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This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into
strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and
pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and
connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, withmaximum
cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border
correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans,
with volume difference (VD) 11.15 ± 69.63 cm3, volume overlap error (VOE) 3.5057 ± 1.3719%, average surface distance (ASD)0.7917 ± 0.2741mm, root mean square distance (RMSD) 1.6957 ± 0.6568mm, maximum symmetric absolute surface distance
(MSD) 21.3430 ± 8.1743mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity
prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.

1. Introduction

Multidetector CT makes chest imaging with high-resolution
and submillimeter isotropic characteristics, which greatly
promote the automatic analytical techniques on medical im-
aging. Precise segmentation of pulmonary parenchyma is
regarded as a critical step for automatic detection of various
lung diseases. However, accurate lung segmentation often
failed when abnormity turns up, and abnormity may be
missed or other tissues that not belong to lungs could be
included. Thus, conventional segmentation techniques are
often insufficient to segment pulmonary parenchyma from
chest CT datasets.

Previous work on lung segmentation can be roughly
classified into two categories. The first category is threshold-
based methods, which depend on the different attenuations
between lung parenchyma and its surrounding tissues [1–9].
Themain limitation of these methods is that their accuracy is
badly influenced by pleura abnormity or artifact and often

result in oversegmentation. Most of the threshold-based
methods are two-dimensional approaches that process each
axial section separately. Although it is a reasonable choice for
thick slices CT, three-dimensional approach is more prefer-
able when isotropic data is available, in which inconsistency
between slices can be avoided.

Sun et al. [1] proposed a fully three-dimensional based
lung segmentation and visualization technology. Firstly, in
the preprocessing phase, isotropic filtering is used to improve
the signal-to-noise ratio; and then, wavelet transform-based
interpolation is applied to reconstruct the 3D voxels. Finally,
by use of region growing, homogeneity, and gradient features,
the lung region is extracted. Brown et al. [2, 3] also suggested a
system framework based on 3D region growing andmorphol-
ogy smoothing; moreover, they proposed a semantic network
anatomical model. On the basis of the attenuation threshold,
shape, adjacent properties, volume, and relative position, the
model can simulate the chest wall, mediastinum, bronchial
tree, and left and right lungs to distinguish the different
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anatomical structures. Sun et al. [4] developed a threshold-
based segmentation method for missed diagnosis of large
tumor. First, a normal shape model of lung is constructed
by training of 41 sets of segmented datasets; second, for ini-
tialization, rib-based matching algorithm is used to produce
the contour. Since the shape model cannot capture the details
of the border, thus graph-cut method is implemented for the
recovery of the details.

The second category is specific abnormity-based meth-
ods, which focus on specific abnormal diseases [10–15]. Due
to their specificity on particular case, they are not applicable
for routine test of large-scale datasets.

Sofka et al. [10] from Siemens used the visible structure
knowledge of chest CT to present a multistage learning
method. Firstly, the method identifies the spine among the
tracheas; secondly, a hierarchical network is used to predict
the posture parameter of left and right lungs. Thirdly, by
use of the marks near the ribs and spine, a shape model
is initialized and followed by a transformation operation
to achieve the refinement. Korfiatis et al. [11] proposed a
texture classification-based method for interstitial lung dis-
ease. The method used intensity-based 𝐾-means clustering
for initialization, and for containing pixels that around the
initial contour, the statistical features of intensity and wavelet
coefficients are calculated for support vector classification. In
order to compensate for the lost juxta-pleural nodules and
ensure the smoothness of the lung boundary, severalmethods
have been proposed to correct the lung contours [12, 13].
Yim and Hong [12] proposed a new curvature-based method
for correcting the segmented lung boundary, a 3D branch-
based region growing algorithm was utilized to segment the
trachea and the left and right bronchi with adaptive growing
conditions. Pu et al. [13] developed a lung segmentation
method for reducing errors result from juxta-pleural tumor in
traditional thresholding approaches. The proposed method
begins with segmenting the lung contour with thresholding
and smoothing and then flooding in the nonlung region of
each slice; by this way, the initial border of the lung is tracked,
and the adaptive border marching algorithm is utilized for
reincluding the juxta-pleural tumor.

In addition to the above-mentioned studies, a few algo-
rithms focus on diverse lung scans with dense pathologies
being proposed. Sluimer et al. [16] proposed an atlas-based
technology for lung segmentation with severe lesion. By
registering 15 sets of chest CT to referenced lung atlas, the
probability atlas is constructed, and then elastic registering
is used for mapping the probability atlas to new scans for
initialization and transformation. Finally, the trained lung
border is utilized for refining the lung border.

The existing methods are either not taking the juxta-
pleural tumors into consideration or too specified to be
qualified for large-scale testing. Alleviating these difficulties
is exactly what we are concerned with in this paper.We devel-
oped a fully automatic framework to segment pulmonary
parenchyma with juxta-pleural nodules from chest CT. It
starts from skin boundary detection with maximum con-
nected component analysis, and then, rough segmentation
of lung contour is implemented by diagonal-based tracing,
which is followed by the separation of the left and right

lungs with maximum cost path algorithm. And the final
segmentation of pulmonary parenchyma is achieved by arc-
based smoothing and concave-based correction. Our scheme
is evaluated on 45 sets of CT scans, and its results are
compared with the state of the art method, which is validated
by the manual segmentation standard of radiologist.

2. Methods

In this section, the proposed framework will be described in
detail. It is a multistep approach that gradually accumulates
information until the final result is obtained. We depict the
flowchart of the framework in Figure 1. It is subdivided into
three phases: skin boundary detection, contour segmenta-
tion, and parenchyma refinement. In the rest of the parts,
we further describe each individual step and explain how
to segment pulmonary parenchyma automatically from chest
CT.

2.1. Skin Boundary Detection. Skin boundary detection is the
foundation of lung segmentation. In view of the high contrast
between chest and the background, threshold-based method
is utilized for segmentation purpose. In this section, firstly,
principal component-based image aligning is implemented to
correct the tilted scans; secondly, mathematical morphology
operation is applied for noise reduction, and finally, by
maximum connected region analyzing, the chest mask is
extracted.

2.1.1. Principal Component-Based Image Aligning. The con-
tour detection algorithm assumes that all patients have the
same pose. In particular, it assumes that they lie upright and
on their back in the scanner.This assumption is in most cases
true due to the standardized CT scanning protocol. However,
there are some rare cases in which the patients lie on their
side, as shown in Figure 2(a). Because the border detection
algorithm is not able to directly handle such scans in view of
missing the starting point, an algorithm has been developed
which automatically identifies scans in which patients lie on
their side and rotates them accordingly.

In this paper, we limit the inclination angle on the 𝑥-𝑦
plane, and using the rotation method proposed by [17] for
aligning. Firstly, for all the bone voxels on the 𝑥-𝑦 plane,
principal component analysis [18] is applied for extracting
the first principal component 𝜇, and then 𝜇 is mapped to the
positive direction of the𝑥-axis to generate the rotationmatrix𝑅 with the rotated degree 𝜙:

𝜙 = arctan(𝜇2𝜇1) , (1)

where 𝜇1 is the mapping of vector 𝜇 on 𝑦-axis, while 𝜇2 is
the mapping of vector 𝜇 on 𝑥-axis. It is assumed that 𝜇 is
orthogonal to the patients sagittal plane and tangential to his
coronal plane. It is further assumed that the angle 𝜙 between𝜇 and the positive 𝑥-axis is between −90∘ and 90∘. If this is
not the case, that is, 𝜇1 < 0, the direction of 𝜇 is inverted by
multiplying −1.

A diagonal-based border detection algorithm is utilized
in the subsequent section. By experience only if 𝜙 is out of
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Figure 1: Flowchart of the proposed scheme on lung segmentation.
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Figure 2: Illustration of image aligning. (a) Original tilted image. (b) Principal component analysis. (c) Aligned image after rotated.

[−15, 15] can the aligning algorithm be applied, or the initial
point of lung border could be missed. As 𝜙 is in [−15, 15],
the influence on the boundary tracking algorithm can be
eliminated. As shown in Figure 2, by rotating around the
center for 𝜙 degree, the tilted image is aligned.

2.1.2. Mathematical Morphology-Based Denoising. The main
problem in skin boundary detection is the existence of vari-
ous external noises, including human appendant, bed sheet,
and CT scanner itself (Figure 3(a)). To eliminate these noises,
firstly, Otsu threshold [19] is used for binary processing
(Figure 3(b)); secondly, bymorphological opening operation,
salt noise in the CT scan, bed sheet, and the scanner itself
are removed (Figure 3(c)). Finally, by connected regional
analysis, the chest mask is determined (Figure 3(d)), and by
masking the original chest scan, the final chest region is
obtained (Figure 3(e)).

2.2. Rough Segmentation of Lung Contour. After skin bound-
ary detection, we step into lung parenchyma segmentation.
In this section, two procedures are applied: (1) diagonal

tracing-based lung contour initialization; (2) maximum cost
path-based lungs separation.

2.2.1. Diagonal Tracing-Based Lung Contour Initialization. A
diagonal tracing-based method is proposed for lung contour
initialization, with the detailed description in the following.

Step 1. Define the major diagonal as the searching path
(Figure 4).

Step 2. Search first 𝑃0 with three consecutive “0s” as the start
point of the left lung.

Step 3. 8-neighborhood-based boundary tracing is utilized
for boundary extraction of the left lung. Assume the bound-
ary point set is denoted by {𝑃1(𝑎1, 𝑏1), 𝑃2(𝑎2, 𝑏2), . . .,𝑃𝑛−1(𝑎𝑛−1, 𝑏𝑛−1), 𝑃𝑛(𝑎𝑛, 𝑏𝑛)}.
Step 4. Once an overlap between the final two points and the
initial two points is found, for example, 𝑃𝑛 = 𝑃2, 𝑃𝑛−1 = 𝑃1,
the algorithm ends.



4 Computational and Mathematical Methods in Medicine

(a) (b) (c) (d) (e)
Figure 3: Illustration of skin boundary detection. (a) Original chest CT. (b) Otsu thresholding. (c) Morphological open. (d) Chest mask. (e)
Final chest segmentation.

(a) (b)
Figure 4: Illustration of diagonal-based contour tracing. (a) Searching the start point along major and minor diagonal. (b) Rough contour
after diagonal-based tracing.

By this way, the boundary of the left lung is achieved;
similar to the method of obtaining the left lung border, by
searching the start point along the minor diagonal, with the
accompanied boundary tracing algorithm, the boundary of
the right lung is achieved. Thus the initialization of lung
contour is fulfilled.

2.2.2. Maximum Cost Path-Based Lungs Separation. The sep-
aration of left and right lungs is the necessary step for accurate
lung segmentation. In [20, 21], 2D edge tracking was used to
find the boundaries of the left and right lungs. Hu et al. [22]
separated the left and right lungs by identifying the anterior
and posterior junctions using dynamic programming. In this
paper, we use the dynamic programming algorithm [22] for
separation purpose. The dynamic programming algorithm
is used on each slice with single connective component. Its
target is to locate the position of the left and right lungs and
reseparate them (see Figure 5). In this method, the weight
map that is proportional to the intensity level is used for
searching the maximum cost path, which corresponds to the
separation line of left and right lungs.

Once the single connective area is found, 2D erosion
process is applied for separation, while dilating process with
constraint is used for reconstructing the original borderline.
Supposing 𝐴 as the original set of lung pixels, the erosion
operation is adopted to calculate a new set for separated lungs𝑆. The equation is showed as follows:

𝑆 = 𝐴 ⊖ 𝑛𝐵4, (2)

where ⊖ indicates binary morphology erosion, and 𝐵4 is a
binary diamond-shaped structure. By iterative erosion with𝐵4, 𝑆 is separated into two components, and the iterative
number is indicated by 𝑛.

For the reconstruction of lung border, iterative dilation
with constraint is used that is described as follows:

𝐶𝑖+1 = 𝐶𝑖 ∪ {{𝑝} ⊕ 𝐵4} , (3)

where ⊕ represents morphology dilation, with constraint𝑝 ∈ 𝐶𝑖 ∩ 𝐴, while 𝐶𝑖 keeps the same components number
with 𝐶𝑖+1, and 𝐶0 = 𝑆 is used for initialization. Equation
(3) is implemented until 𝑝 ∈ 𝐶𝑖 ∩ 𝐴 is not satisfied or
the component number is changed. Figure 5 illustrates the
reconstruction process.

2.3. Pulmonary Parenchyma Refinement. In this section, two
successive phases are implemented to refine the rough lung
contour.Wewill describe the details step by step until the final
pulmonary parenchyma is achieved.

2.3.1. Arc Reconstruction-Based Border Smoothing. Lots of
jagged edges are generated after rough segmentation of lungs
as shown in Figure 6. In order to make image smooth and
reduce the impacts of gradient mutations, curve smoothing
method is used. The partial arc coefficient is produced by
multiple points, and through appropriate smoothing fre-
quency, the optimum result is obtained. Since any curve on a
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(a) (b)

Figure 5: Illustration of left and right lungs separation. (a) Connective case of left and right lungs. (b) Separation of left and right lungs after
maximum cost path process.

(a) (b)

Figure 6: Processing of jagged border. (a) Image with jagged border. (b) Image after smoothing.

plane can be defined as 𝑥 = 𝑥(𝑠), 𝑦 = 𝑦(𝑠) (where 𝑠 represents
the arc length of the curve), therefore, the edge of the lung
parenchyma can be denoted using (4):

𝑥 = 𝑥 (𝑠) = 𝑎0 + 𝑎1𝑠 + ⋅ ⋅ ⋅ + 𝑎𝑛𝑠𝑛,
𝑦 = 𝑦 (𝑠) = 𝑏0 + 𝑏1𝑠 + ⋅ ⋅ ⋅ + 𝑏𝑛𝑠𝑛, (4)

(𝑃𝑛 − 𝑃1)2 ≤ 2,
(𝑎𝑛 − 𝑎1)2 + (𝑏𝑛 − 𝑏1)2 ≤ 2. (5)

Smoothing is essentially a resampling process, and the con-
vergence condition is (5). When the start points with the last
two ones constitute a 8-neighborhood relation, a closed con-
tour is determined. In this paper, cubic spline interpolation
[23] is used for constructing the new smoothing border, and
the detailed algorithm is described below.

Step 1. Resampling the initial contour ({𝑃1, 𝑃2, . . . , 𝑃𝑁}) with
step size 𝐿, and then, the arc length between two adjacent
points can be denoted by 𝐿; in this paper, 𝐿 = 0.3 is used.
Step 2. For 𝑃𝑖 on the border with adjacent points {𝑃𝑖−𝑘, . . .,𝑃𝑖−1, 𝑃𝑖+1, . . . , 𝑃𝑖+𝑘} (2𝑘 (2𝑘 > 𝑛)). The arc between the 2𝑘 + 1
neighbors and 𝑃𝑖 are 0, . . . , (𝑘 − 1)𝐿, 𝑘𝐿, (𝑘 + 1)𝐿, . . . , 2𝑘𝐿.
Assuming (𝑥𝑖+𝑗, 𝑦𝑖+𝑗) as the coordinate of 𝑃𝑖+𝑗, and 𝑆𝑖+𝑗 as

the arc length between 𝑃𝑖+𝑗 and 𝑃𝑖−𝑘, we get the following
deduction:

𝑥𝑖+𝑗 = 𝑎0 + 𝑎1𝑠𝑖+𝑗 + ⋅ ⋅ ⋅ + 𝑎𝑛𝑠𝑛𝑖+𝑗,
𝑦𝑖+𝑗 = 𝑏0 + 𝑏1𝑠𝑖+𝑗 + ⋅ ⋅ ⋅ + 𝑏𝑛𝑠𝑛𝑖+𝑗. (6)

Then, the least squares method [24] is utilized to obtain the
coefficient series 𝑎0, 𝑎1, . . . , 𝑎𝑛, 𝑏0, 𝑏1, . . . , 𝑏𝑛.
Step 3. Take the arc lengths 𝑠 = 𝑘𝐿 of 𝑃𝑖 and 𝑃𝑖−𝑘 into poly-
nomial, and a new smoothed location (𝑥𝑖, 𝑦𝑖) is generated.
Step 4. Repeat Steps 2 and 3 for a new border set until
convergence.

Step 5. Set threshold 𝑇2 for perimeter convergence, iterating
from Steps 1 to 5 until |𝐶 − 𝐶󸀠| < 𝑇2.

The effect on jagged border smoothing is shown in
Figure 6, with the testing parameters provided in Table 1. In
this paper, parameters 𝑛 = 2, 𝑘 = 4, and𝑀 = 12 are selected.
2.3.2. Concave Discrimination-Based Border Correction. Aft-
er border smoothing, appropriate detection and correction
are required for solving undersegmentation problem caused
by juxta-pleural nodules.The following approach is aiming to
this target.

Concave area is defined as the line between the start
point and the rightmost or leftmost point of step size. To
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Table 1: Parameters in arc reconstruction-based smoothing.

𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4𝑘 𝑀 𝑡 𝑘 𝑀 𝑡 𝑘 𝑀 𝑡 𝑘 𝑀 𝑡
1 50 14.2 2 120 23.3 2 120 30.5 3 240 56.6
2 10 5.30 3 30 6.81 3 30 6.57 4 135 43.4
3 8 15.4 4 12 3.25 4 10 2.79 5 50 17.6
4 4 0.78 5 6 1.71 5 6 1.57 6 20 9.10
5 2 0.62 6 4 1.09 6 4 1.15 7 15 5.71𝑛 = 5 𝑛 = 6 𝑛 = 7 𝑛 = 8𝑘 𝑀 𝑡 𝑘 𝑀 𝑡 𝑘 𝑀 𝑡 𝑘 𝑀 𝑡
3 300 98.06 4 620 252.33 4 800 380.52 5 1000 756.61
4 150 53.76 5 380 176.24 5 600 261.17 6 700 437.78
5 65 27.13 6 190 82.35 6 300 159.47 7 200 127.86
6 30 11.34 7 110 59.07 7 150 76.33 8 90 61.65
7 10 4.11 8 60 28.56 8 70 41.96 9 50 38.12
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Figure 7: Illustration of border marching algorithm. (a) Start point. (b) Reference direction. (c) New point is found on the right of the
reference direction. (d) New reference direction.
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Figure 8: Illustration of the length andwidth of concave area, where𝑊 represents width, and𝐻 represents height.

determine the orientation, the right hand rule [25] is used,
and for detecting all the possible concave areas, the adaptive
border marching algorithm (ABM) [13] is utilized. We have
developed a model with two parameters (Figure 8) for the
determination of boundary refinement. One parameter is𝑊,

the Euclidean distance between two consecutive points after
the marching operation, and the other is 𝐻, the maximum
height perpendicular to this connecting line segment. We
defined the threshold which is the length-width ratio of 𝐻
and𝑊. For any concave region where threshold > 𝑇1, replace
the concave area with a straight line. The ABM algorithm
involves five consecutive points, as shown in Figure 7. Choose𝑃1 as the start point and 𝑃1𝑃2 as the reference direction
(indicated by red line); then, because point 𝑃3 is found on
the right of 𝑃1𝑃2, thus, 𝑃1𝑃2 is substituted by 𝑃1𝑃3 as a new
direction. Since all the rest points locate on the left side, thus, a
new concave point is detected (indicated by green line).Then,
a new round with the new point 𝑃3 is continued until a closed
path is achieved.

As concave region detection is completed, we step into the
correction phase. On the one hand, concave area correction
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(a) (b)

Figure 9: Illustration of border correction. (a) Undersegmentation. (b) After border correction Red line denotes the rough segmentation,
while green line represents the effect of correction.

Table 2: Quality and accessibility of the image datasets.

Dataset Number Size Resolution Slices number Slice thickness
Local hospital 45 512 ∗ 512 0.625–0.742 (mm) 275–502 0.55–1 (mm)

can reduce themissed diagnosis rate of juxta-pleural nodules;
on the other hand, excessive correction will undoubtedly
results in more undersegmentation errors.Therefore, length-
width ratio-based threshold is proposed for solving this
problem. The main procedure of this algorithm is described
below.

Step 1. Calculate the perimeter 𝐶 of lung border set 𝑃1.
Step 2. For all the concave points on border set 𝑃1, calculate
the length-width ratio 𝜂 = 𝐻/𝑊 (see Figure 8).

Step 3. For any concave point that 𝜂 > 𝑇1, substitute the
concave area with a straight line, where𝑇1 indicates the ratio-
based threshold.

Step 4. Recalculate a new lung border set 𝑃2 with perimeter𝐶󸀠.
Step 5. Set the threshold 𝑇2 for perimeter convergence, iter-
ating from Steps 1 to 5 until |𝐶 − 𝐶󸀠| < 𝑇2.

In this paper, the convergence threshold𝑇2 = 0.01 is used,
and Figure 9 depicts the undersegmentation case via concave
correction.

3. Experimental Results and Discussion

3.1. Quality and Accessibility of Datasets. A total of 45 sets of
chest CT scans fromWeihai Municipal Hospital are used for
experiment, in which 20 groups are generated by Somatom
Sensation 64 of Siemens Medical Systems, and another
25 groups come from Brilliance 64-bit scanner of Philips

Table 3: Information of juxta-pleura tumors.

Dataset Types Number Size
Local hospital Normal nodules; GGO 53 6–17 (mm)

Medical Systems. CT size is 512×512×275 to 512×512×502,
with pixel size 0.625mm to 0.742mm, and slice thickness
0.55mm to 1.0mm. Table 2 presents a detailed information
about the quality of the images; meanwhile, Table 3 provides
a detailed description of juxta-pleura tumor used in our
experiment. All 45 groups are manually segmented by a
radiologist as golden standard. Experiments are performed
in Matlab R2010a, with quad-core CPU i5-4590 and 8G
memory.

The ground truth of the segmentation used in this paper
was obtained by the radiologists of the cooperative hospital,
utilizing a manual segmentation software namedMITK [26],
which provides an open source and a graphical user interface
developed by the German Center for Cancer Research.
The general procedure for ground truth segmentation is as
follows. First, a smoothing operation is selected for reducing
the noises in the images; second, a three-dimensional region
growing method is used to obtain an initial segmentation
result; finally, the rough segmentation results were further
optimized by the radiologists on the cross-sectional, sagittal,
or coronal slice until the final segmentation results were
satisfactory.

3.2. Evaluation Metrics and Criteria. To evaluate the seg-
mentation performance, seven error metrics are used in
this paper, which are often utilized for evaluating on the
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(a) (b)

Figure 10: 3D view of concave correction. (a) 3D view of juxta-pleural nodules before correction. (b) 3D view of juxta-pleural nodules after
correction.

accuracy and complexity [6, 12], including volume difference
(VD), volumeoverlap error (VOE), relative volumedifference
(RVD), average surface distance (ASD), root mean square
distance (RMSD), maximum symmetric absolute surface dis-
tance (MSD), and process time. For automatic segmentation
volume 𝑉auto and manual segmentation volume 𝑉manu, VD
is defined as VD = 𝑉auto − 𝑉manu, RVD = 100 × ((𝑉auto −𝑉manu)/𝑉ref ), VOE = 100 × (1 − (𝑉auto ∩ 𝑉ref/𝑉auto ∪ 𝑉manu)),
and ASD, RMSD, MSD are defined by (7), (8), and (9),
respectively:

ASD (𝐴, 𝐵) = 1|𝑆 (𝐴)| + |𝑆 (𝐵)| ( ∑
𝑠𝐴∈𝑆(𝐴)

𝑑 (𝑠𝐴, 𝑆 (𝐵))

+ ∑
𝑠𝐵∈𝑆(𝐵)

𝑑 (𝑠𝐵, 𝑆 (𝐴))) ,
(7)

RMSD (𝐴, 𝐵) = √ 1|𝑆 (𝐴)| + |𝑆 (𝐵)|
× √ ∑
𝑠𝐴∈𝑆(𝐴)

𝑑2 (𝑠𝐴, 𝑆 (𝐵)) + ∑
𝑠𝐵∈𝑆(𝐵)

𝑑2 (𝑠𝐵, 𝑆 (𝐴)),
(8)

MSD (𝐴, 𝐵)
= max{ max

𝑠𝐴∈𝑆(𝐴)
𝑑 (𝑠𝐴, 𝑆 (𝐵)) , max

𝑠𝐵∈𝑆(𝐵)
𝑑 (𝑠𝐵, 𝑆 (𝐴))} , (9)

where 𝐴 and 𝐵 correspond to two segmentation results, and𝑑(V, 𝑆(𝑋)) represents the shortest Euler distance from voxel V
to the segmentation result𝑋.

Similar to the criteria used in [13], oversegmentation and
undersegmentation rates are also considered as criteria for
comparative study. Oversegmentation rate is defined as the
segmentation volume that is regarded as lung tissue in our
method, while not in the ground truth, and the under-
segmentation rate is vice versa. We use the cumulative

distribution to demonstrate the fitting between the lung
surfaces obtained by the proposed method and the ground
truth, which are calculated by the shortest distance between a
point on the lung surfaces obtained by the proposed method
and the lung surfaces of the ground truth.

3.3. Accuracy Analysis. Table 4 shows the experimental result
on 45 chest scans, based on the proposed method and the
golden standard. As shown in the table, VD is 11.15 ±69.63 cm3, VOE is 3.5057 ± 1.3719%, ASD is 0.7917 ±0.2741mm, RMSD is 1.6957 ± 0.6568mm, and MSD is21.3430 ± 8.1743mm. In clinical practice, VOE of 5% is gen-
erally considered as the most acceptable error, and therefore,
the proposed method is capable of providing clinical assist.

The automatic segmentation results were compared with
manual segmentation result of the radiologist. Whether a
juxta-pleural nodule was correctly included or not was deter-
mined by a radiologist to see whether there are obvious
defects in the segmentation due to juxta-pleural nodules.
Figure 10 shows the three-dimensional view before and after
border correction. It can be seen that the juxta-pleural
nodules are reincluded after correction operation. However,
to a certain extent, oversegmentation error is inevitable due to
the overcorrection; thus, most of VD in Figure 11 are positive,
which appear above the 𝑥-axis, denoting oversegmentation.
The over- and undersegmentation are 29 and 16 sets, respec-
tively; in other words, the probability of oversegmentation is
almost twice of undersegmentation.

In order to study the average distance of segmentation
error, we depict the cumulative probability distribution based
on under- and oversegmentation, which are showed in
Figure 12. In general, oversegmentation is defined as the lung
volume that is regarded as lung tissue in our segmenta-
tion method while not in the reference standard, and the
undersegmentation is vice versa. In this paper, the metric
of RVD (relative volume difference) is used for determining
whether a segmentation belongs to oversegmentation or
undersegmentation. If RVD gets a positive value, we regard
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Table 4: Experimental result of lung segmentation on 45 testing scans. AVG indicates average result, and SD is short for standard deviation.

ID VD VOE RVD ASD RMSD MSD 𝑉auto 𝑉manu

(cm3) (%) (%) (mm) (mm) (mm) (cm3) (cm3)
1 −47.31 3.0242 −1.31 1.099 1.7593 18.9573 3671.56 3624.25
2 38.30 2.7479 1.09 0.7605 1.5615 18.122 3485.20 3523.50
3 71.74 3.6033 2.14 1.0078 1.7504 21.177 3275.97 3347.71
4 41.67 1.6723 1.14 0.6651 2.3539 19.6505 3615.24 3656.91
5 −54.48 3.2045 −1.47 1.123 2.0554 28.2471 3769.77 3715.29
6 31.33 3.6496 1.08 0.8762 1.7107 13.6632 2873.39 2904.72
7 −50.56 4.6419 −1.46 0.8933 1.4647 20.7681 3505.04 3454.47
8 −38.36 2.2887 −1.16 0.5502 1.5762 13.2609 3332.93 3294.57
9 75.49 5.2518 1.52 1.0722 1.5287 17.7907 4881.78 4957.27
10 −62.66 3.1748 −1.68 0.9567 1.8444 15.0682 3796.92 3734.26
11 35.49 2.5787 1.22 1.0584 1.6721 13.6448 2881.47 2916.96
12 43.62 1.6744 1.61 1.0107 1.806 19.3329 2658.32 2701.95
13 −49.49 3.1636 −1.45 1.0369 1.5537 10.0705 3459.81 3410.32
14 59.68 5.4911 1.99 0.7718 1.7302 19.3278 2945.88 3005.56
15 45.51 2.748 1.13 1.005 1.6431 19.9296 3967.29 4012.79
16 29.85 3.3606 0.77 0.9802 0.9411 11.3013 3825.41 3855.26
17 64.09 2.4039 1.83 0.4677 0.7013 10.2471 3439.35 3503.43
18 −57.97 4.3397 −1.91 1.1241 1.3929 22.9175 3099.42 3041.45
19 7.98 5.5238 0.23 1.1006 1.9721 15.0682 3531.61 3539.59
20 30.77 3.6862 0.78 1.0243 1.7763 20.1077 3938.13 3968.90
21 82.82 1.7774 2.20 0.3712 0.7476 18.913 3685.22 3768.04
22 78.42 6.1284 2.09 0.5164 0.9187 37.7341 3681.38 3759.81
23 39.89 5.0326 1.13 0.6109 1.8158 30.304 3491.12 3531.01
24 75.16 1.7624 2.24 0.4399 1.1044 17.6525 3283.02 3358.19
25 −50.81 4.5438 −1.31 0.6719 2.3576 32.5025 3918.14 3867.33
26 92.24 5.9488 2.38 1.0348 3.4893 38.3925 3776.06 3868.30
27 15.43 2.3037 0.53 0.3511 0.9273 16.7561 2879.30 2894.73
28 −46.44 2.5115 −1.34 0.5523 1.5216 16.6689 3508.69 3462.25
29 119.99 4.2139 2.69 0.6718 2.0628 29.6165 4342.92 4462.90
30 −29.24 2.8285 −0.60 0.8594 1.8682 24.9089 4887.26 4858.02
31 21.64 1.7654 0.57 0.5437 1.1489 16.5399 3799.97 3821.61
32 148.21 5.2781 4.87 1.0058 2.9211 25.7359 2892.25 3040.47
33 87.09 6.0183 3.16 1.0896 2.5128 21.8625 2668.69 2755.78
34 −168.48 4.5721 −3.91 1.0939 2.3051 21.9811 4472.12 4303.64
35 51.99 1.8947 1.73 0.3234 1.1074 26.6914 2950.36 3002.35
36 −97.87 5.4153 −2.53 1.1019 2.7363 33.2542 3970.86 3872.99
37 122.95 3.7016 2.48 0.8564 1.8731 22.6337 4835.66 4958.61
38 −137.55 5.2533 −4.15 1.1919 3.0683 47.3566 3449.08 3311.53
39 −83.38 2.6188 −2.75 0.6592 1.4036 17.7262 3110.78 3027.40
40 31.08 1.6871 0.87 0.4472 0.9098 13.2845 3543.87 3574.96
41 26.11 2.4515 0.66 0.2712 0.7285 26.0694 3945.08 3971.20
42 −71.33 2.7375 −1.97 0.7256 1.4599 17.6144 3692.75 3621.42
43 22.82 3.3868 0.62 0.4087 0.9147 10.2961 3681.11 3703.93
44 33.29 1.3839 0.94 0.3318 0.7743 12.3896 3505.11 3538.40
45 −77.18 4.3108 −2.40 0.9147 2.8345 34.8965 3290.29 3213.11
AVG 11.15 3.5057 0.3176 0.7917 1.6957 21.3430 3582.57 3593.71
SD 69.63 1.3719 1.9445 0.2741 0.6568 8.1743 529.47 528.37
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Figure 11: Comparative relative volume difference (RVD) of under-
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Figure 12: Cumulative probability distribution function of under-
segmentation and over-segmentation. (◼) 29 groups of over-
segmentation. (󳵳) 16 groups of under-segmentation.

this segmentation result as an oversegmentation on the
whole, or undersegmentation vice versa.

We use the cumulative distribution to demonstrate the
fitting between the lung surfaces obtained by ourmethod and
the manual segmentation standard. The cumulative distance
distribution is formed by calculating the metric of ASD
(average surface distance) obtained by our automatic method
and manual segmentation standard.

In Figure 12, cumulative probability distribution for over-
and undersegmentation within 1mm are 70% and 60%,
respectively, while the maximum distance errors are 1.1mm
and 1.2mm, respectively, thus proving the higher proba-
bility of segmentation errors generated by oversegmenta-
tion.
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Figure 13: Time-consuming diagram of the main phases of the
whole system.

3.4. Complexity Analysis. Figure 13 shows the time-consum-
ing diagram of the main processing phases, including skin
boundary detection, rough segmentation lung parenchyma,
and refinement of lung parenchyma. In the figure, the whole
time-consuming is 537.73 ± 162.873 seconds on average,
among which skin boundary detection costs 25.2 ± 12.2376
seconds (accounting for 4.66% of the whole time), rough
segmentation of lung parenchyma costs 102.45 ± 28.5473
seconds (accounting for 19.03% of the whole time), and
refinement costs 408.98 ± 16.788 seconds (accounting for
76.31% of the overall time). And the time complexity for these
phases areO(𝑁2),O(𝑘1𝑁2), andO(𝑘2𝑁2), respectively, where𝑘1 indicates the iteration numbers of maximum cost path,
while 𝑘2 indicates the iterative number of reconstruction and
concave determination.

It can be seen from Figure 13 that the proposed scheme
spends much more time on smoothing and correction pro-
cess, in which iterative convergence accounts for a large
proportion. On the average, processing time for each image
is 2 seconds, while radiologist needs 1 minute for manual
segmentation, which proves the efficiency of the proposed
scheme.

3.5. Comparison with State of the Art Method. To evaluate
the performance of our method, the proposed method was
compared with the state of the art method proposed by Pu et
al. [13]. In Pu’s method, an adaptive border marching (ABM)
algorithm was proposed to segment the lung and correct
the segmentation defects caused by juxta-pleura nodules
while minimizing undersegmentation and oversegmentation
relative to the true lung border. The primary emphasis and
distinguishing characteristic of the proposed method is on
robustly correcting missed juxta-pleural nodules.

Table 5 presents the lung segmentation results by using
our proposed method on 45 datasets, when compared to
the conventional ABM-based method (Pu’s method). For the
final segmentation results, our method yields mean VOE of
3.51% and ASD of 0.79mm, while conventional ABM-based
method yieldsmeanVOE of 3.86% andASD of 0.83mm.Our
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Table 5: Comparative results between our method and the conventional method.

Method VOE [%] ASD [mm] RMSD [mm] MSD [mm]
Conventional ABM 3.8574 ± 2.10 0.8304 ± 0.33 1.8783 ± 0.51 32.2461 ± 8.12
Our method 3.5057 ± 1.94 0.7917 ± 0.27 1.6957 ± 0.66 21.3430 ± 8.17

Table 6: Relative volume difference (RVD) results between our method and the conventional method.

Method RVD (oversegmentation) [%] RVD (undersegmentation) [%]
Conventional ABM 1.92 ± 1.02 −1.65 ± 0.93
Our method 1.87 ± 0.95 −1.58 ± 0.96

Pu Ours

0.6

0.8

1.0

1.2

Figure 14: Boxplot on ASD between Pu’s and our methods.

method outperforms the conventional method by 0.35% and
0.04mm on average in terms of AOE and ASD, respectively.

In addition, similar results were also obtained for com-
parison study by boxplot between Pu’s and our method in
Figure 14. For the ASD, there is no abnormal point in both
results; meanwhile, 𝑝 value is less than 0.05 by 𝑡 test, hence
proving the significant better accuracy of our method.

Table 6 lists the comparative RVD results on both meth-
ods. For theRVDresult of oversegmentation, ourmethod and
conventional ABM yield mean 1.87% and 1.92%, respectively,
while, for the RVD result of undersegmentation, our method
and conventional ABM yield mean −1.58% and −1.65%,
respectively. Our method outperforms the conventional
ABM by 0.05% and 0.07% on average in terms of RVD on
oversegmentation and undersegmentation, respectively.

Therefore, for the lung tissue with juxta-pleura nodules,
our proposed method achieves more accurate and robust
segmentation results than the conventional method. The
main reason for that is the lungs separation operation in our
method improves the accuracy of lung contour segmentation.
It can thus be deployed for accurate and robust lung segmen-
tation with juxta-pleura nodules.

For our study, the main target is to solve the problem of
the segmentation result by juxta-pleural nodules; thus it is not
a generic tool to have this segmentation method when lung
includes other pathological lesions or abnormities especially

near the pleura. However, in our datasets, GGO (ground
glass opacity) nodules are also considered in our scans, some
of which are attached to the pleura. Although GGO often
shows the irregular shape and low intensity, and its irregular
shape is usually not fit to regular concave area detection
algorithm, its low contrast with the lung parenchyma helps
obtain the correct lung contour. In Figure 15(a) the lung
segmentation is performed correctly due to the superiority
of border tracing algorithm even when GGO is attached
to the pleura, while other conventional region growing-
based methods often need further processing because of the
inhomogeneity between GGO and the lung parenchyma.

We recognize that the proposed scheme still needs further
improvement. As the failure cases Figure 16(a) demonstrated,
oversegmentation occurred around the trachea which is close
to the parenchyma, and that is the result of overcorrection. In
Figure 16(b), when the big vessel is located on the edge of the
lung parenchyma, undersegmentation occurred because of
the undercorrection. It is difficult to overcome this dilemma
through 2D slice since border correction is a trade-off
problem. Nevertheless, the segmentation error generated by
juxta-pleura nodules could be reduced significantly due to
the appropriate length-to-high ratio. Further study on how
to reduce the errors caused by trachea and vessel could help
alleviate the above-mentioned dilemma.

4. Conclusion

In this paper, a fully lung segmentation framework for chest
CTwith juxta-plural nodules is proposed via fivemain proce-
dures, including chest segmentation, lung border tracing, left
and right lung separation, lung border smoothing, and border
correction, which focus on the oversegmentation problem
caused by juxta-pleural nodules. Compared with manual
segmentation, the volume overlap error of our approach is
less than 5%, which meets the clinical requirements. And
also, the time-consuming is about 2 seconds per image,
which is more efficient than the manual cost of 1 minute
per image. However, the proposed scheme tends to result in
some undersegmentation, especially around the area which
is close to the mediastinum, where the dense tracheas are
located.Therefore, the border correction algorithm still needs
further improvement, especially for the irregular lung shape
caused by abnormal lesions. Nevertheless, comparing with
the traditional method, our proposed scheme achieved great
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(a) (b)

Figure 15: Illustration of lung segmentation result with GGO (ground glass opacity) nodules. (a) Juxta-pleura GGO. (b) Isolated GGO.

(a) (b) (c) (d)

Figure 16: Illustration of segmentation errors of undersegmentation and oversegmentation. (a) and (c) indicate oversegmentation and
undersegmentation, respectively. (b) and (d) indicate the manual segmentation as golden standard.

advantages in accuracy and time complexity, which indicates
a potential tool for lung segmentation with juxta-pleural
nodules.
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with guaranteed delivery in ad hoc wireless networks,”Wireless
Networks, vol. 7, no. 6, pp. 609–616, 2001.

[26] I. Wolf, M. Vetter, I. Wegner et al., “The medical imaging
interaction toolkit (MITK): a toolkit facilitating the creation of
interactive software by extending VTK and ITK,” in Medical
Imaging 2004: Visualization, Image-Guided Procedures, and
Display, 16, vol. 5367 of Proceedings of SPIE, May 2004.


