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For epidemics such as COVID-19, with a significant
population having asymptomatic, untested infection,
model predictions are often not compatible with data
reported only for the cases confirmed by laboratory
tests. Additionally, most compartmental models have
instantaneous recovery from infection, contrary to
observation. Tuning such models with observed data
to obtain the unknown infection rate is an ill-posed
problem. Here, we derive from the first principle
an epidemiological model with delay between the
newly infected (N) and recovered (R) populations. To
overcome the challenge of incompatibility between
model and case data, we solve for the ratios of
the observed quantities and show that log(N(t)/R(t))
should follow a straight line. This simple prediction
tool is accurate in hindcasts verified using data
for China and Italy. In traditional epidemiology, an
epidemic wanes when much of the population is
infected so that ‘herd immunity’ is achieved. For a
highly contagious and deadly disease, herd immunity
is not a feasible goal without human intervention
or vaccines. Even before the availability of vaccines,
the epidemic was suppressed with social measures in
China and South Korea with much less than 5% of the
population infected. Effects of social behaviour should
be and are incorporated in our model.
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1. Introduction
Almost 100 years ago, a classic paper published in Proceedings of the Royal Society by Kermack &
McKendrick [1], entitled ‘A contribution to the mathematical theory of epidemics’, started the
tradition of mathematical modelling on the spread of infectious disease among a susceptible
population. Current thinking in epidemiology is deeply rooted in concepts introduced in that
paper, some of which are still relevant, while others need to be modified. The simple mathematical
model they introduced is called the SIR model, for susceptible–infected–removed:

d
dt

I = aSI − bI;
d
dt

S = −aSI;
d
dt

R̃ = bI. (1.1)

When a few infected individuals are introduced into a susceptible population S(t), it leads to
the growth of the active infected population I(t). The infected individuals eventually recovered,
becoming R̃(t) and in the process acquiring immunity to the original infectious disease, or dead
and no longer infectious. The recovered and the death are lumped together as the ‘removed’: R̃(t).
The removed population in the SIR model is an accumulated population, denoted here as R̃(t), to
distinguish it from the rate of removal that we will use in this paper, which will be denoted by
R(t). An epidemic wanes in the SIR framework when the susceptible fraction of the population
is gradually depleted, achieving ‘herd immunity’, so that the number of susceptible persons an
infected individual can infect, as measured by the reproduction number, falls to below one.

There have been many variants to this basic model. One common modification is to add
an extra population of E(t) for exposed individuals who are not yet infectious, in the so-called
SEIR model (e.g. [2]). Other—agent-based—models take advantage of the modern computing
power to further subdivide the population into many subgroups and even simulate movements
of individuals (e.g. [3]). But basic concepts are similar to the original SIR model. These mechanistic
models play an important role before the outbreak spreads, since the models could be used to
explore various scenarios for policy decisions on social distancing and lockdown. By constantly
updating an SEIR model with real-time statistics on transmission from mobility and serological
data, and death rates among different age groups, real-time monitoring of the epidemic can also
be provided by the model and the effect of lockdown evaluated for England during the first wave
[4]. Another data-driven SEIR model with updates on hospital admission data and mobility data,
plus some imposed percentage of asymptomatically infected, was used to inform policy-makers
on the effects of lockdown on COVID-19 in Ile-de-France, and on exit strategies [5]. Discussion on
these types of models used in modelling the current COVID-19 epidemic and their roles can be
found in [6].

Two challenges facing modellers are: first, there is an incompatibility between observational
data and model output: for COVID-19, a large fraction of the infected population have no or
mild symptoms, but are nevertheless infectious. Only those who are more seriously sick are
admitted to hospitals and/or tested for COVID-19. Model outputs are for the total infectious
population, whether tested or not and whether asymptomatic or not. The data, on the other hand,
are for ‘confirmed cases’, after the subset of the infected is tested. Second, compartmental models,
such as SIR and SEIR, assume instantaneous recovery from infection. The statistical justification
is based on exponential waiting time for the first event to occur (in this case, the first person
to recover among all infected people), and this waiting time approaches zero as the population
size approaches infinity [7]. This is more applicable to radioactive decay of a large ensemble of
atoms than to the biological process of recovery in a small population of infected. At least for the
current COVID-19 pandemic, this is contrary to what our data show. These two factors make it
inappropriate to use these models in a data-driven way, because they are inconsistent with data.
We will provide a reformulation of the epidemic model to address these two challenges.

There can actually be two possible end states of an epidemic: one is through ‘herd immunity’
mentioned above, and the other is an unstable state achieved by suppressing contacts and
hence transmission among individuals, called ‘suppressed equilibrium’ here. This second state is
unstable (parametrically) because, if the social distancing measures are relaxed and the businesses
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and schools reopened, the disease could initiate a second wave, since most of the population has
not acquired immunity. Even if the epidemic ends in one country, there could still be subsequent
waves of infection by imports from abroad unless there is strict quarantine of cross-border
travellers. This is the reality of the current COVID-19 pandemic; which approach to take was
the difficult decision confronting policy-makers in the early stage of an epidemic. It was reported
[8] that the UK first contemplated not suppressing the epidemic through lockdowns, fearing that
doing so would only lead to a larger second outbreak because most of the population would
not have gained immunity. So, the plan was to let the epidemic run its course while protecting
the elderly. But when shown a model prediction [3] that such a ‘do-nothing scenario’ would
lead to 500 000 deaths and 81% of the population infected, policy-makers changed course and
imposed strict counter measures. This is an important and proper role for a model, to prompt
policy actions to combat the spread of the disease. Once the outbreak started, the accuracy of the
original model predictions cannot be verified as the forecast forever changed the course of the
epidemic in the UK. Health officials in Sweden did not believe in models and decided to pursue
‘herd immunity’ starting 12 March 2020, though this phrase was never mentioned as a policy goal
in public statements.

The number of people that will have to be infected before achieving herd immunity depends
on how contagious the disease is. The 16 March report of Ferguson et al. [3] assumed an infection
rate, expressed in terms of basis reproductive number R0, of 2.4. For the USA, it predicted that 81%
of the population would have to be infected for the epidemic to end in this do-nothing scenario, or
about 250 million, resulting in 2.2 million dead. Later updates in the 30 March report of Flaxman
[9] suggested that R0 should be about 4 for the European countries studied [10]. Estimating this
number for three continents will be one of the tasks in the present work so that one can evaluate
what it entails for the herd immunity approach. We will show directly from data that the estimate
of R0 ∼ 4 also holds for the USA, and in fact approximately so for every country we examined,
implying an initial e-folding time of 3 days (or doubling time of 2 days). COVID-19 turns out to
be much more contagious than originally thought. See also [11].

For South Korea, the epidemic in that country was first suppressed with just 0.02% of its
population infected. In Wuhan, the epidemic first ended with less than 0.5% of its population
infected. Both are less than 1% of that required to achieve herd immunity as predicted by most
models, although it should be pointed out that the above-quoted numbers for Wuhan and South
Korea are for the confirmed cases, and do not include the asymptomatic infected. In early April
2020, about 3330 individuals in Santa Clara County in California were tested for antibodies
to the COVID-19 virus in their blood [12]. When weighted by demographics and extrapolated
statistically to the whole county’s population, it was calculated that 2.8% of the population could
have been infected. These numbers, less than 5%, are much less than what is required to achieve
herd immunity, in a county where the epidemic is waning at the time, probably because of contact
reduction measures in place. Similar percentage, 4–5% of the population infected, was found by
model up to 4 May 2020 in 11 countries in Europe, when the reproduction number was reduced
to below 1 [10]. In early January of 2021, the Chinese Center for Disease Control and Prevention
[13] found, through antibody tests, that Wuhan has a prevalence of 4.43%, and China outside
Hubei 0.44%. It appears that there was substantial asymtomatic infection in Wuhan. Nevertheless
together, it is still one order of magnitude less than that required for herd immunity. It is possible
that antibody tests do not reveal all forms of immunity. But the fact that in many countries the
emergence of a stronger second and third wave after the first wave has peaked and declined is
strong evidence that the decline of the first wave of infections was not a result of herd immunity.
Indeed, the situation in these countries represents early examples of the ‘suppressed equilibrium’.
Because of its much lower number of deaths, such an end state is a goal that most countries have
decided to pursue, despite the enormous toll on the economy due to the much reduced business
activity for the two to three months that it would take to achieve it.

Since a ‘suppressed equilibrium’ is achieved in a very different manner from that for the ‘herd
immunity’, estimating the end date of the outbreak as a consequence of contact suppression is not
based on the number of susceptibles, S, approaching a small critical value (i.e. when most of the
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Figure 1. Daily new cases (blue) and daily recovered (red) cases as a function of time for China excluding Hubei. Death is not
included in the recovered cases. The horizontal axis is time in date–month. In Hubei, unlike the rest of China, the criterion for
confirming COVID-19 infectionwas changed from the gold standard of nucleic acid test to chest scans on 12 February, in themidst
of a rising outbreak, which overwhelmed the test facilities. Data for Hubei and China including Hubei are shown in electronic
supplementary material, figure SA2.

population is infected, hence acquiring immunity), but on the daily new cases approaching zero
and remaining so for two incubation periods, barring new imports. Our estimate of the end of the
epidemic is earlier, usually significantly so, because it does not depend on a high percentage of
the population having been infected to achieve herd immunity.

In our attempt to reformulate the epidemiological model, we start with more fundamental
principles. More fundamental to arguments commonly used to derive SIR-type models are
conservation laws. For example, a more fundamental form for the first equation in equation (1.1)
should be given by

d
dt

I = N(t) − R(t), (1.2)

which can be derived rigorously (see §3). It states that the rate of increase of the population of the
actively infected is equal to the rate of increase of newly infected, here denoted by N(t), minus the
rate of increase of newly recovered, R(t), which includes the deaths, together called ‘removed’.
In the SIR model, the rate of newly removed does not have a time delay from the rate of newly
infected, with both modelled as linearly proportional to I(t), i.e.

N(t) = aSI(t),

R(t) = bI(t)

and
R(t)
N(t)

= b
aS

> 0.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
This is a statement of instant recovery from infection, which is contrary to observation.

Figure 1, from observation, clearly shows a delay of R(t) relative to N(t). Here, we use the notation
N(t) to denote the rate of newly infected, which is also called the daily newly infected, although
the notation N is often used in other models to denote the total population.

Figure 2 shows the cross-correlation of N(t) and R(t) for the countries with early outbreaks,
China, Korea and Italy. The observed statistics is consistent with a delay of the form

R(t) = N(t − T), (1.3)

where T is the mean period of recovery, about 10–20 days for the COVID-19 epidemic. Equation
(1.3) can be derived rigorously from conservation law (see §3). This conservation law can be easily
understood in the case of hospitalizations. A patient admitted to hospital will eventually recover
after a mean stay of a couple weeks, or die, after a similar period of time. Also a surge of new
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Figure 2. Lagged cross-correlation of R(t) with N(t) for China, South Korea and Italy. The maximum correlation of over 0.9
occurs at a lag of T. T is a statistical mean delay, and varies depending on countries. Deaths are included in R(t). (Online version
in colour.)

patients at some time will likely be followed by a surge of discharges a couple weeks later. We
often see such surges in the data.

The model is completed with the mass action law for infection such as: N(t) = aSI(t), as
originally proposed by Kermack & McKendrick [1]. Their SIR model, however, should be replaced
by equations (1.2) and (1.3). The resulting delay differential equation is much more difficult to
solve than the original SIR differential equations without delay, but is much richer in solution
behaviour.

It should be pointed out that, unlike the simplified SIR differential equation model (1.1) that
later became popular in epidemiology, the original Kermack & McKendrick basic model for the
infected population is actually a partial differential equation [1,14] that takes into account the
evolution of the infected population through their ‘class age’, i.e. time since first infected. As such,
it satisfies partly the von Foerster partial differential equation from age-structured population
dynamics that we will use [14–16]. In the partial differential equation version of the model, it
is possible to include a time delay of the recovery, but this was not taken into account. In the
ordinary differential equation version of the SIR model commonly in use, infected patients are
assumed to recover instantaneously. A dependence on the recovery rate on ‘class age’ is not
possible in the ordinary equation version of the model. This violation of ‘conservation law’ is
not easily noticed because what is calculated in the SIR model is R̃, in the third of equation (1.1),
which is the time-integral of R. In the current work, we will be solving for the ratio of N(t) and
R(t). Therefore, their correct relationship is important for our data-driven model.

This paper is organized as follows. We first give in §2 a brief historical review of different
types of models. The epidemiological basis for our model is then discussed in §3. The governing
epidemiological equations are shown to be equations (1.2) and (1.3). Under the approximation
that the change of the susceptible population is not significant, the equations become linear
and we find an approximate analytic solution, which is verified to be accurate with numerical
calculation in §4. In §5, we discuss various combinations of modelled quantities that can be used
to compare with data even though the latter is only for the confirmed cases, while the former
includes asymptomatically infected and untested. Based on the properties of the solution, we
present a simple prediction tool for epidemic management. It is applied for prediction in §6 and
found to be accurate using data for the first waves of the pandemic in several countries. We
then return in §7 to some results that are independent of models. There are only two parameters
that needed to be specified externally for our model and these are determined from data. The
much needed basic reproduction number is also deduced from data for various countries in
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Asia, Europe and the USA. The theoretical support is developed in the electronic supplementary
material, appendix.

2. A brief historical review of different types of models
The purpose of our brief review is to put our contribution in the historical context and to relate
it to the development over the last few decades of the field of behaviour epidemiology. A more
comprehensive review can be found in the 2016 report of Wang et al. [17], and the 2013 book edited
by Manfredi & d’Onofrio [18].

Each type of models has its strengths and weaknesses. For the mechanistic model, discussed
in the Introduction, such as SIR and SEIR or agent-based versions, a key parameter, the infection
rate, a, is not known for an emerging virus such as SARS-CoV-2, and this has been a source of
difficulty with predictions using such models. Some models, such as Imperial College’s, treat it
as an adjustable parameter to fit the model prediction of the deaths against the data, which is
generally thought to be more reliable than that for the infected cases. The infected population
is then back-deduced. For the second type of models, especially the purely empirical models
without epidemiological basis, it is not known which quantity of the epidemic is predictable.

There have been many empirical models based on the assumption that the progression of daily
cases follows a Gaussian ‘epidemic curve’ in time, starting with the early model of William Farr
in 1840: ‘Law of Epidemics’ in his second annual report to the Registrar General of England and
Wales [19]. Lacking the epidemiological mechanisms that Kermack & McKendrick [1] were to
later propose, the ‘law’ simply reflected Farr’s conviction that the observed deceleration of the
rate of increase of infected would not lead to an impending catastrophe but to a crest and then
an accelerated decline. The latest is that of the Institute of Health Metrics and Evaluation (IHME)
[20]. It turns out that fitting three parameters that define a Gaussian to a short data time series
and then using that portion of the Gaussian to predict the subsequent peaks of the epidemic is an
ill-posed problem [21]. The uncertainty for prediction several days out was shown to be large [22],
unless frequently updated. Later IHME updated to their second generation of model, a traditional
SEIR model [23]. It now uses the death data to back-deduce the infection rate and then runs the
model forward for prediction. This inverse problem is discussed in §5a.

The search for the correct ‘geometry of epidemic curves’ has a long history in statistical
modelling. Farr’s Law is purely descriptive, without supplying a mechanism. Farr did not realize
that his epidemic curve is Gaussian but nevertheless his descriptive ‘law of second ratios’ could
be used for prediction, though not accurate. For example (see [24]), if x1, x2, x3, x4, x5, x6 . . . are the
successive weekly incidence (i.e. new cases) or mortality, his law says that the ratio of successive
ratios of these numbers is a constant, which is less than 1:

X4/X3

X2/X1
= X5/X4

X3/X1
= · · · = K.

That is, there is a constant deceleration of the rate of growth of the cases. After measuring this
constant from the early weeks’ data, future incidence values could possibly be predicted. It was
Brownlee in 1907 [25] who realized that the above formula, when the logarithm is taken—turning
the ratio of ratios into difference of differences—is a finite difference form of the second order
time-derivative of In x being a negative constant [24]:

d2

dt2 ln x = ln K < 0.

Integrating twice and then taking exponentiation would lead to x(t) being a Gaussian form.
Brownlee thought this normal form for the epidemic curve is a fundamental law in epidemiology,
but his proposed explanation for the declining growth of the incidence of an epidemic, as due to
decreasing ‘infectivity’, was not well received by epidemiologists at the time.

Brownlee [25] provided examples of several epidemics showing that there was fore–aft
symmetry in their epidemic curves. For COVID-19, we find that the epidemic curve for Wuhan,
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China, follows a Gaussian, with near fore–aft symmetry, but that for the USA has a rapid rise but
slow decline, definitely not Gaussian. We will show that without human intervention in the form
of contact suppression, the epidemiological curve cannot crest and be Gaussian in shape with the
low level of infection that exists in most countries. In the modern era of contact suppression,
the epidemic curve is shaped by such interventions. We shall explain Wuhan’s shape as due to
the fact that the contact suppression measures were consistently imposed throughout the course
of the outbreak, while in the case of the USA, its states and the populace were relaxing earlier
measures on the aft side of the curve, when the new cases declined, creating a fore–aft asymmetry.
In the modern era, as countries pursue a ‘suppressed equilibrium’ at great economic cost, there
is a tendency in countries with decentralized state governments to relax the countermeasures to
various degrees once the disease crested, giving rise to subsequent waves of infection.

Brownlee rejected the idea of herd immunity, that the epidemic’s decline was due to ‘an
exhaustion of susceptibles’, enshrined 20 years later in the SIR model of Kermack & McKendrick
[1]. His alternative, ‘infectivity’ idea was based on the thinking that the decline was due to ‘the
loss of infecting power on the part of the organism’ [25], and that this biological property of
the pathogen (organism) should follow some fundamental law. This biological property of the
virus has not been observed in the current COVID-19 pandemic, and does not appear to be a
factor. In behavioural epidemiology, Brownlee’s definition of ‘infectivity’ is modified to include
social factors, since how many people one individual can infect, as measured by the effective
reproduction number, Rt, depends on the product of the number of persons contacted during
the infectious period and the probability of the contacted person contracting the disease. After
implementation of contact reduction measures for a region, we can actually see quantitatively
from the data (in §7) the decline of this measure of ‘infectivity’ for that region. The decline is found
to be steeper in countries with the more stringent contact-reduction policies and implementation.
Although both the mechanisms of loss of susceptibles and decrease in ‘infectivity’ are likely at
play, with the extremely small percentage of the population infected in the current pandemic, the
second mechanism appears to be the dominant one as countries strive to achieve the ‘suppressed
equilibrium’. Given this situation, model predictions of the decline of the epidemic based the
fraction of susceptibles decreasing, as in SIR and SEIR models, may be missing the dominant
cause for the observed progression of the disease in the current pandemic, although some models
empirically adjust the infection rate step-wise in time to reflect changing conditions. Nevertheless,
these models may be unnecessarily complex by carrying the nonlinear infrastructure of tracking
the susceptible population, which in reality is a very large constant.

Brownlee’s idea, with modification expressed above, can be cast in a mathematical form as

xt+1 = Rtxt, (2.1)

where xt is the incidence (new cases) at time t, and xt+1 is the incidence one infectious period later.
An infection period is the duration an infected person remains infectious. Rt is defined earlier as
the number of people one infected individual would infect during the period when the individual
is infectious. If Rt is a constant, Rt = R0, the solution to the above finite difference equation is

xt = x0(R0)t = x0 exp(t ln R0),

the solution is an unimpeded exponential growth for the relevant case of R0 > 1. Brownlee
[25] commented that such an epidemic form is contrary to the facts: ‘The assumption that the
infectivity of an organism is constant, leads to epidemic forms which have no accordance with
the actual facts’. With Rt as a decreasing function of time, which we find is actually the case in §7,
the above solution becomes Gaussian-like. Specifically, if Rt decreases by a factor q < 1 after each
period [24,25], due to a ‘loss of infecting power’, i.e. Rt = R0q(t−1), then the solution is Gaussian

xt = x0(R0)tqt(t−1)/2 = x0 exp
{

tlnR0 + 1
2

t(t − 1)lnq
}

, (2.2)
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noting ln q < 0. Note that in this argument, no mention is made of the decrease of the number
of susceptibles; this is not needed when that decrease is small compared to the population as a
whole.

Starting from the late 1970s, there has been a rich literature on coupled interaction between
humans and disease in the field of behaviour epidemiology, as reviewed by Bauch et al. [26].
Recent availability of digital data, such as cellular mobility tracking, has allowed a mapping of
social contact networks, leading to models that take into account network topology [17]. Increased
computing power then makes such agent-based models feasible.

Our work does not focus on individual behaviour but on country-wide or province-wide
responses to policy on contact suppression measures (and the degree of compliance). This effect
can be seen readily in the large-scale aggregate data, as we will discuss in §§5 and 7, whereby some
countries, such as China and South Korea, have some distinct patterns in their epidemiological
curves that can be attributed to the degree of contact suppression, when compared with other
regions. We diagnose and attempt to understand these community-wide cause and effects
in infectious disease control. By providing a mathematical theory behind these findings, we
furthermore provide a validated tool that can be used to monitor and predict the course of the
epidemic.

3. Our model
We briefly summarize the main ingredients to establish the epidemiological basis of our model.
The model is used here to infer general properties of an outbreak, and to discover which
properties can be predicted.

All models for epidemics should satisfy certain conservation principles, but many do not.
These latter models would be inconsistent with data and, therefore, cannot be used in a data-
driven way. One such principle is the delay of the recovered from the infected: a surge in the
newly infected should follow some time later, about 20 days for COVID-19, by a similar surge in
the newly recovered/removed population (if the deaths are included in the removed category).
An auxiliary conservation principle is that the two populations should have equal amplitude
in principle. While this is observed in hospitalizations and discharged, those confirmed cases
recovering outside the hospital may not be adequately counted and so represent a leakage
of the conservation principle in practice. Nevertheless, the conservation principle should be
incorporated theoretically in models.

The infected population is governed by the von Foerster partial differential equation in an
age-structure population model (see [14–16]). It carries more information than the compartmental
models such as SIR or SEIR, but is more difficult to solve.

Let X(t,s) be the number of infected individuals for each ‘age’ at time t, with s being the ‘class
age’, i.e. time since a patient is first infected.

The total number of active infected at time t is obtained by integrating over all ages from first
infected to recovered/removed:

I(t) =
∫T

0
X(t, s)ds.

After being sick for T days, a patient either recovers or is removed (dead). T is called the
recovery period (or removal period). It is also called the infectious period if the patient is
infectious during this period. Of course, T value varies by patient and by the efficacy of treatment
in each hospital. For the removed it also depends on the age of the patient and whether there
are underlying medical conditions. Only a mean recovery period is obtainable from data, and so
this is in reality a statistical quantity. For a short-duration epidemic, we ignore natural births and
deaths. Then the population should be conserved: (d/dt)X(t, s) = 0.

This leads to a partial differential equation (see [15]):

∂

∂t
X + ∂

∂s
X = 0. (3.1)
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This is the so-called von Foerster equation [14–16] commonly used in population dynamics.
It expresses the conservation of the population as it ages, until death. As a population ages, the
number of individuals at a certain age s changes in time: it decreases as they get older, with their
age becoming larger than a particular age s, and increases as those who were younger than this
age attain this age in time. Here, it is adapted for epidemics by treating s as time since infection,
the so-called class age, instead of chronological age. For epidemic of short duration, natural birth
and death are ignored. The ‘birth’ process is instead the process of first infection and it is modelled
as a boundary condition at s = 0 (see electronic supplementary material, appendix).

Equation (3.1) can be solved using the method of characteristics to yield

X(t, s) = G(t − s) for t > s, and 0 for t < s. (3.2)

t = 0 is the start of the outbreak. The evolution in time of the infected population should vary
continuously with the progression of the class age as the infected move through various stages of
infection, and such progression should come as a time delay, as expressed by equation (3.2).

Another general principle is equation (1.2)

d
dt

I = N(t) − R(t),

where N(t) is the number of newly infected individuals per day, and R(t) that of the newly
recovered or removed (dead) per day. This equation can be derived from equation (3.1) by
integrating it with respect to s:

d
dt

I =
∫T

0

∂

∂t
X(t, s)ds = −

∫T

0

∂

∂s
X(t, s)ds = X(t, 0) − X(t, T).

We identify X(t, 0) as the newly infected N(t), and X(t, T) as the newly recovered/removed R(t).
The conservation law then follows, since the solution to equation (3.1) is of the form of equation
(3.2):

X(t, 0) = G(t) for t > 0, and X(t, T) = G(t − T) for t > T.

Therefore, for t > T, the conservation law results: R(t) = N(t − T).
The distribution of the newly recovery/removal follows that of the newly infected with a time

delay of T. A more complicated relationship holds for t < T.
Figure 2, obtained in the early phase of the pandemic using the longest data then available,

from China, South Korea and Italy during the COVID-19 pandemic, shows that N(t) and R(t) are
highly correlated: with correlation coefficients all over 0.9 when both distributions are smoothed
with 3-point boxcar. The mean time delay of the correlation can be interpreted as a statistical mean
of T. The lag time of R(t) for China is T = 19 days, for South Korea is 23 days and for Italy is only
10 days.

Due to their low case fatality rate (CFR), there is practically no difference between the total
R(t) and the recovered for China and Korea. But for Italy, which initially had a high CFR, there are
differences between the recovered and the removed. Italy’s lag time between R(t) and N(t) being
shorter than those of China and South Korea does not necessarily mean the shorter the better. The
lag time for deaths for China is 7 days, for Korea is 17 and for Italy is only 3 days. This mortality
component reduces the overall time for recovery/removal for Italy to 10 days.

With the addition of a ‘constituent law’ for the infection process, such as the ‘mass action law’
of Kermack & Mckindrick [1], N(t) = aSI(t), the epidemic model equations are complete:

d
dt

I = N(t) − N(t − T);
d
dt

S = −N(t). (3.3)

This is a system of nonlinear ordinary differential equations with delay. For the COVID-19
epidemic, we have argued that the susceptible population has not changed appreciably. So, the
last equation is not needed. Absorbing this constant S into a, and allowing the latter to be a



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210551

..........................................................

8000

6000

4000

N
(t

) 
or

 R
(t

)

2000

N(t)
R(t)
ln(N/R)

tN tR

tp

0
40 50 60 70

t (day)

80 90 100
–6

–3

0

ln
(N

/R
)

3

6

Figure 3. Theoretical epidemic curves: the daily newly infected numbers, N(t), and the daily recovered numbers, R(t), are
plotted in black and red, respectively. The magnitude is a function of the initial condition, which is arbitrarily chosen here. Also
plotted, in blue, is In(N(t)/R(t)). It is almost a straight line until near the turning point, where it curves slightly downward. The
turningpoint occurswhen this line crosses zero,which is alsowhereN(t) intersectsR(t). The logarithmbecomesnegative infinity
for N(t)= 0 for t> 100 days after the infection rate becomes zero. To predict the turning point by extrapolating the straight
line using the slope from the beginning of the outbreak would overshoot the exact turning point, but only by 2 days, which can
still be considered accurate. The darker lines are numerical solutions to equation (3.4) calculated using Mathlab built-in solver
dde23 for delay differential equations. The lighter colour lines are the corresponding approximate analytic solution.

function of time to describe behavioural changes on contact suppression, equation (3.3) becomes

d
dt

(
N(t)
a(t)

)
= N(t) − N(t − T). (3.4)

This is a delay differential equation.
A complication could arise if there is a delay between becoming infectious and when

an individual is first infected (see electronic supplementary material, appendix). We will not
incorporate this additional feature here for the COVID-19 epidemic because of the short latency
period of the virus, although this effect can be incorporated without much difficulty.

4. Solution
Although the delay differential equation is difficult to solve, its numerical solution using
canned routines is easy. The analytic solutions, the details of which are relegated to the
electronic supplementary material, appendix, help to explain some surprising features of the
solution observed in the data, and better reveal the parametric dependence of the solution.
We will postpone the discussion on how to determine from data the infection rate until §7.
They are calculated here using typical values found from data, with a(t) = a0 − a1t, for 0 < t <

t0, and a(t) = 0, otherwise. a0 = 0.3 per day, t0 ≡ a0
a1

= 100 days. The solution depicted in figure 3
shows that the epidemic curves, N(t) and R(t), are Gaussian-like, with the latter being the delayed
version of the former, both rising exponentially, cresting at tN and tR, respectively, and then
decaying. They cross each other at the turning point tp, which is also the peak of I(t), when the
demand for hospital resources is a maximum. The analytic solutions show that I(t) is Gaussian,
while N(t) and R(t) are Rayleigh functions, which are Gaussian-like.

More importantly, the solution has the property that the logarithm of the ratio of N and R
lies on almost a straight line, and that if we extrapolate the straight line from the early weeks
of the outbreak, we can predict the turning point with an error of only about 2 days. This result
will be verified using data. The analytic solution helps to understand this feature: the ratio of two
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Figure 4. Natural logarithm of the ratio of daily newly infected to newly recovered/removed. They lie on straight lines with
some small scatter. The straight line obtained by linear-least-squares fit is in dotted line with the same colour for each country.
(a) For China, the slopes of the lines are almost the same but with different intercept; the trend lines cross zero (the black
horizontal solid line) at different time for different regions indicating different peaking time for AICs. The epicentre Wuhan
has later turning point than its province Hubei, which in turn has a later turning point than China as a whole. As a measure
of confidence of the linear-least-square fit, the 95% confidence limit for China is given in the figure. Similar confidence limits
for other regions have been calculated but are not shown for the sake of clarity of the presentation. (b) Comparing different
countries. The time is aligned by plotting the NR ratio only when the recovery/removal case numbers first exceed 50 (the actual
numbers on that day are listed at the top), and T0 is that calendar date, listed in the inset. Panel (b) includes the China cases
again, to facilitate comparisonwith other countries, except the data usedwere smoothed by a 3-point boxcar filter in (b). (Online
version in colour.)

different Gaussians is another Gaussian unless one Gaussian is a lagged version of the other. Then
the quadratic terms in the exponent cancel, and only the linear term remains in exponent. So, the
NR ratio is an exponential function, whose exponent is a linear function of time. Its logarithm is
then a linear function of time.

Some insights gained from the analytic solution are listed below:
ln(N/R) lies on a straight line with a zero slope in the absence of contact suppression. This

result is derived in electronic supplementary material, SA.7.
For an unchanging infection rate, the solution for N(t) is exponential growth in time, and since

R(t) = N(t − T) is the same exponential growth but with time delay, ln(N/R) is a constant. This
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result shows that, without contact suppression intervention, and the observed negative slope of
the ln(N/R) line found in observation and shown later in figure 4 is not possible, until much later.
Of course, the exponential growth will not continue forever; N(t) will eventually crest and decline
due to the depletion of susceptible population.

ln(N/R) lies on a straight line with a negative slope in the presence of contact suppression that
reduces transmission. See figure 4.

The slope of ln(N/R) is −T/σ 2
N = −a1T, where σN is the standard deviation of the Gaussian-

like function N(t). So, σN = −1/
√

(d/dt)a(t) = 1/
√

a1 is shown to be inversely proportional to the
square root of the negative slope of the infection rate, which measures how strict the contact
suppression measures are. These results from our model stand in contrast with those of SIR
models.

This result was first discovered empirically from data for countries in Asia and Italy,
which had early outbreaks of COVID-19. We later derived it mathematically as solution of
the epidemiological equation, supplying the needed epidemiological support. See electronic
supplementary material, SA.21, where the following mathematical expression for the slope was
derived:

ln
[

N(t)
R(t)

]
� − T

σ 2
N

· t + 1

2σ 2
N

(T2 + 2Ttp) + ln
(

1 − T
t0

)
.

The net infection rate, which can be obtained from data, is the same, in the early stage of the
outbreak, as the time-varying infection rate that we need for our model.

The former is defined as α(t) = ((d/dt)I(t))/I(t), and can be obtained directly from case data.
We show in electronic supplementary material (SA.21) that it is given during the initial period

by the infection rate a(t): α(t) � a(t), for 0 <t <tp.
The above result was obtained by ignoring the recovered population and is not valid near the

turning point. This however gives a way for us to infer the external parameter a(t) using data as
shown in figure 6 later.

Including the recovered, a complete solution can be found in electronic supplementary
material (SA.17), which is

α(t) = a(t) − a(t − T)k(t)[
1 − ∫t

T a(t′ − T)k(t′)dt′
] ,

where k(t) ≡ exp{− ∫t
t−T a(t′)dt′}, a(t − T) = 0 for t <T. In terms of this net infection rate, the

solution is

I(t) = B exp
{∫ t

0
α(t′)dt′

}
· N(t) = a(t)B exp

{∫ t

0
α(t′) dt′

}
.

This result is valid for 0 < t < tp + T. This solution is for a general time-dependent infection rate.
When restricted to the linear form of a(t) = a0 − a1t, it yields a Gaussian for I(t) and an approximate
Rayleigh for N(t).

5. Comparison with observation

(a) The inverse problem is ill-posed
Most of the model-predicted quantities cannot be compared with observation. A major challenge
in modelling the spread of a disease, such as in the COVID-19 epidemic, is that there is a large
fraction of undocumented infected population showing no or mild symptoms and, therefore, not
likely to be tested and documented as ‘confirmed cases’ [27]. On the other hand, most models
predict the total number of infected, whether ‘confirmed’ or not, and this can be orders of
magnitude higher than the confirmed cases, at least in Europe [10]. Therefore, it is difficult to
compare model predictions with data. Let p, the report rate, be the ratio of the confirmed cases
to the true infected numbers. If it were known, the case numbers can be divided by p to yield
the true infected numbers. Because it is largely unknown (i.e. not reported in the databases) and
testing policy changes in time, it creates the aforementioned challenge in data-driven models.
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In addition to not knowing the report rate p to compare model output with the reported
case numbers, a key parameter needed in the mechanistic models, the infection rate a, is also
largely unknown for an emerging disease. There is a large population of asymptomatic, untested
and unreported infected individuals, who are nevertheless infectious and produce some of the
infected cases reported. The Imperial College group realized this problem early on and their
remedy is for their model to predict the deaths and not the infected population [10]. They believe
that the death numbers are more reliable. Data on the deaths are still unreliable, as many COVID-
19 deaths were attributed to other causes, though they are more reliable than the infection data.
The method is to use the death data not only to deduce the death rate, i.e. the rate at which the
infected who would die, but also the infection rate, i.e. the rate at which the susceptible population
is infected. These are adjusted and the model is rerun until the model simulation for the deaths
fits the reported deaths, letting the predicted number of infected be unconstrained by data. The
model prediction of the infected population tends to be much higher than the data for the infected
cases reported (which is reasonable), as can be seen in their model results. The problem with this
approach is that even if the data for the deaths are reliable, this way of fitting data to back deduce
the infection rate a is too indirect: there may be many factors that affect the death rate other
than the infection rate, such as the changing quality of the hospital care, as the healthcare system
is being overwhelmed. Mathematically, this is an ill-posed problem, caused by using one set of
data (the deaths) to deduce two sets of parameters in the model (the death rate and the infection
rate). This difficulty is compounded by the fact that the SIR or SEIR models that they used have
instantaneous recovery from infection, which is inconsistent with data.

Fokas et al. [28] pointed out that this inverse problem is notoriously difficult, and it is
impossible to uniquely identify all parameters of the model given a set of data, even if the
available data are reliable. Nevertheless, they showed how a reduced combination of parameters
could theoretically be determined given the death time series and all its first four time derivatives,
and these could be useful to predict the future deaths, provided that the data time series is
long enough, i.e. past the peaks of the epidemic until the accumulated deaths plateau [29]. Their
algorithm depends crucially on the reliability and smoothness of the death data, and on the model
adopted being correct. Even if the death data are so reliable, the combination of parameters that
can be deduced in this inverse problem does not include the parameters that determine the total
number of infected.

(b) Use of ratios in forward instead of inverse approach
In this work, we propose to overcome this problem by using the NR ratio, defined as NR(t) =
N(t)/R(t).

Let N(t)cases = p(t)N(t), where p(t) is the ratio of the confirmed cases to the true infected
number. Because of the conservation law, we have

NRcases = Ncases(t)
Ncases(t − T)

= p(t)N(t)
p(t − T)N(t − T)

= p(t)N(t)
p(t − T)R(t)

� N(t)
R(t)

= NR,

provided that p(t − T) � p(t), which is a reasonable assumption, because this ratio does not change
in a short period of time, compared with the growth of the infection. Given this reasoning we can
compare model-predicted NR ratio with the observed NR ratio in figure 4.

We show in figure 4, using the case data of the pandemic for COVID-19 for the longest records
available at the time of the verification, that the logarithm of NR(t) ratio lies on a straight line, with
small scatter, passing through the turning point tp. And data for various stages of the epidemic,
from the initial exponential growth stage, to near the peak of active infected cases (AIC), and then
past the peak, all lie on the same approximate straight line. The intercept with ln(N/R) yields
the turning point. In the real data, R(t) is affected by treatment efficacy and hospital policies on
discharges, and so there is more scatter in the recovered/removed cases. For example, its standard
deviation σR is slightly larger than σN , the standard deviation for N(t). Here, in the figure, we use
the reported recovered/removed cases in the data, and not the theoretical result of R(t) = N(t − T).
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This line, obtained by linear-least-square fit, is little affected by the rather large artificial spike
in the data for 12 February for China, because of its short duration and the logarithmic value.
That reporting problem is necessarily of short duration because, on the date of definition change,
previous week’s infected cases according to the new criteria were reported in 1 day. After that,
the book is cleared, and N(t) returned to its normal range.

A comparison of the logarithm of NR ratio for several countries is given in figure 4b. A steeper
slope is associated with an early turning point, and also a predictor for a shorter duration of the
epidemic. The shallowest slopes in figure 4b were for Italy, where the enormous pressure strained
the medical system to the limit, resulting in the largest σR value, and one of the highest case
fatality rates in the world, at more than 12%. Germany and China have similar slopes. For China
outside Hubei, the slope is steepest and the turning point reached 9 days earlier than Wuhan.
South Korea’s slope is even steeper due to that country’s early action. As a result, Italy took a full
month longer to reach its turning point than Germany and China, and more than 40 days longer
than South Korea.

The observation validates our model result but contrasts the results from SIR model; the latter
predicts that the NR ratio itself, not its logarithm, should follow a straight line.

Other ratios we use are

α(t) = d
dt

lnI(t) = (d/dt)I(t)
I(t)

,

which crosses zero at tp, which is the peak of I(t),

d
dt

lnN(t) = (d/dt)N(t)
N(t)

,

which crosses zero at tN , which is the peak of N(t) and

d
dt

lnR(t) = (d/dt)R(t)
R(t)

,

which crosses zero at tR, which is the peak of R(t).
When the report rate p(t) changes more slowly than the growth of the epidemic, these ratios

should be approximately independent of the report rate.
Theoretical justification for these ratios lying on straight lines is given by the fact that I(t)

is a Gaussian. Its logarithm is a quadratic function in time, and therefore becomes linear when
differentiated. N(t) and R(t) are not exact Gaussians, but Gaussian-like. It can be shown that
for these functions, their logarithm is almost a quadratic function and so the derivative of their
logarithms lies approximately on a straight line. Verification using case data is given in figure 1a
in the electronic supplementary material, appendix.

6. Predictability
For prediction purposes, instead of curve fitting a Gaussian as some other groups have done,
a more accurate and robust prediction tool is based on the ratio of N(t) and R(t). This ratio in
addition alleviates to some extent the problem related to the data of reported cases being a fraction
p of the true numbers, as p cancels out in the ratio. Unfortunately, some countries, such as the
UK and Sweden, do not keep adequate record of R(t), and many countries do not maintain a
rigorous standard, which could be detected by the low case recovery rate, indicating the violation,
or leakage, of the conservation law.

Unlike other model predictions, our prediction tool is rather simple and does not require
computer simulation. It also does not require that we know the model parameters, such as the
infection rate a(t). Since empirically and theoretically the logarithm of NR ratio lies on a straight
line passing through the turning point of I(t), it would be interesting to explore if the turning
point, tp, can be predicted by extrapolation using data weeks before it happened. Extrapolating
a straight line is much more practical than other more involved curve fitting algorithms some
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Figure 5. (a) Prediction of the turning point in AICs for different regions of China by extrapolating the trends in logarithm of
NR. The horizontal axis indicates the date the prediction is made using data from 24 January to that date. The vertical axis gives
the dates of the predicted turning point. Dashed horizontal lines indicated the true dates for the turning point. (b) Prediction
of the turning point in AIC for Italy. Data used for all predictions start on 29 February. The first point shown predicts the turning
point to occur on 19 April (4 days early) six weeks in advance using 9 days of data from 29 February to 8 March. (Online version
in colour.)

other groups have adopted. For example, fitting a Gaussian curve was found to have such large
uncertainty that the prediction a few days ahead is an ill-posed problem [21]. For our method,
how far in advance prediction can be made accurately appears to be limited by the poor quality
of the initial data, when R is small and highly fluctuating.

Figure 5a shows the results of such predictions for China, and figure 5b for Italy. It is a hindcast
since the truth is now known. The horizontal axis indicates the last date of the data used in the
prediction. The beginning date of the data used is 24 January for all experiments for China. Prior
to that day, data quality was poor and the newly recovered number was zero in some days,
giving an infinite NR ratio. For China outside Hubei, the prediction made on 6 February gives
the turning point as 14 February, 2 days later than the truth. A prediction made on 8 February
already converged to the truth of 12 February, and stays near the truth, differing by no more than
fractions of a day with more data.

The huge data glitch on 12 February in Hubei affected the prediction for Hubei, for China as a
whole, and for Hubei-exWuhan. These three curves all show a bump up starting on 12 February,
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as the slope of N(t) is artificially lifted. Ironically, predictions made earlier than 12 February are
actually better. For example, for China as a whole, predictions made on 9 and 10 February both
give 19 February as the turning point, only one day off the truth of 18 February. A prediction made
on 11 February actually gives the correct turning point that would occur one week later. At the
time these predictions are made, the newly infected cases were rising rapidly, by over 2000 each
day, and later by over 14 000. It would have been incredulous if one were to announce at that time
that the epidemic would turn the corner a week later. Even with the huge spike for the regions
affected by Hubei’s changing of diagnosis criteria, because of its short duration, the artefact, in
which the cases diagnosed by chest X-rays over the previous week were entered as ‘confirmed’
in one day, affects the predicted value by no more than 3 days, and the prediction accuracy soon
recovers for China as a whole. For Hubei, the prediction never converges to the true value, but
the over-prediction is only 2 days.

For applications to other countries and to future epidemics without a change in the definition
of the ‘infection’ to such a large extent, we expect even better prediction accuracy and smaller
uncertainty. This better accuracy can be seen in the prediction for Italy. The error of predicting
the turning point three weeks in advance is only 1 or 2 days. In fact, a prediction can be made six
weeks in advance with an error of 5 days or less.

The prediction for the USA as a whole is less accurate (with errors up to 10 days) because its
data are an aggregate of different epicentres. More accurate predictions can be made by treating
each state separately. This is not done here because although the data for new cases and deaths
are available for each state, recovered data are not individually available. It is also not accurate
for the UK because its data for recovered may be suspect.

For countries without an adequate record of R(t), another, somewhat less robust, method can
be used. We can obtain tN and σN from data. tR = tN + T. T and tp cannot be obtained before it
occurred, but can be estimated roughly as tp = tN + T/2, using T∼20 days applicable to countries
with similar medical systems.

In many countries, pressure mounts for policy-makers to relax the contact-reduction measures
when case counts pass the peak and are declining. In some countries where the restrictions are
gradually lifted, we should expect a long tail in the epidemic profile. This external influence to the
original expected progression of the course should be monitored and adjustment to predictions
made in real time. Although we cannot predict policy changes and, therefore, we cannot predict
the start of the second wave, once the second wave has progressed for a few weeks, we can
make another prediction of the second turning points by starting with a new straight line with
a different slope. Second and third waves have now occurred in many countries at this time.
However, we have not attempted to make further predictions. What we have shown is a proof of
concept that can also be applied to subsequent waves.

Consistent with the above discussion, the relaxation of contact-reduction measures, which
changes the slope of the logarithm of NR ratio, and lengthens the standard deviation of the new
cases, is only significant in the later stages of the course, and can be ignored before the peak, but
the prediction on the evolution after the peaks on quantities such as the end of the epidemic and
the total number of infected is likely not accurate unless these changes in behaviour are taken into
account.

The prediction of the magnitude of AIC at its peak can also be done knowing the predicted
turning point and the Gaussian shape of the solution theoretically. See electronic supplementary
material, appendix. It is found to be fairly accurate before and near the turning point but not after
the turning point, when social distancing and policy may change, and there may be a long tail for
newly infected.

7. The net infection rate and the reproduction numbers
We present here some results that can be calculated from data independent of models used.
We define in general the net infection rate α(t) as the time-varying exponential growth rate of
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AIC [30]:

α(t) = d
dt

ln I(t) = (d/dt)I(t)
I(t)

= N(t) − R(t)
I(t)

.

This quantity, defined as a ratio of the rate of change of I and I itself, is not sensitive to the
report rate, and therefore, the data for the cases can be used here. The peak number of AIC is
a key parameter in the planning for hospital resources. This peak location is called the turning
point, denoted by tp, and can be located in a local-in-time manner using equation (1.2), by when
R starting to exceed N, without first accumulating the data in time to find I(t). The maximum
demand for hospital resources occurs at its peak, and not at the peak of N(t), although the latter
is a more commonly reported quantity.

Figure 6 shows the net infection rate for several countries. The official data that we use
include only the confirmed cases (‘cases’ for short). In some regions, a subset of cases, those who
have more serious symptoms requiring hospitalization, referred to as total hospitalizations, are
also reported. The peak of total hospitalizations is closely watched by hospital administrators
and policy-makers. α(t) is commonly referred to as exponential growth rate of active cases or
hospitalization. Its inverse gives the e-folding time in days for the cases in an outbreak. A value
of say α between 0.3 and 0.4 per day, where most countries cluster in the initial period, implies
an e-folding time of about 3 days (doubling time of 2 days). The even higher values α for many
regions in the beginning of our data record may not be due to indigenous disease transmission.
See later discussion.

The time for different countries is aligned in figure 6 to begin the time series when each
region first exceeded 100 accumulated cases. This way, the progression of the epidemic in each
country can be compared. Figure 6 reveals the effects of different policy measures each country
adopted. First, South Korea and China exHubei have similar net infection rates (until past their
respective turning point); both are much lower than other countries. In the case of South Korea,
the government identified early that its epicentre of the epidemic was at church gatherings in the
city of Daegu and North Gyeongsang province, where 90% of the initial cases were found. Then
aggressive contact tracing was pursued. After the turning point, South Korea soon experienced
some second wave episodes, which were successfully contained. These two regions’ rigorously
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implemented contact reduction and aggressive pursuit of ‘Test–Trace–Treat’ measures led to them
being the extreme examples of the ‘suppressed equilibrium’.

Germany and Italy have similar exponential growth rates of the net infected case numbers,
both slightly higher than Wuhan. More surprisingly, USA has the highest exponential net
infection rate, 1.5 times that of Germany and Italy and twice that of Wuhan. This can be attributed
to the fact that USA so far does not have a nationwide lockdown, and Europe has had partial
lockdowns in phases. Germany took a week longer than Wuhan to reach its turning point. China
outside Hubei reached its turning point early, in fact 9 days earlier than the epicentre, Wuhan.
This fact is significant, for it is qualitatively different from many traditional model predictions,
which had the epicentre achieving its turning point one to two weeks earlier than China outside
Hubei [31], probably based on the herd immunity concept.

The net infection rates for China outside Hubei and South Korea are more monotonic than
other regions shown. This is likely due to the fact that there was not a piece-meal imposition of
social distancing measures, unlike other western countries. The strict measures were imposed and
enforced throughout the course. For Wuhan, the large spike on day 23 (12 February) was due to a
change in the diagnostic criteria from positive nucleic acid test to chest scan, booking in one day
more than 14 000 cases.

To interpret the meaning of the slope of these curves, for countries that had consistent social
suppression measures, the net infection rate can be approximated by α(t) = α0 – α1t. The negative
slope α1 gives a measure of the effectiveness of the contact suppression in each country. This
yields a quadratic exponent and a Gaussian form for I(t):

I(t) = B exp
{
α0t − 1

2
α1t2

}
= B exp

{
− (t − t1)2 − t2

1
2σ 2

}
.

The standard deviation of the Gaussian is given by: σ = 1/
√

α1. The peak is located at
t1 = α0/α1. The slope of the net infection rate determines the width of the Gaussian. Steeper
the slope, the narrower is the Gaussian. It also leads to an earlier peak and quicker decline
of the epidemic. These results are, however, diagnostic, since α is part of the solution. In the
electronic supplementary material, appendix, it is solved analytically. We show that the infection
rate a needed as input for SIR-type models can be inferred from α during the early stage of the
epidemic, when the recovered population is smaller than the newly infected population. In the
electronic supplementary material, appendix, we also solve for I(t), which has the Gaussian form
as diagnosed above.

The case of Sweden needs a special explanation. The epidemic in Sweden initially grows
with an e-folding time of around 3 days, in line with other countries. Then on 12 March,
the government announced that because of limited resources, it no longer would test for the
COVID-19 infection, except for those with serious symptoms already in the hospitals who
furthermore were also in the high-risk group. As a result, the new cases took a nose-dive on
that day, leading to an artificially low net infection rate of 0.1, implying a 10 day e-folding time.
The denominator in the calculation for α(t) is I(t), which is an accumulated quantity, and includes
those who tested positive prior to 12 March under more liberal criteria. So, this situation explains
the flat, low level of α(t) just above 0. It would eventually cross 0 with large enough death
numbers. Sweden’s policy decision to implicitly pursue ‘herd immunity’ (while protecting the
elderly) has been touted as a viable and perhaps preferable approach to those of other countries
in their pursuit of ‘suppressed equilibrium’. It only encouraged those over 70 to stay home
and banned visits to nursing homes and gatherings with over 50 people, while business, stores,
restaurants and kindergartens through grade 9 were open. The success or failure of this approach
cannot be evaluated by the incomplete data. It is noteworthy that, based on the recorded death
number, Sweden’s per capita death toll is 5 and 11 times that of its neighbours Denmark and
Norway, respectively.

In traditional mechanistic models, such as the SIR model [1], there is also a time-dependent
net infection rate, which at t = 0, when the population is wholly susceptible, is related to the
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basic reproduction number R0. See [32] for a discussion of the complexities associated with this key
parameter. We will not be using the SIR model, but it is useful to relate our general definition to
what is traditionally used. The equation for I in the SIR model is (see equation (1.1))

dI
dt

= aSI − bI = bI
(

aS
b

− 1
)

,

where aS(t) is the infection rate and b is the recovery/removal rate.
Therefore

α(t) = (dI/dt)
I

= b
(

aS(t)
b

− 1
)

= b(Rt − 1).

For the SIR model, the time-dependent effective reproduction number is Rt = aS(t)/b. For the SEIR
model, the infected population is (I+E), where I is the infectious and E is exposed but not yet
infectious. The equation for I in SIR model is replaced by

d
dt

(I + E) = bI
(

aS
b

− 1
)

.

The right-hand side remains the same as that for the SIR model. So the reproduction numbers
can be defined the same way. Initially, when the whole population is not yet infected, the basic
reproduction number is R0 = aS(0)/b = Rt(0) = α(0)/b + 1.

Our time-dependent net infection rate generalizes this concept to be independent of the SIR
or other models: if in the course of an epidemic, α(t) is positive, the number of infectives will
grow exponentially, reaching a peak number of infectives when α(t) = 0 at t = tp, which is a
critical turning point defined previously. Then the total number of active infectives will decrease
exponentially. In terms of Rt = α(t)/b + 1, if this number is greater (less) than 1 the total number
of active infectives will grow (decrease) at time t. We will here use α(t) directly. Rt, however, is
the more watched quantity by the mainstream modellers [32]. It can be calculated from the net
infection rate, but will require the determination of an additional parameter b, the recovery rate,
which may be different for different regions. Furthermore, many countries do not keep adequate
records on those who recovered, and so there is an uncertainty in estimating b. In figure 7, Rt is
obtained by estimating this parameter as b ≈ 1/σR ≈ 1/σN , where σR is the standard deviation for
the distribution of the daily recovered and σN is that for the daily newly infected numbers. R0 is
obtained from Rt in the initial period, before there is significant recovered population.

Figure 7 converts figure 6 to show Rt for each country. Our data-based method shows that Rt

clusters around 4 for all countries in three continents during the initial period, consistent with
results deduced previously for Europe based on backward simulations of an SEIR model [10].
Because of the problems for the data in the initial period, the curves cannot be extended further
back in time to deduce R0. But based on Rt, a few days later, R0 for COVID-19 should be around
4, similar to that for SARS. It was originally thought that COVID-19’s R0 was between 2.0 and 2.5
[33], seemingly much less contagious than SARS [34]. Our estimate puts COVID-19 to be much
more contagious than the 2009 swine flu pandemic, caused by the H1N1 virus, whose R0 was
estimated [35] to be 1.4–1.6.

In deducing the reproduction numbers, we should not count the large spike for China outside
Hubei on day 4. That increase was not due to indigenous transmission, because most of the initial
cases were imported from Hubei. This should not be used to infer the reproduction number.
Similarly, for South Korea in the first few days shown.

As in figure 6, the decrease of Rt in figure 7 from 4 to 1 for different countries reflects different
level of contact-reduction measures adopted and enforced, with China outside Hubei and South
Korea sloping more steeply than Europe and the USA. The step-wise behaviour of these numbers
for the European countries are rather similar to the model results of Flaxman [9] of Imperial
College (their fig. 2), who imposed the parameter changes in steps in their model on the dates they
were actually imposed. With their SEIR model calibrated to more accurately predict the mortality,
when R0∼4 is used, the modelled death numbers are close to the reported deaths (fig. 2 in [9]).
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Figure 7. Effective reproduction number for each country or region. The horizontal axis denotes days since day 0 in 2020 (the
corresponding calendar date is given in the inset legend), which is the starting date for our calculation. This date is determined
by the threshold that the accumulated number of infectives first exceeds 100. The actual number for each region on that day
is listed at the top. The thick dashed curve is the average of the curves for the USA and European countries, including Russia.
(Online version in colour.)

As we pointed out in the Introduction, the ‘exhaustion of susceptible population’ has not been
a factor in the control of the epidemic in many countries, such as China and South Korea, and even
in Europe. In models such as SIR and SEIR, the time-dependent decrease of the reproduction
number, Rt = aS(t)/b, is supposed to be due to the decrease of the susceptible population S(t).
In reality for the COVID-19 epidemic, the decrease should be attributed to human intervention,
which results in a decrease in a(t), with S(t) deviating not much from the original population for
the country.

The UK’s record for the recovered is almost non-existent, and what is available shows that the
recovered number is only a few per cent of the deaths, which does not appear to be reasonable.
Without the recovered in the data, the UK’s Rt hovers above 1. There appears to be a similar
situation in some other countries, such as Italy. Therefore, the behaviour of Rt in the later stages
of the epidemic (in the neighbourhood of the turning point) is probably not correctly depicted
by the incomplete data shown for these countries. Nevertheless, in the initial period, when the
number of recovered is small, the data shown can be used to estimate Rt and R0.

SEIR model was also used to deduce the reproduction number by Institute of Disease
Modeling [36] in an effort to monitor the effect of social distancing measures adopted near Seattle
(King County, Washington). They found that Rt was reduced from 2.7 to 1.4. Since it was not below
1, the Institute’s report advised continuing the measures in place. Since the report rate p, that
is, the ratio of the number of reported cases versus the true infected number was unknown, the
authors assumed a range of values, and obtained R0 ∼ 2.7 ± 0.9. One can see from this application
of the reproduction numbers how important it is to monitor in real time the progress of policy
measures to determine whether it is time to relax the measures in place. And it also shows how
difficult it is to infer these numbers, given that the report rate is unknown.

8. What is needed to reach herd immunity, with and without vaccines
For a region with an R0 of 4, what proportion of a wholly susceptible population needs to be
vaccinated to achieve herd immunity? The answer is more than 75% if the vaccine is 100%
effective against infection of the vaccinated. The 75% threshold is needed to reduce Rt from its
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initial value of 4 to 1. It is called the ‘critical vaccine coverage’ [17], and can be obtained as xc from
R0(1 – xc) = 1.

If the vaccine is 90% effective in real world situations, this effective rate should be divided
into 75% to yield 83%. This includes every man, woman and child. Combined with the vaccine
hesitancy in some parts of the population, this is indeed a high threshold to cross.

In the USA, the goal for reopening is when 70% of the adult population is vaccinated. It is seen
here that this percentage is not high enough. So social distancing measures should still stay in
place.

If the vaccine’s effective rate is 75% or lower, herd immunity cannot be achieved with
vaccination alone. The final end of the pandemic, if it still happens, may necessarily be the
‘suppressed equilibrium’ through social contact suppression. The vaccine can be useful if applied
to the population when the epidemic is near its end, as in China, even if the vaccine effectiveness
is lower.

In the absence of vaccines, immunity is alternatively conferred by being infected and
recovered. The answer is the same: at least 75% of the population needs to be infected to achieve
herd immunity. There have been various estimates based on models for answers to both questions,
ranging from 50 to 80%. Our estimate is data driven.

The fact that in many countries Rt was reduced to 1 before the availability of vaccines means
that it actually reflects the effect of contact reduction measures in place in those countries.
The cresting of the observed daily newly infected N(t) and then its decline in the first wave
of the epidemic in many countries cannot be attributed to the depleted fraction of susceptible
population (which was negligible) or to vaccines (which were not yet available).

An additional remark inserted before publication: The study in this paper was done during the first
wave of the pandemic. The COVID-19 virus has recently mutated to become more contagious. It is
now difficult to deduce empirically the basic reproduction number, which is defined for a wholly
susceptible population, because some of the population have already been vaccinated or infected
with a previous variant of the virus. However, an estimate of the reproduction number can be
given. The delta variant is found to be 50% more contagious than the alpha variant, which is in
turn 50% more contagious than the original virus that first appeared in Wuhan. Since we found
that the original virus has R0≈4, meaning one person can infect 4, the alpha variant, being 50%
more transmissible, would be able to infect 6, giving R0 ≈ 6. The delta variant, being 50% more
transmissible than the alpha variant, would have R0 ≈ 9, meaning that one person can infect nine
other persons. To reach herd immunity, Rt needs to be reduced from 9 to 1. This requires 99% of
the population be vaccinated against this variant with a vaccine that is at least 90% effective.
This is an almost impossible task. Therefore, the epidemic, now with the delta variant being
the dominant strand, cannot be controlled with vaccines alone. Contact suppression, including
masking, needs to be re-imposed, and has been found to be effective in India and the UK in
turning the corner against this more contagious variant. Our model, which incorporates the effect
of contact suppression, becomes even more relevant.

9. Discussion and conclusion
A major advantage of our model, and the tool it provides for predicting turning points and
various peaks of the epidemic curve, is its simplicity. Although the mathematical model behind
it, being a partial differential equation in time and ‘age’ (days sick since first infected), is more
complicated than the ordinary differential equations in compartmental models, such as SIR and
SEIR, our results are actually quite simple and easily interpretable. The numerical and analytic
solutions we have obtained allow predictions to be made for the course of an epidemic without
having to run a computer program. The parameters that our model needs can be determined
from data and we have done so for the COVID-19 pandemic in various countries for the first
waves of the outbreak. Even these parameters do not need to be specified or deduced for our
simple prediction tool, which involves extrapolation along a straight line after the early portion
of that line has been established. To solve the dichotomy between data and theory, with the former
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usually specific to the confirmed cases, and the latter for the total infected, whether they have been
tested or not and whether they show symptoms or not, we propose to use the ratio of N(t) and R(t)
in the dataset for confirmed cases. The ratio between the ‘cases’ and the ‘true number of infected’
largely cancels out in the NR ratio. The quantity α(t) for the net infection rate is also obtained as a
ratio. The statistics part of our tool is no more than linear-least-squares fit to a straight line, which
can be done by medical staff without needing a computer model.

Our model is supported by underlying theoretic foundation and validated by the existing data.
Because it is based on general epidemiological principles, we suggest that our approach could be
applied not just to the current COVID-19 epidemic, but also generally to future novel epidemics.

Importantly, we made explicit the concept of ‘suppressed equilibrium’ as an end state of
an epidemic, in additional to the traditional ‘herd immunity’ state. Based on the traditional
mechanistic model, an epidemic wanes after a high percentage of the population is infected and
then recovered in the process acquiring immunity. This is the so-called ‘herd immunity’ idea. For
COVID-19, which we found to be very contagious, more so than previously thought, the ‘herd
immunity’ would require almost all of the population be infected and, therefore, would bring
unthinkable toll in the number of people sick and dead. A second way for an epidemic to end is
with strict contact suppression measures, so that although a large pool of susceptible population
still exists, the portion that an infected person comes in contact with is reduced by the measures
adopted, again leading to the effective reproductive number less than 1. Unlike the first state
mentioned above, this ‘suppressed’ state is ‘parametrically unstable’ in the sense that if the social
distancing measures are relaxed before the epidemic ends or new infection is imported after the
first wave ends, the epidemic will rebound, as a large portion of the population is still susceptible.
For this second state to be a stable equilibrium, the social distancing measures, and quarantine of
cross-border visitors need to be maintained until it is clear that the disease has died off. It is this
second state that most countries are now aiming for.

Since it is the goal of most countries to eventually approach the ‘suppressed equilibrium’, it
is important to note that the deceleration of the growth of the incidence (daily newly infected)
that is observed is not a function of biology, but is a result of contact-reduction, which is social
science. The mechanism of the exhaustion of susceptibles is not relevant anymore as the number
of infected is such a very small percentage of the susceptible population. Therefore, it is not
necessary to be burdened with the nonlinear structure of a model, such as SIR or SEIR, to keep
track of the change in susceptibles after the start of the outbreak.

In the USA, a second wave started in May 2020 after the epidemic curve had peaked in April
and was declining. This is evidence that the cresting of the epidemic curve and its initial decline
were not the result of the recovered population reducing the susceptible population, since if
it were so the infection would not have started a new wave. It was caused by the reopening
measures that some states started to implement in mid-May.

The prediction we made previously used data up to 5 April 2020 [37]. We could not have
predicted in April 2020 that states and some countries were beginning to relax the contact
suppression measures, and we did not attempt to do so. The current work used data until early
May 2020 [38] and so is only relevant for the first wave of the pandemic. Nevertheless, our method
can still be used to monitor the second wave or third wave once it breaks out and we could
determine a new slope for the prediction line. This can lead to a prediction of the second or third
turning point.

Data accessibility. All data in this study are publicly available from World Health Organization (WHO)
at https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/; and on the
Daily Brief site of China’s National Health Commission at http://en.nhc.gov.cn/. The Korean data
are available at https://sa.sogou.com/new-weball/page/sgs/epidemic. Coronavirus COVID-19 Global
Cases by Johns Hopkins CSSE at https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/
bda7594740fd40299423467b48e9ecf6https://github.com/CSSEGISandData/COVID-19/tree/master/csse_
covid_19_data/csse_covid_19_time_series.
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