
	
  
Open access 

	
  

ISSN 0973-2063 (online) 0973-8894 (print)	
  

Bioinformation 14(5): 259-264 (2018) 	
  
©2018 	
  

	
  

259	
  

www.bioinformation.net 

 Volume 14(5) 
Hypothesis 

Detection of severity in Alzheimer’s disease (AD) 
using computational modeling  
 
Hyunjo Kim 
 
1Department of Life Science, University of Gachon, Seungnam, Kyeonggido, Korea; 2Medical Informatics Department of Ajou Medical 
Center, South Korea; Hyunjo Kim – E-mail: hyunjokim@hotmail.com; *Corresponding author 
 
Received May 9, 2018; Revised May 9, 2018; Accepted May 19, 2018; Published May 31, 2018 
 

doi:10.6026/97320630014259 
Abstract: 
The prevalent cause of dementia - Alzheimer's disease (AD) is characterized by an early cholinergic deficit that is in part responsible 
for the cognitive deficits (especially memory and attention defects). Prolonged AD leads to moderate-to-severe AD, which is one of 
the leading causes of death. Placebo-controlled, randomized clinical trials have shown significant effects of Acetyl cholin esterase 
inhibitors (ChEIs) on function, cognition, activities of daily living (ADL) and behavioral symptoms in patients. Studies have shown 
comparable effects for ChEIs in patients with moderate-to-severe or mild AD. Setting a fixed measurement (e.g. a Mini-Mental State 
Examination score, as a 'when to stop treatment limit) for the disease is not clinically rational. Detection of changed regional   cerebral   
blood   flow   in   mild   cognitive   impairment   and early AD by perfusion-weighted magnetic resonance imaging has been a 
challenge. The utility of perfusion-weighted magnetic resonance imaging (PW-MRI) for detecting changes in regional cerebral blood 
flow (rCBF) in patients with mild cognitive impairment (MCI) and early AD was evaluated. We describe a computer aided prediction 
model to determine the severity of AD using known data in literature. We designed an automated system for the determination of AD 
severity. It is used to predict the clinical cases and conditions with disagreements from specialist. The model described is useful in 
clinical practice to validate diagnosis.  
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Background: 
Alzheimer's disease (AD) and its related dementia have shown 
an alarming rise in the global population.  Although 
considerable efforts have been made to develop effective 
therapeutic agents for AD therapy, drug development has not 
met significant clinical success [1]. Current pharmaco-therapy 
of AD is limited to cholinesterase inhibitors and the N-methyl-
D-aspartate antagonist. Considerable research is underway to 
develop new agents for the management of AD. Since amyloid-
β (Aβ) has been implicated in AD pathogenesis, the use of β 
secretase inhibitors as well as immunotherapy against Aβ has 
been studied [2]. 
 
Baseline measures, such as degree of cognitive impairment, rate 
of disease progression, older age, smoking habit, and the 
presence of concurrent vascular risk factors, are able to affect the 
clinical response. Some of these parameters (age, cerebro-
vascular disease, as well as hippocampal atrophy) may act 
through structural mechanisms, smoking through chemical 
molecules [3]. The presence of sub-cortical vascular lesions has 

been reported not to significantly affect the response to ChEIs 
[4]. Another question at issue is the reproducibility, in a “real 
world” setting, of the results achieved in controlled clinical 
trials, where the selection of AD patients, based on very 
restrictive criteria, makes the cohorts more homogeneous and 
generally younger with respect to everyday clinical practice [5]. 
These observations show the need for a novel approximation 
approach to posterior expectations of real valued functions, 
given observed data, which may allow clinical practitioners to 
obtain a clearer view of the expected net benefit for treatment. 
Therefore, encouraging clinical data collection from patients out 
of randomized clinical trials will give biostatisticians the 
information needed to build an algorithm [6, 7]. We focus on AD 
neuro-imaging initiative studies published between 2011 and 
March 2014 for which structural MRI was the outcome measure.  
It is of interest to document the relationships of structural MRI 
measures to cognition. 
 
Several studies report correlations between regional brain 
volume or atrophy and various types of cognitive tests. As 
expected, memory measures correlate best with temporal lobe 
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structures, whereas executive function and general cognitive 
functioning measures typically correlate more strongly with 
global measures, such as whole-brain atrophy, ventricular 
enlargement, and cortical thickness across multiple brain regions 
[8-11]. 
 
The ability to precisely identify the stage of disease, predict the 
rate of disease progression, and accurately measure the outcomes 
of potential therapies is critical to the successful management of 
Alzheimer’s disease (AD).  The classical characterization of late-
onset AD progression is a time-ordered succession of 3 stages: 
normal (N), mild cognitive Impairment (MCI), and AD. Physical 
measurements of disease progression, that is, MRIs, are used to 
classify patients into these 3 stages, but it has been challenging to 
reliably define finer stages of the disease [12, 13]. 
 
Description: 
We removed the effects of normal aging from the MRI data 
during pre-processing. The rationale for this is related to the fact 
that the effects of normal aging on the brain are likely to be 
similar (equally directed) with the effects of AD, which can lead 
to an overlap between the brain atrophies caused by age and AD. 
This would bring a possible confounding effect on the estimation 
of disease-specific differences. 
 
Relevance of structural imaging: 
Patients with significant cognitive impairment but who do not 
meet criteria for dementia are at increased risk for developing 
AD, and a number of approaches can be considered in order to 
achieve an early diagnosis. Although screening 
neuropsychological tests are necessary to recognize and monitor 
these at-risk subjects, there is no perfectly accurate cognitive 
marker of early AD identified to date [14]. Moreover, cognitive 
performances depend not only on age and education but also on 
mood and attention at the time of testing and thus lack wide 
general features. Likewise, the concentration of tau protein and 
amyloid β	
  (Aβ) in the cerebral-spinal fluid (CSF) appears to have 
some diagnostic value in probable AD, but it is an invasive 
procedure and its value for predicting AD has received only 
little attention thus far [15]. 
 
Perfusion magnetic resonance imaging (MRI) can be used to 
assess cerebral hemodynamic parameters for non-invasive 
diagnosis and staging of disease and for treatment monitoring. 
This method involves monitoring of rapid changes in signal 
intensity over time for a tracer passing though the capillary bed. 
Quantitative   analysis   using   dynamic   susceptibility   
contrast   (DSC) MRI perfusion requires determination of the 
arterial input function (AIF), which is the concentration of the 
contrast agent over time in a brain-feeding artery [16, 17]. It is 
used in the de-convolution of tissue time–concentration curves 
to obtain hemodynamic maps of cerebral blood flow  (CBF), 
cerebral blood volume (CBV), and mean transit time (MTT) 
[18–25]. Thus, AIF profile has a profound effect on final 
calculation of cerebral blood parameters. 
 
 

Methodology: 
Relationships of structural MRI to cognition: 
A MRI ultimately must be linked to cognition or must predict 
future changes in cognition. Many studies have sought to 
establish a link between various AD biomarkers and cognition at 
different disease stages. We focus on studies that related 
structural MRI measures to cognitive change. 
 
Basics of K-Means and Fuzzy C-Means: 
This section briefly explains about the algorithms related to k-
means and fuzzy c-means clustering techniques [26, 27]. 
 
Algorithmic for K-Means Clustering: 
K-means clustering aims to partition n observations into k 
clusters in which each observation belongs to the cluster with the 
nearest mean; Let X = {x1, x2, x3…xn} be the set of data points 
and V ={v1, v2…vc} be the set of centers. 
 
Algorithm for Fuzzy C Means: 
The fuzzy c-means algorithm is as same as the k-means 
algorithm.  The algorithm minimizes intra-cluster variance, but 
has the same problems as k- means, the minimum is a local 
minimum, and the results are based on the initial choice of 
weights [28]. The expectation-maximization algorithm is a more 
statistically formalized method, which includes some of these 
ideas:  partial membership in classes. It has better convergence 
properties and is in general preferred to fuzzy-c-means. 
 
Medical imaging is the special method and process used to create 
images of the human body for clinical purposes (medical 
procedures seeking to reveal, diagnose, or examine disease) or 
medical science (including the study of normal anatomy and 
physiology). 
 
Measurement and recording techniques which are not primarily 
designed to produce images, such as electroencephalography  
(EEG), etc., but which produce data susceptible to be represented 
as maps (i.e., containing positional information), can be seen as 
forms of medical imaging [29]. 
 
Image Segmentation Approach: 
Image segmentation approach follows steps as reading the 
image, removing the noise from the image, data transformation, 
data normalization and comparative analysis of algorithms 
(Figure 2). 
 
Data Manipulation and analysis: 
Simulation Data: 
Perfusion magnetic resonance imaging (MRI) can be used to 
assess cerebral hemodynamic parameters for non-invasive 
diagnosis and staging of   disease   and   for   treatment   
monitoring.   This   method   involves monitoring of rapid 
changes in signal intensity over time for a tracer passing though 
the capillary bed. Quantitative analysis using dynamic 
susceptibility contrast (DSC) MRI perfusion requires 
determination of the arterial input function  (AIF), which is the 
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concentration of the contrast agent over time in a brain-feeding 
artery [16,17]. 
 

 
Figure 1: For computing the output of AD classifier for test 
subjects, the test subset is used in the algorithm and learning 
procedure without any label information (shown with white-
grayed arrow). 
 
It is used in the de-convolution of tissue time–concentration 
curves to obtain hemodynamic maps of cerebral blood flow 
(CBF), cerebral blood volume (CBV), and mean transit time 
(MTT). Thus, AIF profile has a profound effect on final 
calculation of cerebral blood. According to the predetermined 
steps, AIFs would be obtained for each participant using the K-
means in clinical data. 
 
All the experiments were carried out on an off-line personal 
computer (Intel(R) Core(TM) i3 M350 CPU processor, 2.27 GHz 
operating frequency, 4.0 GB RAM memory capacity, Microsoft 
window 7 home premiums, 64-bit operating system). Algorithm 
was developed for comparison between FCM and K-means 
clustering using both simulated data and clinical data. The 
simulation was set up as reported by an automatic selection of 
arterial input function on dynamic contrast-enhanced MR images 
of computer methods programs (see supplementary data). 
 
Predicting Cognitive Decline: 
AD is a degenerative brain disease and the most common cause 
of dementia. It is characterized by a gradual and relentless 
progression of cognitive, functional and behavioral deficits [30]. 
The prevalence of Alzheimer’s disease increases exponentially 
with age from around 1.5% at age of 65 years then doubling every 
4 years to around 30% at the age of 80 years [31]. The exact patho-
physiology of AD is not known. However, a neuronal cholinergic 
deficit can be demonstrated in the early phases of the disease [32]. 
The cholinergic system is a ubiquitous activating 
neurotransmitter system in the brain involved in higher cognitive 
functions such as memory and attention [32]. Mild cognitive 
impairment is a transitional stage between age-related cognitive 
decline and AD. For the effective treatment of AD, it is important 
to identify MCI patients at high risk for conversion to AD. In this 

study, we presented a magnetic resonance imaging (MRI)-based 
method for predicting the MCI-to-AD conversion prior to one to 
three years before the clinical diagnosis. 
 

 
Figure 2: Flow chart to represent the data flow. 
 
We developed a MRI based biomarker model of MCI-to-AD 
conversion using semi-supervised learning and then integrated it 
with age and cognitive measures about the subjects using a 
supervised learning algorithm resulting in aggregate biomarkers. 
The characteristics of the method used for learning the 
biomarkers are as follows: 1) a semi- supervised learning method 
(low density separation) for the construction of MRI biomarker as 
opposed to more typical supervised methods; 2) a feature 
selection on MRI data from AD subjects and normal controls 
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without using data from MCI subjects via regularized logistic 
regression; 3) removal of the aging effects from the MRI data 
before the classifier training to prevent possible confounding 
between AD and age related atrophies; and 4) construction of the 
aggregate biomarker by first learning a separate MRI biomarker 
and then combining it with age and cognitive measures about the 
MCI subjects at the baseline by applying a random forest 
classifier. We experimentally demonstrated the added value of 
these characteristics in predicting the MCI-to-AD conversion on 
data obtained from the Alzheimer's disease Neuroimaging 
Initiative (ADNI) database. With the ADNI data, the MRI 
biomarker achieved a 10-fold cross-validated area under the 
receiver operating characteristic curve (AUC) of 0.7661 in 
discriminating progressive MCI patients  (pMCI) from stable 
MCI patients  (sMCI). The aggregate biomarker based on MRI 
data together with baseline cognitive measurements and age 
achieved a 10-fold cross-validated AUC score of 0.9020 in 
discriminating pMCI from sMCI. The results presented in this   
study demonstrate the potential of the suggested approach for 
early AD diagnosis and an important role of MRI in the MCI-to-
AD conversion prediction. However, it is evident based on our 
results that combining MRI data with cognitive test results 
improved the accuracy of the MCI-to-AD conversion prediction. 
 
Thus, K-means-based AIF determination might be less affected 
by mixing of the arterial signal with signals from surrounding 
tissue [32, 36], so the resulting AIF approaches optimality. AUC 
was higher for the K-means method than for FCM and was closer 
to the true AIF for simulation data. However, the K-means–FCM 
difference   was   significant   for   clinical data. This indicates that 
AIF determination based on the K-means method is affected by 
minimal partial volume averaging [32]. The higher peak and 
larger integrated bolus curve for the K-means-based AIF indicate 
that this method yields the measurements more close to true AIFs  
[32], so it should facilitate more accurate quantitative 
determination of CBF, CBV, and MTT. Each algorithm was 
executed 50 times for the same batch of data for comparison. The 
results reveal better reproducibility for K-means clustering than 
for FCM analysis. It is known that erratic AIFs lead to non-
reproducible quantification of cerebral parameters, which 
undermines the diagnosis and tracking of the disease. Thus, 
compared to FCM clustering, the K-means method is preferable 
for AIF determination. The results demonstrated that the mean 
execution time was relatively longer compared with the K-means 
method and the difference was significant. In current PACS 
environments, the total execution time required for radio-
diagnosis includes the duration of image downloading from the 
PACS server, image post-processing on a local workstation, and 
image unloading to the PACS server. The entire operation 
process takes a few minutes to complete within ten minutes. 
Relative to the total duration of image manipulation in PACS 
settings, the extra time required for executing the K-means 
method compared with the FCM method is negligible. Thus, the 
extra execution time did not limit the use of the K-means method 
for AIF determination in clinical practice. It must be noted that 
there were three limitations in this method. The number of 
subjects participated in perfusion imaging is only 42 subjects for 

the statistical analysis. This limited number of cases might result 
in statistical uncertainty [37]. Therefore, it is necessary to increase 
the number of subjects in similar studies in the future. All the 
participants involved in this study were healthy and subjects 
with abnormalities were not included. Thus, the clinical efficacy 
was not validated for patients with neurological diseases, which 
means that it is necessary to further assess the feasibility and 
efficiency of this method by adding DSC images of abnormal 
cases with acute stroke, artery stenosis, and other abnormalities. 
We evaluated the two most widely used clustering algorithms, so 
it is still unclear whether there are significant differences among 
other clustering algorithms used for AIF detection. Thus, it is 
necessary to compare other types of clustering algorithms to 
identify the most suitable clustering method for AIF 
determination. In conclusion, the K-means method yields more 
accurate and reproducible AIF results compared to FCM cluster 
analysis. The execution time is longer for the K-means method 
than for FCM with robust and accurate follow-up hemodynamic 
maps. 
 
Conclusion: 
We describe an automated algorithm combined with a learning 
method using MRI image features to predict the severity of AD.  
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Supplementary Data: 
 
The true AIF comprises the main peak CP(t) and a subsequent recirculation CR(t): 
 

 
 
Where t0 is the arrival time of contrast agent, α is a measure of in flow velocity steepness, b is the washout velocity, the symbol ‘‘β’’ 
represents the convolution operation, td is the delay between the principal peak and recirculation, tR is the time constant for the 
function accounting for recirculation dispersion, and k is a constant that ensures that the recirculation peak is the third part of the main 
peak, which closely approximates the contrast agent arrival time for our clinical perfusion data. The residue function R(t) was modeled 
using a gamma variation function to simulate the presence of bolus dispersion. 
 

 
 
Where MTT equals the ratio of CBV to CBF. Then the relationship between contrast concentration C(t) and signal intensity S(t) was 
established using the following equations: 
 

 
 
During the scanning of perfusion images, some fluctuating curves were obtained because of shifts in voxels, PVEs, physiological 
pulsations, and other effects. These irregular curves would produce poor estimates of the true AIF. Thus, the following standard 
roughness measurement method was used and the rough percentage of the remaining curves with the largest integral values was 
excluded. 
 

 
 


