse patient care options, teaching, and collaboration with 
other specialties [8]. Additionally, we implement and lead safe-
ty programs like healthcare infection prevention and antimi-
crobial stewardship. While it is hard to envision AI 
completely replacing these activities, automation necessitates 
reevaluating the contributions of ID to healthcare. Despite 
job satisfaction, ID physicians, pharmacists, infection preven-
tionists, and public health epidemiologists spend excessive 
time on tasks, such as documentation, auditing antimicrobial 
orders, and mining the electronic health record (EHR) for 
drug-related issues. A perennial time-consuming task in ID is 
combing through massive outside hospital records to identify 
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a few key pieces of relevant information, such as confirmation 
of culture susceptibility. AI-driven automation prompts us to 
explore where it can help to improve efficiency, a major need 
in the practice of ID.

While the ID workforce is not in danger of being fully re-
placed by machines in the near future, emerging technologies 
do represent an opportunity to facilitate and improve 
day-to-day work in ID. Identifying areas where automation 
can assist with tasks may help improve efficiency and address 
staffing and personnel challenges plaguing the field [9]. The 
aim of this review is to utilize illustrative examples from ID, an-
timicrobial stewardship, and infection prevention to highlight 

risks and growth possibilities. In addition, suggested approach-
es are provided in which institutional leaders and professional 
societies can proactively advocate for the ID workforce to help 
the specialty weather looming disruptions and challenges to its 
roles (Figure 1).

WHAT WILL AI DO?

Facilitate Enhanced Decision Making

Lack of systems for near-real-time surveillance of pathogen 
identification and antimicrobial susceptibility testing can con-
tribute to delays in selection of appropriate antimicrobial ther-
apy and failure to de-escalate treatment in a timely manner. 
Automated algorithms to identify infections and match organ-
isms to effective treatment are a potential solution to this 
perennial challenge [10].

While most examples of the application of AI to ID are 
proof-of-concept studies and not widely implemented, increas-
ing sophistication of tools such as machine learning to predict 
risk of complicated Clostridioides difficile infection [11], deep 
learning algorithms for identifying and classifying malaria 
blood smears [12], and classification of bacterial morphology 
on Gram stain [13] are likely to augment rather than replace 
the role of ID specialists. Such approaches may also help to 
free up time for laboratory and clinical personnel and address 
workforce shortages.

While still in the early stages of development, literature sum-
mary and appraisal tools may help in the future to facilitate fast-
er decision making; caution is warranted with currently 
available technologies [14]. Eventually, efforts spent perform-
ing online literature searches to address complex patient care 
issues may be performed by AI with more efficiency and greater 
scale. ID is an especially dynamic field of medicine in part due 
to regionally and temporally variable epidemiology of antimi-
crobial resistance and the emergence of novel pathogens. 
Given the dynamic nature of the ID landscape and the rapidly 
changing literature, AI-assisted rapid literature reviews are a 
particularly attractive option to ensure recommendations are 
appropriate to current context and conditions [15].

Monitoring of antimicrobial use and resistance is becoming 
increasingly important to evaluate the impact of interventions, 
support benchmarking, and meet regulatory requirements. 
Machine learning models can incorporate a large volume of 
patient-specific encounter-level variables to improve antimi-
crobial use risk adjustment at the level of the individual patient 
and improve retrospective surveillance and interhospital com-
parison [16]. However, machine learning risk prediction mod-
els are inherently only able to analyze retrospective data 
documented in the clinical chart. If a key piece of information, 
such as a travel history, is not available in the clinical chart, the 
machine learning risk prediction tool will make recommenda-
tions based on the information it can “see” in the EHR—not 

Table 1. Artificial Intelligence and Potential Applications to Infectious 
Diseases

Artificial Intelligence Technique
Examples of Potential Applications to 

ID

Retrospective models: 
Use of machine learning 
(machines are trained to recognize 
patterns and gradually improve 
accuracy) or deep learning (neural 
networks are used to identify 
complex patterns) to evaluate a 
large volume of retrospective data

• Outbreak investigations combining 
genomic data with electronic health 
record data to identify clusters

Prospective models: 
The application of machine 
learning/deep learning trained on 
retrospective data, applied to 
real-time risk prediction

• Personalized antimicrobial 
treatment recommendations before 
susceptibility results are available, 
tailored to the patient’s personal 
medical history in addition to local 
microbial ecology

• Clinical risk prediction tools to 
identify early sepsis and guide 
initiation of antimicrobial therapy

Large language models: 
Processing and generating natural 
language using deep learning 
techniques

• Summarizing historical electronic 
medical record data and assisting 
with billing based on clinician’s chart 
entries

• Read and collate antimicrobial 
susceptibility history for rapid 
review and to assist with clinical 
decision making about antimicrobial 
use

Image recognition: 
The application of machine 
learning/deep learning to convert 
images to data and identify 
patterns

• Read and summarize scanned in 
outside hospital records, including 
antimicrobial susceptibility testing 
results

• Organism identification from 
microscopic image data or 
predicting viral vs bacterial etiology 
of pneumonia on radiographic 
images

Robotics: 
Machines with physical 
capabilities to perform tasks 
autonomously

• Robots for surface disinfection or air 
filtration

• Robots and advanced computing to 
serve as a personal protective 
equipment “buddy” to measure 
adherence to donning and doffing of 
personal protective equipment and 
provide feedback about 
improvements [4]

• Robots to assist with clinical tasks 
for patients with high-risk infections 
(eg, Ebola) [5]
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based on reality. Thus, as highlighted in the trustworthy AI 
framework, it is critical that these algorithms be transparent 
and that clinicians applying them understand what information 
they are based on [17]. Relying on algorithm output based on 
incomplete information has the potential to worsen clinical 
decision making and antimicrobial selection.

Support Precision Infectious Diseases

AI has the potential to provide management recommendations 
tailored to individual cases, offering precision and speed that 
traditional consultation might struggle to match [18]. 
Automated systems equipped with sophisticated algorithms 
aim to support real-time analysis of complex patient data, iden-
tify subtle patterns, and expedite the diagnosis of infections 
[19, 20]. For instance, machine learning models have been 
used to help predict the risk of multidrug-resistant organisms 
and, when coupled with real-time computer prescriber order 
entry prompts, can help to reduce unnecessarily broad- 
spectrum empiric therapy for patients with pneumonia [21]. 
By leveraging AI-powered prediction into ID consultation, 
providers can provide swift and accurate recommendations 
while optimizing time spent with patients.

However, the implementation of automated systems for ID 
management necessitates robust validation and rigorous test-
ing to ensure accuracy, reliability, and the avoidance of unin-
tended consequences [22]. As noted above, algorithms can 
only interpret data that are collected and documented; missing 

data are inherently also missing from the analysis. Large lan-
guage generative AI models are rapidly advancing but currently 
suffer from several limitations as they apply to medical decision 
making. In particular they lack contextual awareness, lack 
transparency in the underlying training data, and can perpetu-
ate existing biases [23]. As such, in its current state, the output 
of LLMs is highly error-prone, which can lead to hazardous 
clinical consequences. For example, in a prospective cohort 
study, when tasked with providing comprehensive manage-
ment plans for patients with bloodstream infections, GPT-4 
provided harmful recommendations in 16% of cases. 
Similarly, when prompted to provide a management plan for 
cryptococcal meningitis, GPT-3.5 often authoritatively provid-
ed hazardous recommendations and incorrect citations [24]. 
Additionally, there are significant privacy concerns to sharing 
data with large language models including privacy leakage 
from the underlying data used to train the model or leakage 
from the inputted data [25]. Such concerns may persist even 
for Health Insurance Portability and Accountability Act 
(HIPAA)–compliant LLMs due to the risk for reidentification 
[26]. This risk of unintended consequences further emphasizes 
the importance of actively involving ID specialists, (physicians, 
pharmacists, and infection preventionists), in collaboration 
with AI experts to test, validate, and fine-tune algorithms and 
protocols and to develop infrastructure to ensure patient safety 
and privacy are protected and maintained [18, 25, 27]. Further, 
the safe scale-up of AI to support ID practice requires high- 

Figure 1. Artificial intelligence (AI) disruptions and proposed infectious diseases (ID) workforce adaptations.
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quality data sources, robust ethical and data governance guard-
rails, and interoperability standards [28]. ID experts will be an 
important part of these interdisciplinary efforts to improve data 
quality and stewardship to support “precision ID.”

Improve Detection and Outbreak Management

Traditional outbreak detection is labor intensive and has low 
sensitivity and specificity. Automated real-time infection sur-
veillance tools using machine learning can enable early detec-
tion of clusters and facilitate earlier intervention. Coupled 
with genomic data, predictive models can detect concurrent 
outbreaks from a shared source separated in space and time 
[29]. If run in real-time, the combination of whole genome 
sequencing with machine learning of the EHR can improve 
outbreak detection and identify clusters that would have other-
wise been undetected using traditional infection prevention ap-
proaches [30]. In the outpatient setting, the increasing 
prevalence of wearable electronic devices, like smartwatches, 
may help facilitate improved contact tracing. A supervised 
learning model has been used along with Bluetooth proximity 
sensing to estimate exposure risk [31].

Protocols for patient isolation, healthcare-associated infec-
tion (HAI) bundles, and public health reporting, often algorith-
mic in nature, are ideal for AI-driven automation and 
integration into decision support strategies [20, 27, 32].

Streamline Workflow

Prospective audit and feedback is a labor-intensive but effective 
strategy in antimicrobial stewardship programs. However, not 
all patients reviewed by antimicrobial stewardship clinicians 
require intervention. Machine learning models may be helpful 
to identify patients more likely to require intervention, such as 
intravenous to oral switch or de-escalation [33, 34], thereby 
increasing the yield of clinician time and effort. As such, emerg-
ing tools may help streamline workflow and mitigate provider 
burnout.

Retrospective surveillance of hospital-acquired infections is 
often a time-consuming task for infection prevention profes-
sionals. A study using fictitious patient data found that after 
repeated training, GPT-4 exhibited a high sensitivity and 
specificity for identifying patients with catheter-associated 
urinary tract infections [35]. Such approaches may help to 
free up infection prevention professional time to perform other 
prevention-related activities. However, there are several 
hurdles that must be overcome before implementation, such 
as ensuring that reliable training data exist; validation in 
different contexts; and meeting privacy and regulatory 
requirements [36].

Additionally, AI can contribute to drafting reports and pre-
sentations, a task that requires substantial time and effort [37]. 
At present, human oversight is necessary to minimize errors 
and maximize benefits [38, 39], but will allow ID professionals 

to explore new avenues for patient and provider interaction 
across the healthcare spectrum at the individual and system lev-
els [10]. We explore these essential opportunities below.

WHAT WILL HUMANS DO?

Ensure Patient-Centered Decision Making

“AI output is more effective when viewed as a member of 
the team rather than as a substitute for clinical judgment.” — 
N. R. Sahni and B. Carrus [40]

The rapid expansion of AI is fueled by exponentially decreas-
ing costs of prediction, according to economists and AI re-
searchers Ajay Agrawal, Joshua Gans, and Avi Goldfarb [41]. 
They suggest that prediction (performed by machines) and 
judgment (performed by humans) are distinct phenomena, 
and the value of human judgment will increase as the cost of 
prediction falls. ID specialists will face a paradigm shift, where 
their tasks may change as they continue to make increasingly 
impactful decisions in the healthcare system. Machine learning 
can identify pathogens and predict antimicrobial susceptibility 
from matrix-assisted laser desorption/ionization–time of flight 
(MALDI-TOF) profiles and whole genome sequencing [42, 43]. 
But after prediction, ID expertise is still required to select opti-
mal antimicrobial treatment regimens based on past medical 
history, severity, comorbidities, and patient preferences. With 
increasing variables in machine learning algorithms, prediction 
accuracy will improve, but expert input is necessary to assess 
patient care nuances and include missing or overlooked infor-
mation. In the airline industry, the autopilot does not replace 
the pilot’s judgment; it maximizes operator reliability and im-
proves flight safety. ID practitioners must vigorously argue for 
their critical, nuanced, and patient-centered role in the 
decision-making process.

Planning and Implementation

“The best way to predict the future is to create it.” — P. Drucker 
& A. Lincoln

Compared to fields such as e-commerce and advertising, the 
adoption of AI in healthcare is slow due to regulatory require-
ments, the heterogeneity of patient care settings, different plat-
forms used across healthcare systems, concerns about privacy, 
and risk associated with inaccurate output. To mitigate these 
concerns and ensure effective and safe use of AI, ID experts 
play an important role in the adoption, planning, and imple-
mentation of AI [40]. ID experts should be thoroughly involved 
in needs assessments to identify and prioritize the most useful, 
feasible, equitable, and cost-effective tools for their setting. 
Needs assessment can identify whether operational (eg, auto-
mated writing and formatting of clinical notes through EHR in-
tegration, voice and conversation recognition), laboratory (eg, 
point-of-care testing, early pathogen detection, antimicrobial 
susceptibility testing [AST] prediction), or clinical/surveillance 
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(eg, prediction of patient or population risk, identifying pa-
tients at risk for C difficile infection, tracking and reporting an-
tibiotic resistance acquisition across the healthcare continuum, 
and early identification of clusters or outbreaks using AST or 
genetic testing) functionality is useful to our practice setting. 
Each of these functions requires thorough planning (eg, decid-
ing on thresholds for reporting and to whom to report), valida-
tion (evaluating the sensitivity, specificity, negative predictive 
value, and predictive value for these tools compared to a gold 
standard), and iterative improvement over time based on feed-
back and evaluation.

In the book Power and Prediction, authors Agrawal, Gans, 
and Goldfarb discuss 2 different types of AI interventions: 
point solutions and system solutions [44]. Point solutions in-
volve a replacement of tasks (eg, using deep learning to support 
identification of pneumonia on chest radiographs), whereas 
system solutions require a greater investment of time, energy, 
and money by overhauling the entire process (eg, indication- 
based machine learning–driven antimicrobial prescribing) 
but can be highly impactful. Along this spectrum of interven-
tions, ID expertise is needed to ensure solutions meet clinicians’ 
and patients’ needs, adhere to ethical principles, and are aligned 
with best practices.

The foundation of effective AI tools is a comprehensive and 
accurate source of data. The field of clinical informatics will 
play a key role in ensuring high-quality clinical data, interoper-
ability across systems, and cost-effective clinical workflow inte-
gration. Experts trained in both ID and clinical informatics will 
be integral partners to support safe and effective AI strategies.

Evaluation and Research

“Without data, you’re just another person with an opinion.” — 
W. Edwards Deming

Artificial intelligence in ID and healthcare is largely in the pi-
lot stages and not yet subjected to rigorous evaluation. Simple 
and cluster randomized controlled trials evaluating machine 
learning models to improve the identification and management 
of ID will advance knowledge and uptake of new technology. 
This research gap provides an opportunity for ID specialists 
to not only shape the future of AI in infection prevention, an-
timicrobial stewardship, and public health, but also to be lead-
ing scholars on AI and clinical outcomes. Use of explainable 
AI techniques can help to “see what’s under the hood” of 
AI models, thereby better understanding how they contribute 
to prediction (eg, the risk of antimicrobial resistance) 
and strengthen human trust with the technology [45]. 
Furthermore, with strong backgrounds in epidemiology and 
critical appraisal, ID specialists are well equipped to assess 
the quality of new AI literature and whether and how it should 
be implemented in their setting. ID specialists can enthusiasti-
cally engage and drive the agenda of patient-centered AI 
research.

The role of AI in drug discovery and development is also rap-
idly emerging. Deep learning models identify novel molecules 
with potential antibacterial activity for further investigation 
[46]. Clinical ID specialists have an intricate knowledge of 
the existing challenges with currently available therapies and 
can work with the biomedical industry to advocate for therapies 
with the most unmet clinical need.

Essential Leadership Skills That AI Cannot Replace

“Data should do the talking” is an oversimplification as data 
alone are not always convincing [47]. For maximal success, 
leaders must harness the art of persuasion, which is rooted in 
the psychology of relationships and influence, which are cur-
rently outside the scope of AI [47, 48].

Managing programs requires organizational and communi-
cation skills. ID specialists must serve as content experts as well 
as effective team managers to maximize clarity of purpose, 
scope, and action.

ID leadership skills that AI cannot teach or implement: 

• Identifying and overcoming human barriers: Saint et al noted 
the negative impact of active resistors and organizational con-
stipators on healthcare-associated infection efforts [49]. ID 
specialists must be vigilant of human barriers and employ 
multilevel communication strategies to achieve change includ-
ing education, audit and feedback, marketing, and empower-
ment of champions and facilitators [50]. This is relevant to all 
aspects of our work regardless of automation.

• Identifying meaningful and effective collaborators: Positive 
deviance describes "certain individuals or groups with un-
common traits that enable them to find better solutions to 
problems than their peers, despite similar resources and chal-
lenges” [51]. In infection prevention, positive deviance initia-
tives resulted in improvements in hand hygiene, MRSA 
infection rates, and overall HAI rates [52]. ID leaders can en-
courage diverse participation and empower front-line work-
ers to help improve systems-level decision making.

• Engaging healthcare leaders: ID leaders must establish a 
sense of urgency, communicate the vision, empower action, 
and provide the necessary resources to institutionalize chan-
ge [53]. Keeping healthcare executives consistently focused 
on ID is an ongoing struggle due to competing interests. 
ID leaders must maintain relevance by regularly engaging 
and communicating effectively with chief medical and safety 
officers, nursing leaders, and chief executive officers.

• Empower colleagues to maximize team dynamics and miti-
gate burnout: ID leaders must remain vigilant of burnout 
and promote positive work environments [54]. In ID, physi-
cian burnout approaches 45% as reported in a subspecialty 
survey [55–57]. No simple solution exists for minimizing 
burnout in healthcare systems; however, team dynamics 
are critically important for engagement and group perfor-
mance. Creating psychologically safe environments that 
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promote open dialogue results in enhanced team bonding 
and daily interactions, which are primary drivers of high- 
functioning teams [58].

• Professional advocacy: The perception of ID specialists by 
hospital stakeholders, including their ability to connect 
with and convince front-line staff of best practices, is greatly 
enhanced by communicating persuasively and effectively at 
the “podium,” which may include virtual meetings, local 
town halls and grand rounds, in-person conferences, or lec-
tures to learners at one’s own institution. These skills build 
trust and likeability, and improve retention of information. 
Messaging should be authentic to one’s own experiences, inter-
ests, and beliefs; this level of personalization is outside of AI’s 
current scope. After successful implementation of organiza-
tional change with measurable impacts on patient care, publi-
cation can further increase visibility for all involved [59].

WHAT IS THE ROLE OF INSTITUTIONS AND PROFESSIONAL SOCIETIES IN 
PREPARING US FOR DISRUPTION?

Impending changes to our daily lives as individual clinicians or 
disciplines within ID is apparent, as are potential ways to lean 
into changes and use them to our advantage. However, institu-
tions and professional societies have a clear role in advocating 
for the individual and workforce.

Academic institutions and healthcare systems can help: 
• Convene multidisciplinary steering committees to establish 

AI best practices, maximizing its value for patient care and 
clinician education while setting clear parameters on its use 
for grant applications, research publications, scientific pre-
sentations, curricula, etc.

• Set clear parameters for disclosing use of AI by clinicians 
in patient care and scientific presentations and scholarship.

• As part of annual assessments and credentialing, institutions 
can ensure that staff are adequately trained on the strengths 
and limitations of AI as it pertains to patient outcomes, po-
tential biases, and harms, such as loss of patient privacy [23].

• Create patient-centered learning materials and videos in all 
major languages informing them how AI may be used in 
their personalized care.

Professional societies can help: 
• Promote equity in the development and application of AI. ID 

experts should be involved in validation to help minimize 
bias in machine learning algorithms, and advocate for equi-
table access to AI models to support underserved and/or 
marginalized communities. For example, data from insur-
ance billing claims illustrate that the use of medical AI usage 
is skewed toward higher income, urban regions, and academ-
ic medical centers [60].

• Advocate for the creation of diagnostic codes allowing clini-
cians to bill for time spent using AI to assist with patient care, 
in addition to other services rendered [6].

• Vigorously advocate for protections on existing salary lines 
and reimbursement rates despite increasing automation. 
This is critically important as erosion of salary will almost 
certainly undermine the current workforce and serve as a re-
cruitment disincentive, further reducing our specialty.

• Advocate for ID consultation in the development of AI tools, 
which aims to streamline our work.

• Consider the inclusion of specialized AI and data science 
tracks in annual meetings and increase the AI-related offer-
ings for educational development.

• Promote legislation aimed to improve loan repayment 
prospects for the ID workforce, to ensure funding for 
infection prevention and stewardship programs, and to stim-
ulate and change incentive paradigms for new drug develop-
ment. These include provisions to protect the workforce 
against job losses due to automation and create incentives 
for application of AI to advance the discovery and develop-
ment of novel antimicrobial therapies, ID diagnostics, and 
vaccines.

• “Be at the table” for national and global discussions pertain-
ing to use of AI for research and publication and ensure pro-
tections on patient data and privacy.

CONCLUSIONS

As ID experts navigate this transformative juncture, our focus 
should not solely rest on the potential for automation to replace 
our roles, but also on how it can amplify our capabilities. By in-
tegrating automated systems thoughtfully, ID specialists can 
devote more time to matters requiring values-driven decisions, 
human intuition, emotional intelligence, multidimensional as-
sessment, research prioritization, change implementation, and 
leadership across our professional spectrum. The collaboration 
between human expertise and AI-driven automation could lead 
to a symbiotic relationship where our decision-making is aug-
mented by technology, resulting in improved patient outcomes 
and more efficient healthcare delivery. Application of these 
tools will require acquisition and refinement of skills such as 
implementation and dissemination science, as well as effective 
communication and negotiation strategies to better interface 
with other humans in healthcare (patients, families, colleagues, 
and executives). While change is inevitable, optimizing our rel-
evance requires a comprehensive understanding of challenges 
and cultivation of the skills and functions that AI has yet to 
replace.
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