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Non-invasive imaging using reporter genes altering
cellular water permeability
Arnab Mukherjee1,*, Di Wu2,*, Hunter C. Davis1 & Mikhail G. Shapiro1

Non-invasive imaging of gene expression in live, optically opaque animals is important for

multiple applications, including monitoring of genetic circuits and tracking of cell-based

therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high

spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or

chemical exchange probes are limited by their reliance on metals or relatively low sensitivity.

Here we introduce a new class of MRI reporters based on the human water channel aqua-

porin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI

by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed

populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce

MRI contrast. We characterize this new contrast mechanism through experiments and

simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our

results establish an alternative class of sensitive, metal-free reporter genes for non-invasive

imaging.
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T
he ability to image gene expression within the context of
living mammalian organisms is critical for basic biological
studies and the development of cellular and genetic

therapeutics. However, most genetically encoded reporters, based
on fluorescent and luminescent proteins1–3 have limited utility in
this context due to the poor penetration of light into deep
tissues4,5. In contrast to optical techniques, magnetic resonance
imaging (MRI) enables the acquisition of in vivo images with
excellent depth penetration and high spatial and temporal
resolution. Consequently, there is intense interest in the
development of genetically encoded reporters for MRI6–26.
Previous efforts to develop such reporters have focused
primarily on two classes of proteins. In one class,
metalloproteins and metal ion transporters are overexpressed to
enrich the paramagnetic content of cells, thereby enhancing
nuclear relaxation rates and producing contrast in T1- or
T2-weighted MRI9,12–19,25–27. In the second strategy, proteins
with large numbers of basic or acidic amino acids are used to
generate contrast through chemical exchange saturation transfer
(CEST) between protein-bound and aqueous protons6,8,21,22,28.
Each of these pioneering approaches has significant limitations.
Metal-based reporters can be hindered by metal ion
bioavailability and toxicity29–35, whereas CEST reporters tend
to require high expression levels to achieve observable
contrast6,21,22. Hence, a major need exists for new MRI
reporter genes that do not require metals and can be detected
at low levels of expression.

Here we introduce an entirely new class of non-metallic MRI
reporter genes that work by modulating water diffusivity
across cell membranes. Diffusion-weighted imaging (DWI) is a
well-established MRI technique used in applications ranging
from basic biophysical studies to the diagnosis of diseases such
as stroke36–43. Diffusion-weighting is commonly achieved by
applying a pair of pulsed magnetic field gradients, which dephase
nuclear spins in proportion to how far they diffuse in the time
interval between the two pulses41,44,45. Accordingly, water
molecules that diffuse more freely have more severely dephased
proton spins and appear darker in DWI (Fig. 1a). In biological
tissues, the effective diffusion coefficient of water depends on
several parameters, including its local diffusivity in intracellular
and extracellular compartments, the relative volume fraction
occupied by cells and the transport of water across the
plasma membrane46–50. Noting the strong influence of
the last factor46,51,52, we hypothesized that facilitating the
transmembrane diffusion of water by overexpressing water-
permeable channels would result in enhanced contrast in DWI.

Towards this end, aquaporins are a highly conserved family of
tetrameric integral membrane proteins that mediate the selective
exchange of water molecules across the plasma membrane in a
wide range of cell types53–58. Previously, endogenous aquaporin
expression has been correlated with water diffusivity and DWI
signals in several disease states52,57,58. However, to the best of our
knowledge, aquaporins have not hitherto been described as MRI
reporter genes. In this work, we introduce human aquaporin 1
(AQP1) as a new genetically encoded reporter for diffusion-
weighted MRI. This reporter requires no metals, is non-toxic in
several cell lines and in vivo tumours, produces contrast orthogonal
to paramagnetic and CEST reporters and is detectable when
expressed at low levels and in small subsets of cells. We
characterize the imaging performance and mechanisms of AQP1
through live-cell experiments and Monte Carlo models, and
demonstrate its utility by imaging tumour gene expression in vivo.

Results
Aquaporins serve as reporters for diffusion-weighted MRI.
To evaluate AQP1 as a genetically encoded reporter for

diffusion-weighted MRI (Fig. 1a), we used lentiviral transfection
to generate CHO, U87 glioblastoma and Neuro 2a neuroblastoma
cell lines stably overexpressing this channel, and corresponding
control cells expressing a green fluorescent protein (GFP).
Expression of AQP1 and GFP were driven by identical con-
stitutive cytomegalovirus (CMV) promoters in U87 and Neuro 2a
cells. To implement chemogenetic control of gene expression,
we used a doxycycline-regulated CMV promoter in CHO cells
engineered to stably express the tetracycline transactivator (rtTA)
protein. Pellets of AQP1- and GFP-expressing CHO, U87
glioblastoma and Neuro 2a neuroblastoma cells were then imaged
using DWI. A key parameter in diffusion-weighted pulse
sequences is the effective diffusion time, Deff, corresponding to
the time interval between dephasing and rephasing gradient
pulses36,37,45,46,49,59. Long Deff times are important for probing
the effects of water exchange between intracellular and
extracellular pools because longer times allow a larger
proportion of cytoplasmic water molecules to interact with the
cell membrane and experience the effects of restriction and
exchange36,37,48,49,59. Correspondingly, Monte Carlo simulations
of a packed cellular lattice suggested that the effects of an
aquaporin-mediated increase in water diffusion would be most
pronounced at Deff4100 ms (Supplementary Fig. 1). We accessed
these longer diffusion times using stimulated echo DWI46,59,60.

Pellets of AQP1-expressing cells appeared much darker in
diffusion-weighted images compared with GFP controls for all
cell types (Fig. 1b), corresponding to dramatic increases in their
apparent diffusion coefficients (ADCs, Fig. 1c). Measured with
Deff¼ 398 ms, AQP1-expressing CHO, U87 and Neuro 2a cells
showed 187±12%, 82±5% and 95±3% increases in ADC,
respectively, relative to GFP controls (Po10� 4, nZ4, t-test). The
relative increase in ADC was less pronounced using a shorter
diffusion time (Deff¼ 18 ms, Supplementary Fig. 2), consistent
with a contrast mechanism based on water exchange across
the cell membrane. The larger change in ADC in CHO cells
compared with Neuro 2a and U87 is likely to be a consequence
of the lower basal ADC in control CHO cells
(377.57±20.86 mm2 s� 1 at Deff¼ 398 ms) compared with control
Neuro 2a and U87 cells (539.69±11 and 479.25±21.23 mm2 s� 1,
respectively). To establish orthogonality to paramagnetic
reporters, we measured the T1 and T2 relaxation rates of cells
expressing AQP1. Overexpression of this protein did not affect T1

or T2 relaxation (Fig. 1d,e, not significant, P40.24, n¼ 3, t-test),
suggesting that AQP1 could be used in combination with
genetically encoded T1 or T2 contrast agents for multiplexed
imaging. Importantly, AQP1 overexpression was non-toxic in all
cell lines, as determined using four different assays, including
ethidium homodimer staining, measurement of cytosolic ATP
content, metabolic activity and lactate dehydrogenase release
(Fig. 1f). In addition, no changes in cell morphology were
observed under phase contrast microscopy as a result of AQP1
expression (Fig. 1g). We note that we were also able to obtain a
significant increase in ADC by transfecting cells with another
human aquaporin, AQP4 (Supplementary Fig. 3). However, the
percentage increase in ADC for the AQP4-expressing cells
(44±6% in CHO cells, P¼ 6.2� 10� 3, n¼ 3, t-test) was smaller
compared with AQP1. Therefore, we focused on AQP1 for the
remainder of this work.

AQP1 is a sensitive reporter gene with a large dynamic range.
Next, we sought to establish the sensitivity of AQP1 to image
varying degrees of gene expression. Our Monte Carlo simulations
suggested that ADC values are sensitive to a broad range of
cell membrane permeabilities (Supplementary Fig. 1b), providing
AQP1 with significant dynamic range. To realize this
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experimentally, we expressed AQP1 in a dose-dependent manner
by supplementing CHO cells with varying concentrations of dox-
ycycline and imaged them with DWI (Fig. 2a,b). The corresponding
levels of AQP1 expression were quantified via western blotting and
measurements of internal ribosome entry site (IRES)-linked GFP
fluorescence (Fig. 2c and Supplementary Fig. 4). A significant
increase in ADC was observed across all levels of induction, with

differences of 54±5 to 187±12% (Pr6.8� 10� 3, nZ3, t-test)
compared with controls at doxycycline concentrations of
0.01–1mg ml� 1. Notably, the 54% change in contrast corresponds
to an estimated AQP1 expression level of just 457±102 nM,
consistent with simulation predictions (Fig. 2c). This high
sensitivity and large dynamic range will facilitate the use of AQP1
as a reporter gene in a variety of biomedical applications.
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Figure 1 | AQP1 functions as a genetically encoded reporter for diffusion-weighted MRI. (a) Illustration of the impact of aquaporin expression on water

diffusion across the cell membrane and the resulting decrease in diffusion-weighted signal intensity. (b) Diffusion-weighted images of CHO, U87 and Neuro

2a cell pellets expressing AQP1 or GFP, acquired using a b-value of B1,000 s mm� 2. Scale bars, 3 mm. (c) ADC of water in CHO, U87 and Neuro 2a cells

expressing AQP1 relative to GFP controls, measured at Deff¼ 398 ms. Transgene expression in CHO cells was induced with 1 mg ml� 1 doxycycline, whereas

U87 and Neuro 2a cells express AQP1 from a constitutive promoter. n¼4 (U87, Neuro 2a) and 5 (CHO) biological replicates. (d) Longitudinal (T1) and (e)

transverse (T2) relaxation rates in cells expressing AQP1 or GFP. n¼ 3 (Neuro 2a, CHO) or 4 (U87) biological replicates. (f) Cell viability on AQP1 or GFP

expression. n¼ 12 (resazurin assay), 6 (ATP content), 4 (LDH release) and 3 (ethidium staining) biological replicates. Error bars±s.e.m. (g) Phase-contrast

images of CHO, U87 and Neuro 2a cells expressing AQP1 or GFP. Scale bars, 10mm.
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AQP1 expression is observable in cells in a mixed population.
The ability to specifically detect small numbers of genetically
labelled cells in an otherwise unlabelled population would enable
the use of genetically encoded reporters in applications such as
in vivo tracking of cell-based therapeutics16,61,62. Having shown
that AQP1 can appreciably increase water diffusion even at low
levels of expression (Fig. 2), we tested whether apparent water
diffusion could be significantly increased if AQP1 expression was
restricted to a small subset of cells in a mixed population.
Intuitively, the relationship between the aquaporin-expressing
fraction and water diffusion is expected to be nonlinear, as in
small-fraction scenarios cells expressing aquaporin would be
surrounded mostly by cells without enhanced water permeability,
and the impact of aquaporin expression on overall tissue
diffusivity would thereby be diminished (Fig. 3a). However, our
Monte Carlo simulations predicted that AQP1-expressing
fractions as small as 10% should be sufficient to measurably
increase the apparent diffusivity (Fig. 3b and Supplementary
Fig. 1c). To verify this experimentally, we imaged mixed
populations of AQP1- and GFP-expressing CHO cells in
varying proportions (Fig. 3c). Notably, this revealed significant
contrast and increase in ADC in cell populations containing just
10% AQP1-expressing cells (21.44±5.21% increase relative to
all-GFP controls, P¼ 0.03, n¼ 4, t-test; Fig. 3d). This data
suggests that, contrary to initial intuition, diffusional reporter
genes such as AQP1 are suitable for imaging gene expression in
heterogeneous or infiltrating cell populations.

AQP1 enables gene expression imaging in tumour xenografts.
To demonstrate the ability of AQP1 to report gene expression
in vivo, we stereotaxically implanted AQP1 and GFP-transfected
CHO cells in the right and left striatum of 5–7-week-old
immunodeficient mice. CHO cell xenografts63,64 were used to

enable doxycycline-based regulation of gene expression in the
tumours. Tumours were allowed to develop for a period of 5 days,
following which we induced transgene expression using
intraperitoneal injections of doxycycline. Mice were imaged
using diffusion-weighted MRI before and 24–48 h after induction,
as outlined in Fig. 4a. As expected, AQP1-expressing tumours are
readily distinguishable from contralateral GFP-expressing cells in
diffusion-weighted images acquired after induction (Fig. 4b), with
the average diffusion-weighted signal intensity in AQP1 tumours
decreasing by 39.4±6.5% after doxycycline injection compared
with GFP controls (P¼ 0.0155, n¼ 5, pairwise t-test; Fig. 4c and
Supplementary Fig. 5). We found that a diffusion time (Deff) of
98 ms provided the optimal balance of AQP1-dependent contrast
and acquisition times for in vivo experiments. AQP1 and GFP
expression in the bilateral tumours was confirmed by fluorescence
imaging of fixed brain tissue slices (Fig. 4d). Haematoxylin–eosin
staining revealed no sign of necrosis in either the AQP1- or
GFP-expressing tumours, indicating that the change in diffusion-
weighted contrast in AQP1 xenografts is caused by AQP1
expression rather than necrosis or other changes in tumour
morphology (Fig. 4e,f).

To quantitatively evaluate whether AQP1 overexpression
affects tumour growth in vivo, we measured growth curves and
terminal tumour masses in subcutaneous xenografts established
using the same cell lines as the intracranial tumours and induced
the same way with doxycycline. The AQP1 and GFP tumours
proliferated at similar rates following doxycycline induction and
reached statistically indistinguishable end-point masses (Fig. 4g–i,
not significant P40.5, n¼ 4, pairwise t-test). The ability of AQP1
to produce robust induction-dependent MRI contrast in tumour
xenografts without affecting tumour growth suggests that this
reporter gene could be useful for longitudinal imaging of gene
expression in vivo.
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Discussion
Our results establish aquaporins, and specifically AQP1, as the
first genetically encoded reporter for diffusion-weighted MRI.
AQP1-dependent contrast is readily observed in cell cultures,
including cells known to have higher levels of endogenous
aquaporins (for example, U87 glioblastoma cells65) as well as
in vivo tumour xenografts, and AQP1 expression has no adverse
effect on cell proliferation and viability. Aquaporins have several
distinct advantages relative to existing MRI reporter genes. First,
as a metal-free reporter, aquaporins are not limited by metal
bioavailability and do not require the administration of metal
ions or chelates. Second, AQP1-dependent contrast can be
detected at reasonably low concentrations (B0.5 mM), which
makes it a sensitive MRI reporter gene. Although CEST reporters
operating on hyperpolarized xenon can achieve even higher
molecular sensitivity24,66, their use requires elaborate equipment
for xenon hyperpolarization and administration, and in the case
of gas vesicles, the expression of complex multi-gene clusters. In
addition, successful CEST experiments require sophisticated pulse
sequences, whereas diffusion-weighted imaging is implemented as

a standard technique on clinical MRI scanners. Finally, as a
human protein that works without sequence modifications,
aquaporin can serve as a fully autologous reporter gene,
overcoming concerns about potential immunogenicity faced by
xenogeneic and engineered reporters.

AQP1 expression does not affect transverse and longitudinal
relaxation rates in cells, which creates the possibility of
multiplexed MRI of gene expression by combining aquaporins
with existing T1, T2 or CEST reporters. In addition, it is
conceivable that increased water diffusion in AQP1-expressing
cells could enhance the relaxivity of co-localized T1 or T2 agents
by facilitating paramagnetic relaxation of a larger fraction of
water molecules.

One potential limitation of aquaporin as a reporter gene is its
negative contrast enhancement, as AQP1 expression results in
image darkening in diffusion-weighted MRI. Although negative
contrast agents are widely established in MRI, their use warrants a
certain degree of caution in light of potential confounding signal
dropout from lesions, abscesses and susceptibility artefacts. In the
case of aquaporin, confounds from T1 and T2 relaxation can be
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accounted for by mapping ADC rather than acquiring single
diffusion-weighted images. To distinguish aquaporin expression
from tissue structures with high background diffusivity, such as
fluid-filled cysts and necrotic lesions, it may be necessary to
combine information from ADC measurements at several Deff

times and from T1- and/or T2-weighted images. Chemogenetic
toggling of aquaporin expression, trafficking or degradation could
also help identify reporter gene-dependent signals. Finally,
although we have demonstrated the application of AQP1 as a
non-toxic MRI reporter in three different cell lines and in vivo
tumours, the broader utility of this reporter gene in the context of
different cell types and tissue architectures (for example, epithelial
cells and neurons) and alternative biological applications, remains
to be investigated in future studies.

Given the ubiquity of DWI and stimulated echo pulse
sequences, the imaging of aquaporin-based reporters can be
implemented immediately by laboratories with standard MRI
equipment. Beyond this, imaging performance could potentially
be improved further using alternative pulse sequences specifically
designed to produce contrast sensitive to transmembrane water
exchange60, the further development of which will be stimulated
by this work. In addition, we anticipate that the performance of
aquaporins as MRI reporters can be further enhanced through
molecular engineering of variants with improved or stimulus-
gated permeability to enable functional imaging of biologically
relevant markers. Overall, the high performance, biocompatibility
and engineering capacity of aquaporin reporter genes will enable
this remarkably simple new approach to biomolecular MRI to
impact many areas of biology and medicine.

Methods
Construction of aquaporin and GFP-expressing cell lines. Human AQP1
(NM_198098.1) and AQP4 (NM_001650.4) complementary DNAs were ordered
from OriGene (Rockville, MD) and subcloned into a lentiviral vector downstream
of a constitutive CMV or doxycycline-regulated CMV promoter (Clontech,
Mountain View, CA) and an N-terminal FLAG tag. The doxycycline-regulated
CMV was used specifically to place AQP1 or GFP under the control of doxycycline
using a commercially available CHO cell line (Clontech) that expresses the rtTA
transactivator. Enhanced GFP was fused downstream of aquaporin via an IRES
sequence. Lentiviral packaging was performed in HEK 293T cells by transfecting
22mg of packaging plasmid to expresses the capsid genes from a CMV promoter
along with 22 mg of insert plasmid harboring the gene of interest (AQP1-IRES-GFP,
AQP4-IRES-GFP, or GFP) flanked by long terminal repeat sequences and 4.5 mg of
VSV-G plasmid that expresses the vesicular stomatitis virus G protein to enable
broad tropism of the lentiviral particles. Transfection was achieved using 25 kDa
linear polyethyleneimine (Polysciences, Warrington, PA) at a concentration of
2.58 mg PEI per mg DNA. Approximately 24 h post transfection, the culture
medium was supplemented with sodium butyrate at 10 mM concentration, to
induce expression of the packaging genes. Virus production was allowed to proceed
for 48–60 h following which the virus-laden supernatant was collected, centrifuged
at 500 g to remove residual HEK 293T cells, mixed with one-tenth the volume of
Lenti-X concentrator (Clontech) and incubated at 4 �C for at least 24 h. Lentiviral
particles were subsequently sedimented by centrifugation at 1,500 g for 45 min at
4 �C and resuspended in 1–2 ml of DMEM medium. Resuspended viral particles
were immediately used to transfect CHO, CHO-TetON, Neuro 2a or U87 cells, to
generate stable cell lines. For this, the cells were first grown to 70–80% confluency
in six-well plates. Spent medium was aspirated from the wells and replaced with
1 ml lentivirus suspension together with 8 mg ml� 1 polybrene. The cells were
spinfected at 2,000 g for 90 min at 30 �C, following which the plates were returned
to the 37 �C incubator for 48 h to allow gene expression. Control cell lines were
generated in the same way to express enhanced GFP from a constitutive or
doxycycline-regulated CMV promoter. Cell lines were obtained from American
Type Cell Culture Collection (U87, Neuro 2a, HEK 293T, CHO) or from Clontech
(CHO-TetON) and used without further validation. Further, we note that none of
the cell lines used in the study are listed in the database of cross-contaminated cell
lines maintained by the International Cell Line Authentication Committee as of
10/26/2016. Some of the cell lines were periodically checked for Mycoplasma
contamination using the MycoAlert detection kit from Lonza.

Determination of cell viability. Cell viability was determined using four different
approaches including staining with ethidium homodimer-1 (Thermo Fisher) and
measurement of resazurin reduction (CellTiter-Blue assay, Promega), ATP content
(CellTiter-Glo assay, Promega) and lactate dehydrogenase release (CytoOne,

Promega). For ethidium homodimer-1 staining, AQP1- and GFP-expressing cells
were grown in six-well plates for 48 h, trypsinized and resuspended in 100 ml PBS
supplemented with ethidium homodimer-1 at 4 mM final concentration. The
cell-dye mixture was allowed to incubate at 4 �C for 1 h in a rotary shaker.
Subsequently, 10ml of the cell suspension was loaded in a disposable
hemocytometer (C-chip DHC S02, Incyto) and total number of cells was estimated
by imaging the hemocytometer chamber using bright field microscopy. Dead cells
stained red and were estimated using fluorescence imaging with a Cy3 filter set.
Viability was calculated as the fraction of cells that did not stain using ethidium
homodimer-1. For the remaining cytotoxicity assays, AQP1- and GFP-expressing
cells were grown in 96-well plates for 24–48 h and treated with the assay reagents as
described by the manufacturer. Fluorescence (resazurin reduction and lactate
dehydrogenase release) or luminescence (ATP content assay) readouts were
measured using a SpectraMax fluorescence plate reader using an excitation
wavelength of 560 nm and with the emission filter set to 590 nm for fluorescence,
and with an open filter slot with a 1 s integration time for luminescence.

Quantification of AQP1 expression. AQP1 expression was quantified via western
blotting and relative fluorescence measurements. AQP1 expression was induced in
CHO cells by treating the cells with doxycycline for 48 h. Membrane fractions
were isolated using ProteoExtract native membrane protein extraction kit (EMD
Millipore, Billerica, MA) or MEM-PER Plus membrane protein extraction kit
(Thermo Fisher) and concentrated B30-fold using a 10 kDa centrifugal filter.
Alternatively, proteins were concentrated using trichloroacetic acid precipitation
(ProteoExtract protein precipitation kit). Proteins were denatured at 37 �C for at
least 1 h followed by 95 �C for 5 min and resolved on a denaturing SDS–PAGE gel,
transferred to a polyvinylidene difluoride membrane and probed using mouse
anti-FLAG primary antibodies ( 0.5 mg ml� 1 final concentration) and horseradish
peroxidase-conjugated goat anti-mouse IgG secondary antibodies (0.4 mg ml� 1

final concentration). Primary and secondary antibodies were purchased from
Sigma (catalogue number F1365) and Santa Cruz Biotech (catalogue number
sc-2005). Signal detection was achieved using the Clarity chemiluminescent sub-
strate (Biorad, Hercules, CA) using an exposure time of 1–10 s. AQP1 expression
was quantified from a calibration curve of known quantities (100 to 400 ng) of
FLAG-tagged bacterial alkaline phosphatase (Sigma Aldrich, St Louis, MO) that
was simultaneously loaded, stained and imaged on the same blot (Supplementary
Fig. 4a). As AQP1 expression in cells induced with 0.01 mg ml� 1 doxycycline was
below the chemiluminescence detection limit of our western blotting, we estimated
AQP1 concentration in this case by quantifying doxycycline dependent fluores-
cence of IRES-linked GFP. In particular, we measured GFP fluorescence in cells
induced using various concentrations of doxycycline to derive a dose-response
curve for transcriptional regulation by doxycycline. Based on this, we estimated a
relative response ratio of 0.18±0.03 (n¼ 4) between GFP expression in low
(0.01 mg ml� 1) and high (1 mg ml� 1) doxycycline conditions. As AQP1 and GFP
are co-transcribed into a single polycistronic construct, we expect the doxycycline
dose-response curve to be conserved for the AQP1 messenger RNA as well. This
enabled us to extrapolate the concentration of AQP1 in the low doxycycline
scenario by multiplying the measured AQP1 concentration at high doxycycline
induction (2.54±0.46 mM based on western blotting, n¼ 5) by the response ratio
of 0.18. For the fluorescence measurements, doxycycline-treated cells were lysed
using RIPA buffer and GFP fluorescence was measured in the cell lysates using a
SpectraMax fluorescence plate reader with excitation wavelength set to 450 nm.
Fluorescence emission was quantified by integrating the emission spectrum
between 480 and 610 nm. Before fluorescence measurements, lysate concentrations
were adjusted, to ensure equal total protein levels across samples.

Diffusion-weighted MRI of cell pellets. For diffusion-weighted MRI, cells were
grown for 48 h, trypsinized, resuspended in 100ml PBS and centrifuged at 500 g for
5 min in 0.2 ml PCR tubes, to produce a compact pellet. Subsequently, the tubes were
loaded in wells molded in a 1% agarose phantom and imaged using a Bruker 7T
horizontal bore MRI scanner equipped with a 7.2 cm diameter bore transceiver coil
for radio frequency excitation and detection. Diffusion-weighted images were
acquired on a 1.5 or 2 mm-thick horizontal slice through the cell pellets using a
stimulated echo DWI sequence with the following parameters: echo time,
TE¼ 24.5 ms, repetition time, TR¼ 2 s, number of excitations¼ 1–3, gradient
duration, d¼ 7 ms, matrix size¼ 256� 256, field of view (FOV)¼ 3.5� 6.5 cm2. The
gradient interval (D) was varied from 20 to 400 ms to generate effective diffusion
times (Deff¼D� d/3) of 18–398 ms in each experiment. Single-axis diffusion
gradients were applied and gradient strength was varied to generate b-values in the
range 0–800 s mm� 2. For each value of Deff, ADC was calculated from the slope of
the logarithmic decay in MRI signal intensity versus b-value. Images were analysed
using custom macros in ImageJ (NIH). A linear 8-bit colour scale were used to
facilitate the visualization of the relevant contrast in each figure. Least-squares
regression fitting was performed using Origin 2016 or Matlab version 9 (2016).

T1- and T2-weighted MRI of cell pellets. T1-weighted images were acquired using
a rapid acquisition with relaxation enhancement sequence with the following
parameters: TE¼ 9.6 ms, rapid acquisition with relaxation enhancement factor¼ 4,
NEX¼ 2, matrix size¼ 128� 256, FOV¼ 8� 5 cm2, slice thickness¼ 1.5 mm and
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receiver bandwidth¼ 50,505.1 Hz. Variable TR times were used including 146.19,
321.47, 519.98, 748.83, 1018.9, 1348.72, 1771.99, 2363.81, 3355.44 and 7500 ms.
T1-values were estimated from the following equation:

S
S0
¼1� e

�TR
T1 ð1Þ

where S0 is the equlibrium magnetization. T2-weighted images were acquired using
a Car–Purcell–Meiboom–Gill pulse sequence with the following parameters:
TE¼ 11 ms, TR¼ 1.5 s, number of echoes¼ 63, number of excitations¼ 4,
matrix size¼ 256� 256, FOV¼ 8� 5 cm2, slice thickness¼ 1.5 mm and receiver
bandwidth¼ 50,505.1 Hz. T2 relaxation rates were estimated by fitting the first
19 echoes to the signal decay equation:

S
S0
¼e

�TE
T2 ð2Þ

All images were analysed using custom macros in ImageJ (NIH) and least-squares
regression fitting was performed using OriginLab. We report average T1 and T2

measurements for n¼ 4.

Mouse xenograft model. To prepare cells for intracranial tumour implantation,
AQP1- and GFP-expressing CHO-TetON cells were grown for 48 h, trypsinized,
centrifuged at 500 g for 10 min and resuspended in 100ml serum-free DMEM.
Female NOD/SCID/g-mice between 5 and 7 weeks of age (Jackson Laboratory, Bar
Harbor, ME) were anaesthetized with 2.5% isoflurane and 105 AQP1-expressing
CHO cells were injected stereotaxically into the right striatum. Coordinates of the
injection sites with respect to bregma were as follows: 1 mm anterior, 2 mm lateral
and 1–3 mm ventral from the surface of the calvaria. The same number of control
GFP-expressing CHO cells were implanted in the left striatum of the same animal.

For longitudinal measurements of tumour volume, subcutaneous xenografts
were established by injecting 3� 106 AQP1 and GFP CHO cells (prepared as
described above and resuspended in Matrigel) into the right and left hind limbs
of female NOD/SCID/g-mice. Gene expression was induced by intraperitoneal
injection of 75 mg doxycycline 11 days following tumour inoculation. Tumour size
was measured daily using callipers and tumour volume was calculated as
0.52� (short axis)2� (long axis). A sample size of n¼ 4 biological replicates was
deemed adequate for a power (expressed as 1� b) of 0.80, calculated based on the
difference in AQP1 and GFP groups observed in vitro. In addition, the tumour
models are well established and tumour growth is stable, which obviated the need
for a larger sample size. No surviving animals were excluded from the final analysis.
Tumour inoculation sites were not randomized and investigators were not blinded
to the experiments. All animal experiments were approved by the Institutional
Animal Care and Use Committee of the California Institute of Technology.

Diffusion-weighted MRI of brain tumour xenografts. Diffusion-weighted
imaging of mouse xenografts was performed using a Bruker 7T horizontal bore
MRI scanner. Radio frequency excitation was delivered by a 7.2 cm diameter bore
volume coil and detection was achieved using a 3 cm diameter surface coil. Mice
were anaesthetized using 1–2% isoflurane. Respiration and temperature were
continuously monitored using a pressure transducer (Biopac Systems) and
fibre optic rectal thermometer (Neoptix). Warm air was circulated to maintain
body temperature at 30 �C. Tumour formation was confirmed by acquiring
diffusion-weighted images 5 days following xenograft implantation, after which
mice were intraperitoneally injected with 75 mg doxycycline to induce expression of
AQP1 and GFP in the tumours. A second set of diffusion-weighted images was
acquired 24–48 h following doxycycline injection. Preliminary diffusion-weighted
images to locate the tumours were first acquired on horizontal slices using a
three-dimensional echo planar imaging stimulated echo DWI sequence with
the following parameters: TR¼ 2.5 or 3 s, TE¼ 25.7 ms, d¼ 7 ms, D¼ 100 ms,
b¼ 1,000 s mm� 2, number of excitations¼ 9, matrix size¼ 16� 128� 128 and
FOV¼ 1.59� 1.29� 0.74 cm3. After identifying an appropriate tumour-bearing
slice, two-dimensional echo planar imaging diffusion-weighted images were
acquired at the slice using similar parameters but with a slice thickness of 1–2 mm,
TR¼ 5 s, number of excitations¼ 144–256.

Histological analyses of brain tissue. Mouse tumours were evaluated for
gene expression and signs of necrosis via fluorescence imaging of 100 mm-thick
histological sections and haematoxylin–eosin staining of 5 mm-thick paraffin-
embedded sections. For histological analyses, mice were anaesthetized by
intraperitoneal injection of ketamine (100 mg kg� 1 of body weight) and
xylazine (10 mg kg� 1 of body weight), and transcardially perfused first with PBS
containing heparin (10 units ml� 1, Sigma Aldrich) and subsequently with 4% w/v
paraformaldehyde (Sigma Aldrich). Following perfusion, the brain was harvested
and fixed in 4% w/v paraformaldehyde for 2 h at room temperature and washed
three times with PBS. Axial brain sections of 100 mm-thickness were obtained using
a vibratome (Leica Biosystems, Buffalo Grove, IL). Free-floating sections were
incubated for 30 min at room temperature with a 1 mM solution of TO-PRO-3
Iodide nuclear stain in PBS (Thermo Fisher Scientific, Waltham, MA). Stained
sections were washed three times with PBS and mounted on glass slides with
ProLong Diamond Antifade Mountant (Thermo Fisher Scientific) and imaged

using a confocal microscope with GFP- and Cy5-specific filter sets.
Haematoxylin–eosin staining was performed by the Translational Pathology Core
Laboratory in the University of California, Los Angeles.

Monte Carlo simulations of water diffusion in cells. We developed a model for
restricted water diffusion and exchange in cells, building on the previously
described Karger and Szafer models of tissue water diffusion48,67,68. We modelled
cell pellets as a face-centered cubic lattice packed with 108 spherical cells
(Supplementary Fig. 1a) with water molecules distributed randomly throughout the
lattice at t¼ 0. Cell radii were sampled from a normal distribution with a mean of
6.8 mm and a s.d. of 1.2 mm. We set the simulation time step t¼ 50 ms and at
each time step, water molecules were propagated in a three-dimensional random
walk with step size given by N

ffiffiffiffiffiffiffiffi
p=2

p ffiffiffiffiffiffiffiffi
2Dt
p

in each direction. Here, N is sampled
from a random normal distribution and D is the free diffusion coefficient of
water at 12.9 �C (the bore temperature of our MRI scanner) in the intracellular
compartment (554.7 mm2 s� 1) or in the extracellular space (1664.2 mm2 s� 1)69.
If a water molecule encounters a membrane, the propagation step is recalculated
and the molecule either transmitted or reflected off the membrane with a
probability given by

Probability ¼1� 4P

ffiffiffiffiffiffi
t

6D

r
ð3Þ

wherein P is the membrane permeability and D is the free diffusion coefficient of
water in the intracellular compartment. Diffusion paths were simulated in Python
and the ADC was calculated using Matlab as described in the Szafer model48:

ADC Dð Þ¼� lim
q!0þ

ln e� q

P
x2

2

* +

qD
ð4Þ

where Sx2 represents the sum square displacement of a water molecule from its
starting position and q is given by (gdg)2, where g is the gyromagnetic ratio, g is the
gradient strength and d is the duration of the pulsed diffusion gradient. We note
that b-value is calculated as:

b¼q D� d=3ð Þ ð5Þ

In the first set of simulations (ADC versus permeability), we varied the cell
permeability from 0.034 to 0.39 mm ms� 1 and calculated ADC(D) for each value
of cell permeability. In the second set of simulations (ADC versus fraction of
AQP1-expressing cells), the permeability of AQP1-expressing cells and control
cells were fixed at 0.14 and 0.039 mm ms� 1 respectively, in accordance with
previously published values55. We incrementally varied the fraction of cells
expressing AQP1 and for each composition, simulated 3� 104 (nonunique)
random arrangements of AQP1-expressing and control cells to exclude
geometry or arrangement dependent bias in the results. ADC(D) was estimated
corresponding to varying fractions of AQP1-expressing cells in the population.

Estimation of AQP1 expression from Monte Carlo simulations. Based on the
simulated trend of ADC as a function of cell permeability, we calculated perme-
ability values of CHO cells induced with various concentrations of doxycycline and
for which ADC values had been experimentally measured. Permeability values
calculated in this manner ranged from 0.074 to 0.55 mm ms� 1 corresponding to
0.01 and 1 mg ml� 1 doxycycline concentrations. Next, permeability values were
converted to volumetric flow rates by taking their product with the average surface
area of a CHO cell (380 mm2). AQP1 concentration was estimated based on the
previously reported unit channel conductance of 6� 10� 5mm3 ms� 1 (refs 53,55).

Statistical analysis. For statistical significance testing, we used two-sided
homoscedastic t-tests with a significance level of type I error set at 0.05 for rejecting
the null hypothesis. Paired-sample t-tests were used where indicated. Homogeneity
of variances between data sets was verified using Bartlett’s test or F-test, although
we note that the statistical significance of our results remains conserved on using
the Welch’s t-test for heteroscedastic distributions. Normal distribution of data sets
was verified using the Kolmogorov–Smirnov test with a significance level of 0.01.

Data availability. All data presented in support of the findings in this study and
plasmids are available from the authors upon request.

Code availability. Python and MATLAB scripts for Monte Carlo simulations are
available at http://shapirolab.caltech.edu/?page_id=525.
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