
A new Mendelian Randomization method to estimate causal 
effects of multivariable brain imaging exposures

Chen Mo1,†, Zhenyao Ye1,†, Hongjie Ke4,†, Tong Lu4, Travis Canida4, Song Liu5, Qiong 
Wu4, Zhiwei Zhao4, Yizhou Ma1, L. Elliot Hong1, Peter Kochunov1, Tianzhou Ma3,*, Shuo 
Chen1,2,*

1Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School 
of Medicine, Baltimore, Maryland 21201, United States of America

2Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, 
University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America

3Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, 
College Park, Maryland 20740, United States of America

4Department of Mathematics, University of Maryland, College Park, Maryland 20740, United 
States of America

5School of Computer Science and Technology, Qilu University of Technology (Shandong 
Academy of Sciences), Jinan, Shandong 250353, China

Abstract

The advent of simultaneously collected imaging-genetics data in large study cohorts provides 

an unprecedented opportunity to assess the causal effect of brain imaging traits on externally 

measured experimental results (e.g., cognitive tests) by treating genetic variants as instrumental 

variables. However, classic Mendelian Randomization methods are limited when handling high-

throughput imaging traits as exposures to identify causal effects. We propose a new Mendelian 

Randomization framework to jointly select instrumental variables and imaging exposures, and 

then estimate the causal effect of multivariable imaging data on the outcome. We validate the 

proposed method with extensive data analyses and compare it with existing methods. We further 

apply our method to evaluate the causal effect of white matter microstructure integrity (WM) on 

cognitive function. The findings suggest that our method achieved better performance regarding 

sensitivity, bias, and false discovery rate compared to individually assessing the causal effect of 
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a single exposure and jointly assessing the causal effect of multiple exposures without dimension 

reduction. Our application results indicated that WM measures across different tracts have a joint 

causal effect that significantly impacts the cognitive function among the participants from the UK 

Biobank.
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1. Introduction

Imaging genetics is an emerging field that combines genetic and multi-modal brain imaging 

data to investigate the genetic effects on brain function or structure and to understand 

the neurogenetic mechanism of mental and neurological disorders and related disease and 

behavior phenotypes. Previous studies have used imaging genetics approaches to cognition, 

behavior in health and complex diseases.1-6 One increasingly important goal of imaging 

genetics studies is to test for causal imaging features on disease and related outcomes; and 

scalable methods to target this goal are in urgent need.7,8

Mendelian randomization (MR) methods estimate the causal effect of a modifiable exposure 

on an outcome in an observational study by employing genetic variants as instrumental 

variables (IVs).9-11 They address the limitations of traditional observational epidemiology 

regarding unobservable confounding and reverse causation10,12-14 and have been widely 

used in studies of potential causal inference.15,16 To successfully examine the causal effect, 

three key IV assumptions need to be met for MR analyses: i) IVs must be associated 

with the exposure of interest; ii) IVs must not be associated with confounders of the 

exposure-outcome association; and, iii) IVs must not affect the outcome except possibly 

through the exposure variable.10,17-19 MR experiments have generally relied on genetic 

variants associated with a single exposure to avoid violations of IV assumptions (ii) and (iii). 

However in practice, most variants are pleiotropic and associated with multiple exposures 

that cannot be ignored.11

Fig 1A shows the classical MR framework with multiple IVs and only one single imaging 

exposure. The classical MR method, such as the inverse-variance-weighted (IVW) approach, 

can estimate the causal effect of individual exposures using valid IVs following the fixed 

effect meta-analysis.20 However, especially in neuroimaging studies, MR analyses on only 

one imaging trait fail to completely capture the causal effects because these kind of 

analyses ignore the impact from other imaging traits, given that imaging traits are highly 

correlated. In addition, the presence of pleiotropic genetic variants will ultimately lead to 

inflated type I error rates and inadequate statistical power in MR analyses. For example, 

in Fig 1B, imaging traits have complex interconnections and may result in a combined 

effect coming from multiple traits rather than from a single exposure on the outcome. 

Their spatial dependency has created a few analytical challenges. Firstly, existing MR 

methods for multiple exposures allowed us to estimate causal effects of different exposures 

simultaneously on outcome, assuming additive effects.7,11,21 However, these methods are 
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restricted by complicated horizontal pleiotropy and multicollinearity when the exposures are 

highly correlated as in the case of imaging features.22 Specifically, increasing the number 

of IVs and exposures makes the validation of IV assumptions challenging, consequently 

leading to biased causal estimates and false-positive causal relationships.11 Secondly, the 

framework involves multiple IVs and imaging exposures and usually cannot specify the 

subset of IVs with its influenced exposures, while preserving the validity of IV assumptions 

for all. Therefore, it becomes increasingly important to identify the subsets of strongly 

associated IVs and exposures as guided by their causal relationship with the outcome

We propose a new method to address the aforementioned issues in MR analyses on multiple 

imaging exposures. Our method primarily selects a set of exposures that share a common 

set of IVs guided by data-driven submatrix identification algorithms.23,24 This method 

integrates the most informative features from exposures while reducing the burden of 

horizontal pleiotropy introduced by including too many exposures and IVs simultaneously in 

the MR model. In this study, we illustrated the application of our method using data from the 

UK Biobank (UKB) to examine the causal effects of white matter microstructure integrity 

(WM) measured with factional anisotropy (FA) on cognitive function. We also carried out 

simulation studies to compare the proposed method with existing MR methods. Both the 

application and simulation results demonstrated improved causality estimation. In this initial 

work, we focus on the individual-level data in one-sample MR analysis. We provide a 

detailed introduction of our method in section 2, the application to UKB data in section 3, 

simulation studies in section 4, and conclude with a comprehensive discussion in section 5.

2. Methods

In our application, brain imaging variables are multivariable exposures in the MR analysis 

(see Fig 1). The high-dimensionality of exposure variables leads to two new challenges: 

i) identifying causal exposures and corresponding IVs and ii) causal effect estimation for 

dependent multivariable exposures. Specifically, it is challenging to identify a subset of 

imaging variables with causal effects on the outcome and more importantly to extract a set 

of IVs that are jointly valid for the selected imaging exposures. To address these issues, 

we estimate the integrative causal effects of a set of dependent imaging exposures on the 

outcome. We provide an overview of our three-step approach and elaborate the procedures in 

the following subsections.

Our goal is to simultaneously select causal imaging exposures and corresponding valid IVs, 

such that each selected imaging exposure has causal effect based on the selected IVs. At 

the same time, each selected genetic variant is a valid IV for all selected imaging exposure 

IVs, satisfying the three commonly assumptions in MR analysis. Therefore, the IV set and 

exposure set selection procedures are interactive and can be subject to substantial false 

positive and false negative errors using an iterative procedure. We propose a new objective 

function for joint IV and exposure set selection.

2.1. Step 1 : Mendelian randomization analysis on a single imaging exposure

We first perform MR analysis on each imaging exposure with loci of interest and assess the 

validity of IVs by following the guideline for MR investigations proposed by Burgess et al. 
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(2019).19 We record the validity as a indicator function for each pair of genetic variant and 

imaging exposure asm in matrix AS×M = {asm}. Similarly, we store the single-exposure MR 

analysis results in a matrix QS×M = {qsm}. We have

asm = 1, if gs ∈ G(m);
0, otherwise .

qsm =
− log(Psm), if asm = 1;
0, otherwise .

(1)

2.2. Step 2: Joint instrumental variables and imaging exposures selection

Next, we detect a submatrix from a large matrix of genetic variants and imaging exposures 

W = A ◦ Q, where ◦ is the Hadamard product. Our objective function is an ℓ0 shrinkage 

function to extract the maximal number of valid imaging exposure-IV pairs with minimally 

sized IV set and imaging variable set. Specifically:

arg max
G∗, M∗

log(wam ∣ a ∈ G∗ & m ∈ M∗) − λ0(log(‖G∗‖0) + log(‖M∗‖0))
(2)

where G* is the IV set and M* is the imaging exposure set, ∥∥0 is the cardinality measure 

of a set, and λ0 is a tuning parameter. The first item ensures the maximal information can 

be included based on selected G* and M*, while the second term penalizes the cardinality of 

G* and M* to avoid the false positive errors. The objective function is non-convex due to the 

ℓ0 term, and thus computationally intensive. We employ greedy algorithms to implement the 

objective function for large-sized W23 and exhausting search algorithms for medium-small 

W.24 Both algorithms can be conveniently extended to multiple sets of G* and M*.

Specifically, we can search the optimal submatrix W* determined by M* and G* that 

contains the most informative features following a general iterative procedure:

1. Find a submatrix W ⊂ W  ⊂ W by a greedy search algorithm23 to approximately 

maximize the objective function.

2. Subtract the average of W  from each of its entries in W.

3. repeat until convergence criteria is met.

This algorithm searches the solution of the objective function in an iterative-residual fashion, 

which captures the most informative features of the data matrix (W) that are of potential 

causal effect inference24 with parsimonious IV set and exposure set M* and G*.

2.3. Step 3: Causal effect identification for multiple imaging exposures

Given a common IV set G* and a set of imaging exposures M*, we attempt to estimate 

the causal effect of multiple dependent exposures through MR analysis. It is challenging 

to identify the causal effects of imaging exposures because the highly correlated exposures 

can lead to imprecise causal effect estimation.25 This is a common issue that mediation 

analysis has been facing.26 We adopt commonly used statistical techniques in imaging 

causal mediation analysis to transform the imaging exposures into a set of orthogonal 

variables. Let M∗ = (M1, …Mn)⊺ ∈ ℝn × p denote the matrix for p selected imaging features 
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across n subjects, and M∗ = MΦ = (M1, M2, …Mn)⊺ ∈ ℝn × V  be the matrix of orthogonally 

transformed imaging variables where Φ ∈ ℝp × V  is the transforming matrix. We can estimate 

Φ and M∗ based on the procedure described in Chén et al. (2018).26 Furthermore, we can 

implement sparsity on loadings for the components to improve the interpretability.27

We next perform MR analysis on V orthogonal imaging factors Φ with independent causal 

effects. Given these conditions, we only need the MR analysis on individual factors because 

the orthogonal imaging factors only have additive causal effects. For an imaging factor 

M∗
v, v = 1, ⋯, V , v = 1, …, V, we can estimate its causal effect on the outcome (Y) using 

uncorrelated IVs (G* = {g1, …, gS} ⊆ G) through the IVW method as follows:

θv =
∑sβYvgs

βXvgs
se(βYvgs

)−2

∑sβXvgs
se(βYvgs

)−2 (3)

where βYvgs
 and βXvgs

 are the genetic associations based on the regression of the outcome 

(Y) and the imaging factor (M∗
v), E[Y ∣ G∗] = βY vG∗ and E[M∗

v ∣ G∗] = βXvG∗, respectively, 

with the approximated standard error se(θv) = 1
∑sβXvgs

2 se(βYvgs
)−2  summing across the 

estimates from all IVs in G*.20 The overall causal effect of all exposures given the identified 

imaging factors can be simply expressed as E(Y ∣ M∗, G∗) = ∑v = 1
V M∗

vθv. In case that the 

IVs are correlated, the IVW can be extended to account for the correlation matrix using 

methods such as the generalized weighted linear regression,22,28 Causal Direction-Ratio,29 

and Causal Direction-Egger.29 We leave the details of using correlated IVs in the future 

study and focus on uncorrelated IVs in our current study.

Remarks—Our MR framework consists of three steps as follows: step 1: select IV 

candidates associated with each imaging exposures; step 2: extract submatrices of valid 

IVs and corresponding imaging exposures; step 3: conduct MR analysis based on IVs and 

transformed imaging exposures in the extracted submatrices.

3. Application to evaluate the causal effect of white matter microstructure 

integrity on cognitive function

3.1. Data and study cohort

We applied our new method to a sample of 35,291 unrelated participants (white ethnicity 

backgrounds aged 40-69) extracted from the UKB to evaluate causal effect of white 

matter integrity on cognitive functions.30 The exposures consisted of forty regional brain 

FA measures derived from diffusion MRI based on the preprocessing workflow of the 

Enhancing Neuro Imaging Genetics Meta Analysis (ENIGMA) consortium.31 The outcome 

was the intelligence g estimated from five cognitive traits related to the following four 

domains: processing speed, perceptual reasoning, executive function and fluid intelligence.
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The intelligence g was estimated among 10,979 participants with cognitive data. The 

missing values were substituted by the average of imputed values based on predictive mean 

matching (PMM) method implemented in R package mice (v3.13.0).32 We estimated this 

latent general intelligence factor accounting for 59% of the total variance of the cognitive 

traits using R package psych (v 2.1.9).33

The genotypic data was available for all participants involved in the analysis. We 

implemented quality control with following inclusive thresholds: minor allele frequency 

(MAF) > 0.01, Hardy-Weinberg equilibrium (HWE) > 0.001, missingness per marker 

(GENO) < 0.05, and missingness per individual (MIND) < 0.02 by PLINK (v1.9).34 We 

removed highly correlated genetic variants (r2 < 0.5) via LD clumping and used the variants 

in gene VCAN as potential IVs since many studies have discovered significant associations 

between VCAN and the FA measures, as listed in the NHGRI-EBI GWAS Catalog.35 We 

adjusted for variables such as sex, age, body mass index (BMI), genotyping chip type and 

top ten PCs of population admixture in our MR analysis.

3.2. Results

We identified 31 out of 40 FA measures having a significant association (p-value < 0.05 

adjusted with false discovery rate36) with intelligence g after data preprocessing. In total, 

we found 27 genetic variants in VCAN that had highly significant associations (p-value < 

5 × 10−7) with at least one of the 31 FA measures. These variants were weakly correlated 

with each other. As shown in Fig 2B, the heatmap presented the causal effect significance 

(−log(p-value)) estimated from MR using a single IV for every exposure, given the rows and 

columns represented the 27 IVs and 31 FAs, respectively.

We observed that FAs affected intelligence g in different levels and some of these measures 

had similar effects based on their common IVs (see heatmap (left) Fig 2), although they 

were arranged in a random order. We further detected an informative cluster consisting 

of 22 FA measures with 3 common IVs in this unorganized structure by implementing 

our objective function. These FA measures were: bilateral anterior corona radiata, body of 

corpus callosum, cingulum cingulate gyrus (right), cingulum hippocampus (left), bilateral 

external capsule, genu of corpus callosum, posterior corona radiata (left), bilateral posterior 

limb of internal capsule, posterior thalamic radiation (right), bilateral retrolenticular part of 

internal capsule, splenium of corpus callosum, bilateral superior corona radiata, bilateral 

superior longitudinal fasciculus, bilateral sagittal stratum, and uncinate fasciculus (left). The 

3 SNPs of VCAN on chromosome 5 included: rs173686, rs35483733, rs78483393, having 

reported association with white matter integrity in the previous study.37 Fig 3B (upper) 

showed the correlation matrix of the 22 FA measures selected. These imaging exposures 

had moderate to high correlations between each other, suggesting non-identifiable causal 

effects based on existing MR methods with independent causal effects. Following step 3 in 

our method, we transformed the 22 FA measures into a single general factor. The general 

factor of FA (gFA) was estimated based on 3 components achieving the highest percentage 

(59%) of common variance among 22 FA measures. The number of components used was 

approximated by a parallel analysis (see Fig 3B (lower)). The loading for the rest factors was 

unstable based on bootstrap model validation, and thus were not used.
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Next, we assessed the comprehensive causal effect of FAs (gFA) on cognitive function 

(intelligence g) via classical IVW-based MR method using the MendelianRandomization 
(v0.5.1) package in R.38 The results revealed that gFA had signihcant causal effect on 

intelligence g (β = 21.94, SEβ = 8.87, p-value = 0.013). We also explored the causal effect 

estimated via MR methods incorporating penalized regression,39 robust regression,40 and 

leave-one-out41 to assess the consistency of the causal estimates and possible IV outliers. 

The results were all consistent with the classical IVW method showing a significant causal 

effect of gFA on intelligence g. All in agreement, these results consistently revealed that the 

increase of white matter microstructure integrity can cause the improvement of performance 

regarding cognitive function tests.

4. Simulation

We carried out simulation studies to evaluate our proposed framework of MR analysis for 

quantitative traits under the one-sample case. For n = 500 individuals, we first randomly 

simulated genotypes X500×20 for 20 uncorrelated genetic variants (i.e. IVs in the MR 

analyses). Here we assumed there was an underlying true factor of imaging exposure 

Mf500×1 = Xα20×1, where αT = (2, 2,…, 2, 0, 0, …, 0) measured the effect that genetic 

variants had on exposures. We also assumed that only 10 simulated genetic variants had true 

effect on this underlying exposure factor, whereas the other 10 variants had no true effect. 

Next, we generated 20 observed imaging exposures with true casual effects on the outcome 

by Mi = Xαi∗ + εi∗, where αi∗ = α + (δi, 1
∗ , …, δi, 20

∗ )T  and εi∗ = (εi, 1
∗ , …εi, 500

∗ )T . In addition, we 

simulated another 20 observed imaging exposures without true casual effects on the outcome 

by Mi′ = εi′, where εi′ = (εi, 1′ , …εi, 500′ )T . Here εi, k
∗ , εi, k′  and δi, j

∗  are all i.i.d random noise with 

standard normal distribution, where i,j ∈ {1, …, 20} and k ∈ {1, …, 500}. Finally, we 

simulated the outcome data using the true exposure factor, i.e. Y500×1 = β * Mf + ε500×1, and 

ε = (ε1, …, ε500)T is another set of standard normal random noises. We consider two cases 

for the causal effect size: large (β = 1) and small (β = 0.5).

Under this simulation setting, three types of MR analyses were implemented and their 

performances were compared. The first one was our method, which implemented LAS24 to 

identify submatrices before MR and only included a subset of essential imaging exposures 

in the MR model. The second method included all 40 imaging exposures in the MR model, 

and the third one simply ran 40 MR models with single exposure independently. To evaluate, 

we calculated the bias of the point estimates for causal effect β, and the sensitivity and False 

Discovery Rate (FDR) for correctly selecting the true imaging exposures with casual effect. 

For the later part, the second method just simply included all the exposures (i.e. selecting all) 

and the third method made the selection based on its p-values with a Benjamini-Hochberg 

correction (number of comparisons is 800).

We ran the simulation for 500 replications, and the results are given in Table 1. The 

computation time was 60 seconds per replication using a desktop with CPU 3.40GHz and 

RAM 64GB on average. In both the large effect and small effect settings, our method 

achieved smaller bias in estimating the causal effect compared to the method using all 40 

imaging exposures (0.108 vs. 0.924 for large effect, 0.05 vs. 0.473 for small effect). In terms 
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of the selection of causal imaging exposures, our method had substantially decreased FDR 

(0.15 and 0.148) while still maintaining a sensitivity closed to 1 (0.947 and 0.945).

5. Discussion

We developed a new MR framework to evaluate the causal effects of inter-correlated 

mutlivariable brain imaging exposures on outcomes. Our approach provides a viable solution 

to estimate the causal effect of objectively measured characteristics of the central nervous 

system on externally measured neuropsychological test results by leveraging imaging-

genetics data. The utility of genetic variants as instrumental variables leads to unbiased 

estimates of causal effects free from confounding effects from numerous environmental 

factors.

The MR analysis with brain imaging variables as exposures is intrinsically challenging. 

The selection of valid IVs for all imaging exposures and the selection of causal imaging 

exposures are complex and numerically difficult. We propose a new objective function to 

select exposures and IVs for maximal information while controlling false positive error 

rate by penalizing the cardinality of IV and imaging sets. The selected imaging variables 

provide spatially-specific causes for the externally measured test results. The shared IV set 

also becomes the foundation to transform the imaging exposures to orthogonal and causal 

independent factors as the IVs are valid for any of the imaging variables. Last, we estimate 

the causal effects of the transformed exposures of selected imaging variables and make 

inference.

Compared to previous studies that only repeatedly tested the associations between 

white matter microstructure integrity and cognitive function, our analysis revealed a 

significant comprehensive causal relationship between them. The decrease of white matter 

microstructure integrity causes the decline in cognitive function while adjusting for age, sex 

and other covariates mentioned above. Although our current analyses focus on region-level 

imaging variables, our method can be extended to voxel-level analyses. We also assume that 

there exists no cyclic causal effects between multiple exposures and the outcome. Our study 

aims to address issues of the multiple-exposure MR particularly in the one-sample studies 

because the existing studies and resources of summary statistics for all exposures included 

are restricted and more difficult to ensure valid IVs to achieve two-sample scenario.

In summary, our MR analysis framework with multivariable imaging exposures opens a new 

avenue for imaging-genetics data analysis and causal inference. This study currently focuses 

on MR analysis using uncorrelated IVs. Our framework can also be extended to MR analysis 

using correlated IVs adopting the new MR methods that account for complex covariance 

structure among IVs in future studies.
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Fig. 1. 
Mendelian Randomization with a single exposure (left) and multiple dependent exposures 

(right).
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Fig. 2. Overview of analysis framework.
Our MR analysis method consists of three main steps. The heatmap (left) shows the raw 

unorganized matrix of −logP-value in the first, analysis step; the heatmap (middle) shows 

the matrix after submatrix identification in the second step, showing a cluster of most 

informative features; and, the diagram (right) shows the MR analysis on the identified 

features with selected IVs in the last step.
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Fig. 3. Mendelian randomization analysis results of imaging exposures and cognitive function.
A shows the 22 FA tracts identified within a submatrix extracted from 31 FA tracts. The 

lowest significance was shown in dark blue whereas red indicated the highest significance of 

causal effect; B shows the matrix of pair-wise correlation matrix of the 22 tracts along with 

their parallel analysis based on PCA for estimating orthogonal factors; and, C shows the MR 

analysis with its final results of the causal effect across the uncorrelated orthogonal imaging 

factors.
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Table 1.

Simulation results for two different causal effects size β = 1 and β = 0.

Simulation results with β = 1

Method Bias of β Sensitivity FDR

MR with exposures selected (our method) 0.108 (0.084) 0.947 (0.075) 0.15 (0.157)

MR with all exposures 0.924 (0.213) 1 (0) 0.5 (0)

MR with a single exposure - 1 (0) 0.5 (0)

Simulation results with β = 0.5

Method Bias of β Sensitivity FDR

MR with exposures selected (our method) 0.05 (0.045) 0.945 (0.077) 0.148 (0.155)

MR with all exposures 0.473 (0.107) 1 (0) 0.5 (0)

MR, with a single exoosure - 1 (0) 0.5 (0)
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