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Swelling of lymph nodes (LNs) is commonly observed during the adaptive
immune response, yet the impact on T cell (TC) trafficking and subsequent
immune response is not well known. To better understand the effect of
macro-scale alterations, we developed an agent-based model of the LN
paracortex, describing the TC proliferative response to antigen-presenting
dendritic cells alongside inflammation-driven and swelling-induced changes
in TC recruitment and egress, while also incorporating regulation of the
expression of egress-modulating TC receptor sphingosine-1-phosphate
receptor-1. Analysis of the effector TC response under varying swelling con-
ditions showed that swelling consistently aided TC activation. However,
subsequent effector CD8+ TC production was reduced in scenarios where
swelling occurred too early in the TC proliferative phase or when TC cognate
frequency was low due to increased opportunity for TC exit. Temporarily
extending retention of newly differentiated effector TCs, mediated by sphin-
gosine-1-phosphate receptor-1 expression, mitigated any negative effects of
swelling by allowing facilitation of activation to outweigh increased access
to exit areas. These results suggest that targeting temporary effector TC
retention and egress associated with swelling offers new ways to modulate
effector TC responses in, for example, immuno-suppressed patients and to
optimize of vaccine design.
1. Introduction
The lymphatic system is a network of organs and lymphatic vessels that main-
tains fluid balance and delivers crucial antigen information to lymph nodes
(LNs) for adaptive immunity initiation. LNs contain compartments populated
by T cells (TCs), B cells, fibroreticular cells (FRCs) and lymphatic endothelial
cells (LECs) [1,2]. When antigens are presented (either suspended in lymph
or captured by incoming antigen-presenting cells such as dendritic cells
(DCs)), the LNs’ physical environment changes. Swelling of LNs is a
well-known consequence of antigen presentation, but the effects of swelling
on processes crucial for adaptive immunity are not well understood.

TCs and B cells mainly enter LNs by transmigrating from blood vessels in
the paracortex, while lymph-borne DCs migrate into the paracortex across the
sub-capsular sinus (SCS) floor [3,4]. Typically, one in 10 000 naive TCs express
a complementary TC receptor to the antigen fragment presented by DCs within
a major histocompatibility complex class I (MHCI) (to CD8+ TCs) or class II
(MHCII) (CD4+ TCs) molecule [5,6]. With sufficient affinity and stimuli, TCs
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Figure 1. Model geometry and structure. (a) LN structure displaying arriving lymph containing agDCs. (b) TCs enter in the centre of the spherical paracortical model
and exit near the interface with the medulla and SCS. The paracortex radius expands as a function of TCs present. (c) TCs move to adjacent grid compartments,
interact with neighbouring agents and are influenced by grid compartment properties, which are updated each time step.
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undergo activation, secrete inflammatory and activation-
facilitating cytokines and differentiate into effector and
memory TCs [7].

The mechanisms driving LN swelling include DC pres-
ence, B cell signalling and trapping of non-activated TCs
[8–11]. Regardless of the trigger, within 2 days, the TC exit
rate drops (LN shutdown), blood flow to the LN increases
and inflammatory signalling results in a three- to fivefold
increase in TC recruitment via high endothelial venules
(HEVs) [12–15]. From 48–96 h, LN mass increases two- to
fivefold, accompanied by a similar increase in cellularity,
and FRCs elongate to accommodate LN size increase
[11,16,17]. Subsequent LEC and FRC proliferation allows
maintenance of LN architecture during further expansion
[10,17,18]. The LN blood vessels also grow, increasing blood
vessel volume roughly proportional to overall LN volume,
accompanied by further TC recruitment [9,14,19].

Between 2 and 5 days after immunization, the antigen-
presenting DC (agDC) number in the LNs peaks, TC acti-
vation and proliferation is underway and TC egress
increases three- to sixfold [10,11,20,21]. The expansion of
medullary and SCS areas aids increased TC egress [22].
Recruitment of TCs then declines, HEV, FRC and TC prolifer-
ation subsides, remaining effector TCs may undergo
apoptosis and LNs return to baseline volume while
memory cells recirculate [19].

Throughout these processes, TC egress is modulated by
sphingosine-1-phosphate-1 receptor (S1P1r) expression and
chemokine signalling axes. After entering the LN, TCs
express S1P1r at low levels but begin S1P1r re-expression
after 2 h [23,24]. TCs exit LNs by probing and subsequently
entering cortical sinuses in the paracortex or the medullary
interface, aided by chemotaxis [25,26]. During inflammation,
TC S1P1r expression is reciprocally regulated by CD69, an
early TC activation marker. This mechanism contributes to
the initial decrease in TC egress, termed LN shutdown, and
later to the specific retention of activated TCs [15,27]. Differ-
entiated effector TCs re-express S1P1r, facilitating egress [28].

The ability to investigate the importance of LN swelling
in these processes is limited experimentally by a lack of
means to modulate swelling without interfering directly
with other aspects of adaptive immunity. We chose to
develop an agent-based model (ABM) that could describe
macro-scale geometric changes, micro-scale TC and DC inter-
actions and capture emergent behaviour by modelling the
probabilistic behaviour of thousands of cells. Beyond the
desire for a better understanding, we aim to provide a
means for designing experiments that explore potential
therapeutic means of modulating LN swelling.

Fixed-volume ABMs have provided insight into inter-
actions relevant to vaccine design; for example, the effects
of antigenic peptide separation on TC activation, influential
aspects of TC–DC interaction and memory TC production
[29–33]. An ABM to investigate chemotactic influence
included a form of paracortical expansion, where grid com-
partment number remained equal to TC number and exit
portal number altered to maintain a mean TC residence
time. This model suggested that the relative chemokine
level is important but may underestimate changes in crowd-
ing and egress with swelling [34–36]. Simulations integrating
a fixed-volume lattice-based model and a continuous model
of chemokine diffusion showed that early antigen removal
and TC exit regulation affected the balanced system
dynamics, indicating that macro-scale swelling is likely to
significantly affect micro-scale TC activity [37].

In summary, the careful trafficking and coordination of
immune cell movements in the LNs suggest that LN swelling
may significantly impact the adaptive response. We devel-
oped a computational ABM to investigate this hypothesis.
The results suggest an important role for regulating early
effector TC retention to maintain the benefits of LN swelling
on overall effector TC response.
2. Material and methods
2.1. Agent-based model geometry
We aimed to replicate a murine LN by integrating experimentally
obtained parameters. The paracortex was modelled as a sphere
with initial radius R0 = 200 µm, derived from confocal images
of murine LNs [2,38]. Geometric symmetry was assumed so
that one-half of the total spherical geometry was modelled. The
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modelling domain was divided into cuboid grid compartments,
with edge length 6 μm (figure 1c). For each grid compartment,
we tracked which region of the paracortex was represented,
such as ‘exit’, ‘boundary’ or ‘outside’.

2.2. Modelling swelling
We collected data from murine experiments regarding change
in LN mass and volume, TCs, structural cells, migrating DCs,
TC recruitment and TC egress following antigenic stimulus
application [9,11,12,19,20]. Based on these data (electronic
supplementary material, table 1, S1 file), we calculated paracorti-
cal volume V at time t as a sigmoidal function of the number of
TCs present (Nt), constrained by maximal swelling (Vmax).
Parameter Tmid determines the required number of TCs to
reach half-maximal swelling, which we initially estimated as a
doubling of the baseline number of TCs. Slope parameter (l )
determines curve steepness and thus the rate of change in
volume around Tmid,

V(t) ¼ Vmax

1þ el(NT (t)�Tmid)
: ð2:1Þ

We applied paracortical swelling or contraction to achieve the
desired volume by changing the region type that each grid com-
partment represented, so that the model boundaries can extend
or shrink. Internal areas, such as entry and exit areas, are defined
as a constant percentage of the changing outer radius (figure 1a;
electronic supplementary material, figure A, S1 file). Initial TC
increase is permitted without triggering significant swelling,
reflecting initial inhibition of stromal cell proliferation by
secretion of interferon type 1 [39]. A delayed volume increase
in response to TC number is in agreement with the cell signalling
switch at day 2 to favour LN expansion, through mechanisms
such as increased elasticity of the FRC network and LEC
proliferation [11,40].

2.3. T cell recruitment
Under baseline conditions, the TC recruitment rate was specified
as 2000 TCs/hour, with the naive TC transit time (Tres) defined to
range from 6 to 24 h and a constant TC-to-compartment ratio
assumed (1.2 in electronic supplementary material, S1 file). In
accordance with HEV images, 90% of TCs entered at ‘entry’ com-
partments designated as the inner half of the paracortical radius
[41]. Remaining TCs entered via the SCS interface.

When calculating the TC recruitment rate (Tin), acute TC
recruitment changes due to inflammation-induced signalling cas-
cades at the HEVs were incorporated using the inflammatory
index, IF. This index affects TC influx when antigenic presence
D (sum of MHCII, equation (2.3)) rises above threshold T1,
which is the minimal DC number required to elicit a response
[30]. The value of IF increases proportionally with antigenic
presence by a recruitment factor (RF) up to a maximum inflam-
mation-induced TC recruitment, threshold T2 (equation (2.4)).
The volume of the entry grids is representative of blood vessel
volume (VB), which changes proportionally with paracortical
volume. We assumed that the TC recruitment rate (Tin) is
additionally influenced proportionally by �VB (equation (2.2)),
based on correlation of the blood vessel network length with
LN volume [9,42]. TC influx was therefore defined as

Tin(t) ¼ NT

Tres
IF(t)�VB(t), ð2:2Þ

where NT is the initial TC number, Tres is the naive TC transit
time, IF is the inflammatory index and �VB is the normalized
blood vessel volume. Default egress parameters were selected
to maintain equilibrium between TC entry and egress at baseline;
therefore, Nt, LN volume and, consequently, Tin remained stable
in the absence of antigenic stimulation. Threshold values for T1,
T2 and RF were estimated from initial TC recruitment rate
changes due to inflammation, while considering changes due
to HEV growth and agDC number present [11–15,20,43]. The
inflammatory index IF was calculated as

D ¼
XNDC

n¼1

MHCII(t) ð2:3Þ

and

IF(t) ¼
1 D � T1

1þ RFD T1 , D � T2
1þ RFT2 D . T2,

8<
: ð2:4Þ

where NDC is the number of agDCs present, D is the sum of
MHCII carried by each agDC and Recruitment Factor RF is an
estimated increase in recruitment rate.

2.4. T cell egress and S1P1r expression
Relative TC expression of S1P1r (SP) is designated a default value
of 1 and overall probability of TC egress (E) when entering an
exit area is defined as E = Pe.SP, where Pe was experimentally
determined to maintain influx and egress equilibrium under
non-inflammatory conditions. We altered SP under three con-
ditions (electronic supplementary material, figure B in S1 file).
Following TC entry into the paracortex S1P1r remained downregu-
lated (SPin = 0.1) for 45–180 min, before re-expressing due to low
paracortical S1P concentration [24]. An ‘LN shutdown’mechanism
was included by downregulating S1P1r (SPinflam = 0.4) on all TCs
when sufficient antigenic presence (summation of MHCII) was
detected, estimated to correspond to 6 h post-agDC appearance.
Activation-induced TC S1P1r downregulation was represented by
decreasing S1P1r expression 10-fold when TCs initially activated
(SPact = 0.01), increasing S1P1r expression as TCs differentiated
into early effector TCs (SPearly = 0.4) and further increasing
expression when effector TCs underwent eight or more divisions
(SPlate = 1) [22,44,45].

2.5. T cell and dendritic cell motility and interaction
TCs were modelled as spheres of volume 150 μm3 that initially
occupied 55% of the total paracortex volume, approximately
5 × 104 TCs in our hemispheric model [46]. The frequency of anti-
gen-specific (cognate) TCs (Fcog) was derived from in vivo reports
with default 1 × 10−4, resulting in approximately five cognate
TCs at initiation [6]. DCs were modelled as 6 μm radius spheres
and interacted with TCs within a two-grid radius, up to a maxi-
mum number of TCs at once (Bmax). The total number of DCs is
calculated as a proportion of TCs (ϕDC), with a default value of
0.04 (approx. 2500 DCs). Each agDC presented a decaying
MHC signal, and during interactions cognate TCs gained ‘stimu-
lation’ (S) at rate κs, proportional to MHCs presented, while
losing stimulation at rate λS. Similar to previous models, the
probability of TC activation and, after a minimum of four pro-
liferations, differentiation into effector or memory TCs was
determined as a sigmoidal function of accumulated stimulation
[31,35,47]. See electronic supplementary material, S1 file for full
rules.

2.6. Computation
We built a class-based ABM (electronic supplementary material,
figure C in S1 file) in Java using RepastSimphony (repast.source-
forge.net) with repeated rules each time step (figure 2). Further
descriptions are in the electronic supplementary material, S2
file. We carried out batch simulations on the Imperial College
High Performance Computing cluster and analysed data in
Matlab. Model code is available on GitHub at https://github.
com/johnsara04/paracortex_model_johnson19.
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2.7. Parameter selection and sensitivity analysis
We estimated our parameters from published studies with
inflammation-induced mice or previous relevant models (elec-
tronic supplementary material, table A in S1 file). To ensure
awareness of influential but uncertain or biologically uncon-
strained parameters, we carried out a global sensitivity
analysis. We used Latin Hypercube sampling to select 300 par-
ameter combinations, simulated each set three times and
recorded the TC number (activated, effector, memory, effector
exited and memory exited). Partial rank correlation coefficients
(PRCCs) were calculated between each parameter and output
for each day (3–13), assuming monotonic relationships [48].
We report significant PRCCs with a strength greater than 0.2
(electronic supplementary material, S4 file).
2.8. Validation and model robustness
To ensure that we did not overfit the model to one swelling
scenario, we simulated four experiments that mimic in vivo
and/or in vitro experiments, holding our parameter selection
constant, aside from a single parameter. In each scenario,
we compared the effects on TC activation and CD4+ and CD8+

effector TC response with relevant published studies. We
inhibited S1P1r downregulation on activated TCs as carried
out by Gräler et al. [49] and Lo et al. [24]. We varied the initial
proportion of cognate TCs, as carried out by Moon et al. [50]
and Obar et al. [51]. We varied the agDC number, as
carried out by Kaech et al. [52] and Martín-Fontecha et al. [53],
and we simulated early DC apoptosis, as carried out by Prlic
et al. [54].
3. Results
3.1. The model produces realistic baseline T cell

motility and response to agDCs
We confirmed that the calibrated model produced an average
TC velocity (n = 200) of 13.1 µm min−1, reaching up to
24 µm min−1 (figure 3a), in line with murine in vivo measure-
ments [41,55–58]. The mean TC paracortex transit time was
13.1 h (n = 16 000), ranging from 20 min to greater than 60 h
(figure 3b), in line with observations that 74% of CD4+ TCs
and 64% of CD8+ TCs transit murine LNs within a day
[59]. The linear relationship between TC displacement and
square root of time (figure 3c) illustrated the maintenance
of random walk behaviour [60]. The motility coefficient
(CM) was 63.2 µm2 min−1, which is within the 50–100
µm2 min−1 range observed in mice [61].

TC responses to agDC stimuli corresponded well to data
from in vivo trials in mice, sheep and rats, displaying the
expected phases of TC trafficking and response (electronic
supplementary material, figure A in S3 file). TC numbers
began to increase approximately 6 h after initial agDC
entry, and by day 11 had returned to within 15% of pre-stimu-
lus values (figure 4b), in line with temporal responses
observed in vivo [11,12,20]. The appearance of activated, effec-
tor and memory TCs began at 16–24 h, day 3.5 and day 5
post-agDC entry, respectively, in agreement with in vivo
reports and cell-culture models [62,63]. Effector CD4+ TCs
appeared 1–1.5 h before CD8+ effector TCs (figure 4h,i). As
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observed in vivo, the peak cognate CD8+ TC number was an
order of magnitude higher than that of CD4+ TCs [64,65]. The
contraction phase began at day 7 and continued through day
11 (figure 4b). An increase in TC egress rate peaked a day
later than the increase in TC entry rate (figure 4f,j ),
corresponding well with in vivo observations [16,66].
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3.2. Model robustness
Holding the default parameters and varying a single parameter
at a time to mimic in vivo and in vitro experiments resulted in
reasonable TC behaviour. For example, preventing S1P1r down-
regulation post-antigenic stimulus detection in silico reduced
activated TCnumber by 60–81% (figure 5a). A study transferring
activated TCs that over-express S1P1r into mice LNs, removing
S1P1r-mediated retention, resulted in 90% less activated TC
retention than in control mice when measured 15 h later
(figure 5b [24]). A study using mice with constitutive TC
expression of S1P1r showed a 40% reduction in activated TCs
post immunization (figure 5c) [49]. See electronic supplementary
material, S3 file for a comparison of varying cognate frequency,
agDC presence and duration of stimuli application.

The global parameter sensitivity analysis indicated that the
dominant parameters in determining the target outcomes of TC
activation, total TC effectors and TCs exited were Fcog, TDCin

and Vmax. The unconstrained parameters used to describe
signal integration and parameterize activation or differentiation
probability curves were not identified as significantly influential
in determining target outcomes (p> 0.05, R2< 0.2) (electronic
supplementary material, figure A and tables A–C in S4 file).

3.3. Paracortical swelling consistently aids T cell
activation

When maximal swelling (Vmax) was varied from 1 to 2.8, the
activated TC number doubled and positively correlated with
Vmax (R2 = 0.96, p < 10−5) (figure 6a). The total number of
effector TCs decreased by 15% (figure 6b) and negatively cor-
related with Vmax (R2 = 0.86, p < 10−3) but the number of
effector TCs that exited by day 10 did not significantly vary
(electronic supplementary material, figure E in S3 file).

Assessment of TC subgroups showed that the total cog-
nate CD8+ TCs present decreased by 25% (figure 6c),
negatively correlating with Vmax (R2 = 0.855, p < 10−3) but
there was no change in the number of exiting cognate CD8+

TCs (electronic supplementary material, figure E in S3 file).
Conversely, the number of cognate CD4+ TCs that left the
paracortex by day 10 increased by 30% and positively corre-
lated with Vmax (R2 = 0.76, p = 0.001) (figure 6d ) but cognate
CD4+ TCs present did not vary significantly (electronic
supplementary material, figure E in S3 file).

The peak TC recruitment rate positively correlated with
Vmax, meaning that the absolute number of cognate TCs
entering increased with swelling (figure 6e). TC egress rate
increased with Vmax from day 3 to day 6 (figure 6f ). Increased
TC activation but decreased effector TC number remained
when LN volume increased as a linear function of TCs (elec-
tronic supplementary material, figure A in S5 file).
3.4. Reduced effector T cell response with swelling was
not due to a lack of agDC availability

We then analysed the mean number of interactions with DCs
by cognate and non-cognate TCs present each day from day 1
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to day 6 at different maximal swelling (Vmax = 1.20, 2.0
and 2.5). We found that there was no decrease in the mean
number of agDCs that each cognate TC contacted on all
days (figure 7a). We also found a slight increase in the
number of contacts by day 3, a time point that corresponds
with peak swelling. The mean number of short contacts by
non-cognate TCs decreases with swelling (figure 7b). These
results suggest that there is no decrease in the availability
of DCs to cognate cells with swelling.
3.5. Paracortical swelling can hinder effector T cell
production in some circumstances

We carried out simulations with a small or large maximal
swelling (Vmax = 1.2 or 2.5) while applying a lower (8 × 104

TCs) or higher (13 × 104 TCs) Tmid, making swelling occur
relatively earlier or later (figure 8a). Regardless of Tmid

value, at least 40% more activated TCs were recorded with
a large Vmax compared with a small Vmax (figure 8b). With
an earlier (low Tmid) and larger swelling, the total number
of effector TCs and effector TCs exited dropped significantly
( p < 0.05) (figure 8c). However, with later swelling (high
Tmid), a larger swelling no longer reduced effector TC
number. This altered effector TC response was due to a
change in cognate CD8+ TC number, which showed the
same pattern of results (figure 8e). There was no change
associated with Tmid in cognate CD4+ TC response (figure 8f ).
Varying maximal swelling and Tmid over a wider range
showed that the positive correlation of Tmid with effector
TCs exited was only significant with a larger swelling
(Vmax = 2.5) (figure 8d ), likely due to the greater impact of
varying Tmid with larger swelling (figure 8a).
3.6. S1P1r-mediated temporary retention of early
effector T cells increased T cell response

When we increased S1P1r downregulation by lowering SPearly
from the estimated default value of 0.4, a sustained increase
in total TCs resulted, despite the action acting on early effec-
tor TCs only (figure 9a). Unlike during simulations with
default SPearly (figure 6), effector TC number did not decrease
with swelling. Instead, when SPearly was lowered from 0.4 to
0.1, approximately 15% and 10% more effector TCs were pro-
duced with larger Vmax of 2.0 and 2.5, respectively. At every
maximal swelling value, SPearly inversely correlated with
effector TC number (R2 = 0.92, 0.93, 0.92, p < 0.005). Reducing
SPearly from 0.4 to 0.05 doubled the number of effector TCs
exiting and increasing SPearly to 0.8 halved the number
(figure 9b).

When analysing the TC sub-populations, both CD4+ and
CD8+ effector TCs that exited the paracortex by day 10
doubled when SPearly was decreased from 0.4 to 0.05
(figure 9c,d ). This indicated that CD4+ TCs do maintain
further proliferative capacity in the model.
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The number of TCs contacted by DCs increased as SPearly
was decreased, but overall decreased with swelling; therefore,
this was not a driving factor of increased effector TC number
(figure 9e). Implementation of an alternative model with non-
specific constraint of TC egress by reducing expansion in the
exit area also resulted in increased effector TCexit but produced
unrealistic prolonged swelling above a 1.4-fold swelling
(electronic supplementary material, figure B in S5 file).

3.7. Non-specific early LN shutdown with a doubling of
LN volume did not significantly impact effector T
cell production

We also varied the degree of initial LN shutdown, by varying
SPinflam from 0.1 (90% downregulation) to SPinflam = 1 (no
shutdown). We permitted a doubling of LN volume. Increas-
ing non-specific S1P1r downregulation from 60% to 90%
resulted in a sharp, threefold higher peak in the total
number of TCs (figure 10a), which is less physiologically rea-
listic than with our default parameters. As SPinflam decreased,
TC activation increased (R2 = 0.83, p = 0.01) (figure 10b), but
no trend with total effector TCs was identified (figure 10c).
We found no correlation between increased LN shutdown
and the mean number of contacts with DCs by cognate TCs
present at day 3 but a positive correlation with DCs contacted
by non-cognate TCs (R2 = 0.93, p = 0.0017) (figure 10d ).

3.8. Boosting T cell response when cognate T cell
frequency is low

Simulations using a 10-fold lower cognate TC frequency
showed a larger decrease in effector TC number with swelling
than the simulations with default cognition. With lower cogni-
tion, we observed a mean 73% fall with a twofold swelling,
compared with a mean 17% decrease with 10-fold higher cog-
nition (figure 6b). With Vmax = 2.5, we recorded a mean 33%
fall compared with a 5% decrease with 10-fold higher cogni-
tion (electronic supplementary material, figure E-vii in S3
file). We repeated the simulations with increased early effector
TC S1P1r downregulation (SPearly = 0.1). This resulted in
swelling of 2.0- or 2.5-fold benefiting the response. Assessment
of TC and DC interactions showed that this was not due to an
increase in contact with DCs (figure 11c).
4. Discussion
In this work, we aimed to better understand the effects
of LN swelling in the formation of TC responses and
identify key features that can influence TC behaviour.
Our study builds on work using ABMs to investigate the
impact of signal integration kinetics, TC migration and
interaction dynamics on TC response with a focus on
macro-scale alterations and accompanying changes in
egress and recruitment [29–31,33,35].

We found that permitting LN swelling consistently aids
TC activation but allowing increased swelling can inhibit sub-
sequent effector TC response if it resulted in increased
opportunity for effector TCs to egress prior to optimal pro-
liferation. Our modelling rules meant that LN swelling
contributes to increased TC recruitment in a positive feed-
back loop and therefore to a higher absolute number of
cognate TCs entering into the paracortex, increasing TC
activation probability, in agreement with in vivo TC recruit-
ment studies [14]. In our model, the swelling also presented
a greater number of exit points and therefore increased the
opportunity for effector TC egress, counteracting increased
TC recruitment. A change in contact between TCs and
cognate TCs was not a driving factor.

A key finding was that temporary S1P1r-mediated reten-
tion of newly differentiated effector TCs increased effector
TC production in scenarios where effectors egress prior to
reaching sufficient proliferation. The increased production
was not due to increased contact with DCs (figure 9e), and
non-specific TC retention in the first few days had no
impact on effector TC response (figure 10). Swelling also
increased effector TC production when the exit area growth
with swelling was constrained in alternative models
(electronic supplementary material, figure B in S5 file).

We also found that, with a low TC cognition rate, tempor-
ary S1P1r-mediated retention of newly differentiated effector
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TCs doubled effector TC response when combined with swel-
ling, but swelling alone negatively impacted response. Here,
swelling increases initial TC recruitment and the initial
number of cognate TCs, but must be combined with
increased temporary retention of newly differentiated cells
to benefit the response.

The temporary nature of this S1P1r modulation is crucial to
increase effector TC number. Permanent inhibition of effector
TC S1P1r expression has been carried out in vivo, and, thera-
peutically, S1P1r downregulation is the mechanism of multiple
sclerosis drug fingolimod. This acts to indefinitely retain effector
TCs in the LN to prevent an autoimmune response [67].
Temporary downregulation on selectively newly differentiated
TCs may prove technically difficult, suggesting that an
alternative means of retention is desirable [28].

In contrast with our results, transferring 106 cognate TCs
into murine LNs, while facilitating swelling by inducing
FRC elongation and inhibiting FRC contraction, enhanced
the subsequent TC proliferative response [17]. The authors
suggest that this may be due to reduced inhibition of TC acti-
vation by FRCs, or increased DC migration. Despite omission
of these features, our model is in agreement with the increased
TC activation. With an inflated initial cognate TC number
that exponentially proliferated, the proportional effects of
TC egress may be less as the TC proliferative response is also
relative to starting cognate TC frequency (electronic sup-
plementary material, figure B in S3 file) [6,50,51]. We may
also overestimate the negative effects of egress area availability
with swelling, but highlighting the sensitivity of egress
changes and temporary retention as a means to counteract
sub-optimal responses remains an important result.

Our model contains unconstrained parameters that relate
to signal gain and loss (κs and λ), activation and differen-
tiation probability curves (Actμ4+, Actμ8+, Difμ4+, Difμ8+), TC
recruitment and paracortical swelling (electronic supplemen-
tary material, S4 file). The sensitivity analysis showed that the
parameters populating activation and probability curves
were not highly influential, and the influence of signal inte-
gration patterns has been the focus of previous modelling
studies [31,35,47]. Our model was not overfitted to a single
scenario, as we also compared variations in stimulus strength,
duration and TC cognition rate with results from in vivo
experiments that were not used in parameter estimation.

Limitations of our model include the lack of chemotactic
influences, FRC network omission and a simplified LN
geometry. We prioritized the inclusion of S1P1r downregula-
tion over the role of chemokine receptor CCR7 because, when
CCR7 and S1P1r TC expression is inhibited in vivo, TCs still
migrate to the paracortex boundary but the lack of S1P1r
expression prevents exit [28]. The critical influence of reten-
tion in our model suggests that future iterations should
include a wider range of retentive influences. We omitted
DC migration and LN-resident DCs, but our results indicate
that DC availability is not a limiting factor. To model alterna-
tive stimuli, for example antigen-encoding RNA or free
antigen resulting from intra-nodal vaccination, information
regarding free antigen arrival rate and relative expression of
MHC molecules after capture and processing by resident
DCs would be required.

Several models suggest that TC contacts are not significantly
influenced by FRC network inclusion and we assumed that,
regardless of the underlying FRC structure, TCs migrate with
a random walk [55,58,61,68–70]. When the FRC is modelled
as a small-world network, damaging the network by removing
50% of nodes can significantly affect effector TC response [71].
We assumed that FRC stretch and proliferation helps to
maintain FRC architecture during our modest swelling [11].

Model fidelity is also limited by a lack of information on
exit point availability during swelling, but the sensitivity
to alterations in egress suggests that exit area change with
swelling presents as a crucial area to focus future studies.
Future model iterations including features such as lymph
flow and pressure alterations (along with fluid exchange with
nodal blood vessels) could also significantly improve the



royalsocietypublishing.org/journa

10
representation of swelling, and thus TC egress and retention. It
has been well established that changes in hydrostatic and onco-
tic pressure differences across nodal blood vessel walls can
reverse the net fluid exchange [72,73]. Afferent lymphatic
flow, and thus DC number, to LNs also increases with
immune response, as well as influencing chemokine concen-
tration fields and likely mechanoresponsive cell expression of
signalling molecules and receptors. Furthermore, intra-nodal
vaccine injection would result in a bolus of fluid. A key next
step is therefore to couple the ABM to a computational
flow model.
l/rsif
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5. Conclusion
Our results suggest that, although permitting LN swelling
aids TC activation, events that increase opportunity for
TC egress prior to optimal proliferation, such as early LN
swelling, inhibit effector response. We found that tempor-
ary retention of newly differentiated effector TCs boosted
effector TC response. This effect is particularly of interest
when the initial TC response is small, for example in
immuno-suppressed patients, or desirable, such as when
optimizing vaccine design to minimize antigen dose.
Although permanent blockade of effector TC egress has
been used clinically to treat multiple sclerosis, temporary
retention of effector TCs to boost effector TC production
presents a novel mechanism to enhance immune reaction.
Further clinically relevant insights include identification
of the importance of alterations in TC egress with swelling,
implying that the manipulation of factors involved in the
underlying swelling mechanisms is a worthwhile clinical
strategy. Variability in response among individuals is an
accepted reality in immunology, and variations in ability
to produce LN swelling (a readily measurable biomarker)
could provide a means to project likely immune response.
Our results also highlight the influence that retentive
features, including factors such as chemokines, have on
effector TC response, which may be more practical clinical
targets to manipulate.
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